You are here

Disable VAT on Taiwan

Unfortunately, as of 1 January 2020 SAGE Ltd is no longer able to support sales of electronically supplied services to Taiwan customers that are not Taiwan VAT registered. We apologise for any inconvenience. For more information or to place a print-only order, please contact uk.customerservices@sagepub.co.uk.

An R Companion for Applied Statistics I
Share
Share

An R Companion for Applied Statistics I
Basic Bivariate Techniques



May 2020 | 256 pages | SAGE Publications, Inc

An R Companion for Applied Statistics I: Basic Bivariate Techniques breaks the language of the R software down into manageable chunks in order to help students learn how to use it. R is a powerful, flexible, and free tool. However, the flexibility—which eventually becomes a great asset—can make the initial learning curve appear steep. This book introduces a few key aspects of the R tool. As readers become comfortable with these aspects, they develop a foundation from which to more thoroughly explore R and the packages available for it. This introduction does not explain every possible way to analyze data or perform a specific type of analysis. Rather, it focuses on the analyses that are traditionally included in an undergraduate statistics course and provides one or two ways to run these analyses in R. Datasets and scripts to run the examples are provided on an accompanying website. The book has been designed to be an R companion to Warner's Applied Statistics I, Third Edition, and includes end-of-chapter instructions for replicating the examples from that book in R. However, this text can also be used as a stand-alone R guide, without reference to the Warner text.

 
Preface
 
Acknowledgments
 
About the Author
 
Chapter 1: Introduction: What is R?
Downloading R and RStudio

 
Creating a Project Folder

 
Getting Acquainted with the RStudio Environment

 
Appendix 1A: Preparing RStudio Project Folder

 
 
Chapter 2: Basic Tasks in R
Coding in R: Object-Oriented Programming

 
Creating Data

 
Exporting Data

 
Importing Data

 
Converting Variables

 
Summary of Key Functions

 
 
Chapter 3: Frequency Tables
Frequency Tables with Quantitative Variables

 
Appendix 3A: R Instructions to Accompany Warner (2020a)

 
 
Chapter 4: Descriptive Statistics
Describing Central Tendency

 
Describing Variability

 
Appendix 4A: R Instructions to Accompany Warner (2020a)

 
Appendix 4B: Mode Function

 
 
Chapter 5: Visualizing Data: Bar Charts, Histograms, and Boxplots
Visualizing Categorical Variables

 
Visualizing Quantitative Variables

 
Visualizing and Accounting for a Second Variable

 
Appendix 5A: R Instructions to Accompany Warner (2020a)

 
 
Chapter 6: Evaluating Score Locations: Introducing the Normal Distribution and z Scores
Getting Familiar With New Data Frames and Variables

 
Cumulative Percentage

 
z Scores

 
Addressing Normality

 
Appendix 6A: R Instructions to Accompany Warner (2020a)

 
 
Chapter 7: Sampling Error and Confidence Intervals
Monte Carlo Simulations

 
Confidence Intervals

 
Appendix 7A: R Instructions to Accompany Warner (2020a)

 
 
Chapter 8: One-Sample t Test: Introduction to Statistical Significance Tests
Checking Assumptions

 
Performing One-Sample t Tests

 
Presenting Results

 
Considering Alternatives

 
Appendix 8A: R Instructions to Accompany Warner (2020a)

 
Appendix 8B: One-Sample z Test

 
 
Chapter 9: Significance Tests Continued: Effect Size and Power
Estimating the Needed Sample Size

 
Estimating the Obtained Power

 
 
Chapter 10: Bivariate Pearson Correlation
Checking Assumptions

 
Performing Pearson's Bivariate Correlation

 
Considering Alternatives

 
Appendix 10A: R Instructions to Accompany Warner (2020a)

 
 
Chapter 11: Bivariate Regression
Checking Assumptions

 
Performing Bivariate Regression

 
Appendix 11A: R Instructions to Accompany Warner (2020a)

 
 
Chapter 12: Independent-Samples t Test
Checking Assumptions

 
Performing Independent-Samples t Tests

 
Presenting Results

 
Considering Alternatives

 
Appendix 12A: R Instructions to Accompany Warner (2020a)

 
Appendix 12B: Wilcoxon-Mann-Whitney U Test

 
 
Chapter 13: One-Way Between-Subjects Analysis of Variance
Checking Assumptions

 
Performing One-Way Between-Subjects ANOVA Tests

 
Presenting Results

 
Considering Alternatives

 
Appendix 13A: R Instructions to Accompany Warner (2020a)

 
 
Chapter 14: Paired-Samples t Test
Checking Assumptions

 
Performing Paired-Samples t Tests

 
Presenting Results

 
Considering Alternatives

 
Appendix 14A: R Instructions to Accompany Warner (2020a)

 
 
Chapter 15: One-Way Repeated-Measures Analysis of Variance
Checking Assumptions

 
Performing One-Way Repeated-Measures ANOVA Tests

 
Presenting Results

 
Considering Alternatives

 
Appendix 15A: R Instructions to Accompany Warner (2020a)

 
 
Chapter 16: Factorial Analysis of Variance
Checking Assumptions

 
Performing Two-Way Between-Subjects ANOVA Tests

 
Presenting Results

 
Considering Alternatives

 
Appendix 16A: R Instructions to Accompany Warner (2020a)

 
Appendix 16B: Converting Education Variable to Dichotomous Variable

 
 
Chapter 17: Chi-Square (?2) Test of Independence
Checking Assumptions

 
Performing Chi-Square (?2) Tests of Independence

 
Presenting Results

 
Considering Alternatives

 
Appendix 17A: R Instructions to Accompany Warner (2020a)

 
 
Chapter 18: Parting THoughts About R
Moving Forward

 
Continuing to Learn R

 
 
References

Supplements

Student Study Site
Open-access Student Resources include R code and data sets provided by the author for student download for completing in-chapter exercises.
 

Rasco's An R Companion to Applied Statistics I is an excellent companion to Warner's seminal statistics text. If you've ever wanted to use R in place of commercial statistics, this is the book that will help you achieve that goal.

Jeffrey Savage
Cornerstone University

Rasco's text has taken the complexity out of using R for students who are learning the system. His engaging text gives step by step instructions with visuals. He thoroughly covers the relevance and assumptions of each statistical analysis.

Lina Racicot
American International College

For instructors

Select a Purchasing Option