You are here

Our offices will be closed from Monday, December 23rd, to Wednesday, January 1st. Normal operations, including order shipping, will resume on Thursday, January 2nd. For technical support during this time, visit our support page.

Disable VAT on Taiwan

Unfortunately, as of 1 January 2020 SAGE Ltd is no longer able to support sales of electronically supplied services to Taiwan customers that are not Taiwan VAT registered. We apologise for any inconvenience. For more information or to place a print-only order, please contact uk.customerservices@sagepub.co.uk.

Discovering Statistics Using R
Share
Share

Discovering Statistics Using R

Additional resources:


March 2012 | 992 pages | SAGE Publications Ltd

Keeping the uniquely humorous and self-deprecating style that has made students across the world fall in love with Andy Field's books, Discovering Statistics Using R takes students on a journey of statistical discovery using R, a free, flexible and dynamically changing software tool for data analysis that is becoming increasingly popular across the social and behavioural sciences throughout the world.

The journey begins by explaining basic statistical and research concepts before a guided tour of the R software environment. Next you discover the importance of exploring and graphing data, before moving onto statistical tests that are the foundations of the rest of the book (for example correlation and regression). You will then stride confidently into intermediate level analyses such as ANOVA, before ending your journey with advanced techniques such as MANOVA and multilevel models. Although there is enough theory to help you gain the necessary conceptual understanding of what you're doing, the emphasis is on applying what you learn to playful and real-world examples that should make the experience more fun than you might expect.

Like its sister textbooks, Discovering Statistics Using R is written in an irreverent style and follows the same ground-breaking structure and pedagogical approach. The core material is augmented by a cast of characters to help the reader on their way, together with hundreds of examples, self-assessment tests to consolidate knowledge, and additional website material for those wanting to learn more.

Given this book's accessibility, fun spirit, and use of bizarre real-world research it should be essential for anyone wanting to learn about statistics using the freely-available R software.

 
Why Is My Evil Lecturer Forcing Me to Learn Statistics?
What will this chapter tell me?

 
What the hell am I doing here? I don't belong here

 
Initial observation: finding something that needs explaining

 
Generating theories and testing them

 
Data collection 1: what to measure

 
Data collection 2: how to measure

 
Analysing data

 
What have I discovered about statistics?

 
Key terms that I've discovered

 
Smart Alex's tasks

 
Further reading

 
Interesting real research

 
 
Everything You Ever Wanted to Know About Statistics (Well, Sort of)
What will this chapter tell me?

 
Building statistical models

 
Populations and samples

 
Simple statistical models

 
Going beyond the data

 
Using statistical models to test research questions

 
What have I discovered about statistics?

 
Key terms that I've discovered

 
Smart Alex's tasks

 
Further reading

 
Interesting real research

 
 
The R Environment
What will this chapter tell me?

 
Before you start

 
Getting started

 
Using R

 
Getting data into R

 
Entering data with R Commander

 
Using other software to enter and edit data

 
Saving Data

 
Manipulating Data

 
What have I discovered about statistics?

 
R Packages Used in This Chapter

 
R Functions Used in This Chapter

 
Key terms that I've discovered

 
Smart Alex's Tasks

 
Further reading

 
 
Exploring Data with Graphs
What will this chapter tell me?

 
The art of presenting data

 
Packages used in this chapter

 
Introducing ggplot2

 
Graphing relationships: the scatterplot

 
Histograms: a good way to spot obvious problems

 
Boxplots (box-whisker diagrams)

 
Density plots

 
Graphing means

 
Themes and options

 
What have I discovered about statistics?

 
R packages used in this chapter

 
R functions used in this chapter

 
Key terms that I've discovered

 
Smart Alex's tasks

 
Further reading

 
Interesting real research

 
 
Exploring Assumptions
What will this chapter tell me?

 
What are assumptions?

 
Assumptions of parametric data

 
Packages used in this chapter

 
The assumption of normality

 
Testing whether a distribution is normal

 
Testing for homogeneity of variance

 
Correcting problems in the data

 
What have I discovered about statistics?

 
R packages used in this chapter

 
R functions used in this chapter

 
Key terms that I've discovered

 
Smart Alex's tasks

 
Further reading

 
 
Correlation
What will this chapter tell me?

 
Looking at relationships

 
How do we measure relationships?

 
Data entry for correlation analysis

 
Bivariate correlation

 
Partial correlation

 
Comparing correlations

 
Calculating the effect size

 
How to report correlation coefficents

 
What have I discovered about statistics?

 
R packages used in this chapter

 
R functions used in this chapter

 
 
Regression
What will this chapter tell me?

 
An Introduction to regression

 
Packages used in this chapter

 
General procedure for regression in R

 
Interpreting a simple regression

 
Multiple regression: the basics

 
How accurate is my regression model?

 
How to do multiple regression using R Commander and R

 
Testing the accuracy of your regression model

 
Robust regression: bootstrapping

 
How to report multiple regression

 
Categorical predictors and multiple regression

 
What have I discovered about statistics?

 
R packages used in this chapter

 
R functions used in this chapter

 
Key terms that I've discovered

 
Smart Alex's tasks

 
Further reading

 
Interesting real research

 
 
Logistic Regression
What will this chapter tell me?

 
Background to logistic regression

 
What are the principles behind logistic regression?

 
Assumptions and things that can go wrong

 
Packages used in this chapter

 
Binary logistic regression: an example that will make you feel eel

 
How to report logistic regression

 
Testing assumptions: another example

 
Predicting several categories: multinomial logistic regression

 
What have I discovered about statistics?

 
R packages used in this chapter

 
R functions used in this chapter

 
Key terms that I've discovered

 
Smart Alex's tasks

 
Further reading

 
Interesting real research

 
 
Comparing Two Means
What will this chapter tell me?

 
Packages used in this chapter

 
Looking at differences

 
The t-test

 
The independent t-test

 
The dependent t-test

 
Between groups or repeated measures?

 
What have I discovered about statistics?

 
R packages used in this chapter

 
R functions used in this chapter

 
Key terms that I've discovered

 
Smart Alex's tasks

 
Further reading

 
Interesting real research

 
 
Comparing Several Means: ANOVA (GLM 1)
What will this chapter tell me?

 
The theory behind ANOVA

 
Assumptions of ANOVA

 
Planned contrasts

 
Post hoc procedures

 
One-way ANOVA using R

 
Calculating the effect size

 
Reporting results from one-way independent ANOVA

 
What have I discovered about statistics?

 
R packages used in this chapter

 
R functions used in this chapter

 
Key terms that I've discovered

 
Smart Alex's tasks

 
Further reading

 
Interesting real research

 
 
Analysis of Covariance, ANCOVA (GLM 2)
What will this chapter tell me?

 
What is ANCOVA?

 
Assumptions and issues in ANCOVA

 
ANCOVA using R

 
Robust ANCOVA

 
Calculating the effect size

 
Reporting results

 
What have I discovered about statistics?

 
R packages used in this chapter

 
R functions used in this chapter

 
Key terms that I've discovered

 
Smart Alex's tasks

 
Further reading

 
Interesting real research

 
 
Factorial ANOVA (GLM 3)
What will this chapter tell me?

 
Theory of factorial ANOVA (independant design)

 
Factorial ANOVA as regression

 
Two-Way ANOVA: Behind the scenes

 
Factorial ANOVA using R

 
Interpreting interaction graphs

 
Robust factorial ANOVA

 
Calculating effect sizes

 
Reporting the results of two-way ANOVA

 
What have I discovered about statistics?

 
R packages used in this chapter

 
R functions used in this chapter

 
Key terms that I've discovered

 
Smart Alex's tasks

 
Further reading

 
Interesting real research

 
 
Repeated-Measures Designs (GLM 4)
What will this chapter tell me?

 
Introduction to repeated-measures designs

 
Theory of one-way repeated-measures ANOVA

 
One-way repeated measures designs using R

 
Effect sizes for repeated measures designs

 
Reporting one-way repeated measures designs

 
Factorisal repeated measures designs

 
Effect Sizes for factorial repeated measures designs

 
Reporting the results from factorial repeated measures designs

 
What have I discovered about statistics?

 
R packages used in this chapter

 
R functions used in this chapter

 
Key terms that I've discovered

 
Smart Alex's tasks

 
Further reading

 
Interesting real research

 
 
Mixed Designs (GLM 5)
What will this chapter tell me?

 
Mixed designs

 
What do men and women look for in a partner?

 
Entering and exploring your data

 
Mixed ANOVA

 
Mixed designs as a GLM

 
Calculating effect sizes

 
Reporting the results of mixed ANOVA

 
Robust analysis for mixed designs

 
What have I discovered about statistics?

 
R packages used in this chapter

 
R functions used in this chapter

 
Key terms that I've discovered

 
Smart Alex's tasks

 
Further reading

 
Interesting real research

 
 
Non-Parametric Tests
What will this chapter tell me?

 
When to use non-parametric tests

 
Packages used in this chapter

 
Comparing two independent conditions: the Wilcoxon rank-sum test

 
Comparing two related conditions: the Wilcoxon signed-rank test

 
Differences between several independent groups: the Kruskal-Wallis test

 
Differences between several related groups: Friedman's ANOVA

 
What have I discovered about statistics?

 
R packages used in this chapter

 
R functions used in this chapter

 
Key terms that I've discovered

 
Smart Alex's tasks

 
Further reading

 
Interesting real research

 
 
Multivariate Analysis of Variance (MANOVA)
What will this chapter tell me?

 
When to use MANOVA

 
Introduction: similarities and differences to ANOVA

 
Theory of MANOVA

 
Practical issues when conducting MANOVA

 
MANOVA using R

 
Robust MANOVA

 
Reporting results from MANOVA

 
Following up MANOVA with discriminant analysis

 
Reporting results from discriminant analysis

 
Some final remarks

 
What have I discovered about statistics?

 
R packages used in this chapter

 
R functions used in this chapter

 
Key terms that I've discovered

 
Smart Alex's tasks

 
Further reading

 
Interesting real research

 
 
Exploratory Factor Analysis
What will this chapter tell me?

 
When to use factor analysis

 
Factors

 
Research example

 
Running the analysis with R Commander

 
Running the analysis with R

 
Factor scores

 
How to report factor analysis

 
Reliability analysis

 
Reporting reliability analysis

 
What have I discovered about statistics?

 
R Packages Used in This Chapter

 
R Functions Used in This Chapter

 
Key terms that I've discovered

 
Smart Alex's tasks

 
Further reading

 
Interesting real research

 
 
Categorical Data
What will this chapter tell me?

 
Packages used in this chapter

 
Analysing categorical data

 
Theory of Analysing Categorical Data

 
Assumptions of the chi-square test

 
Doing the chi-square test using R

 
Several categorical variables: loglinear analysis

 
Assumptions in loglinear analysis

 
Loglinear analysis using R

 
Following up loglinear analysis

 
Effect sizes in loglinear analysis

 
Reporting the results of loglinear analysis

 
What have I discovered about statistics?

 
R packages used in this chapter

 
R functions used in this chapter

 
Key terms that I've discovered

 
Smart Alex's tasks

 
Further reading

 
Interesting real research

 
 
Multilevel Linear Models
What will this chapter tell me?

 
Hierarchical data

 
Theory of multilevel linear models

 
The multilevel model

 
Some practical issues

 
Multilevel modelling on R

 
Growth models

 
How to report a multilevel model

 
What have I discovered about statistics?

 
R packages used in this chapter

 
R functions used in this chapter

 
Key terms that I've discovered

 
Smart Alex's tasks

 
Further reading

 
Interesting real research

 
 
Epilogue: Life After Discovering Statistics
 
Troubleshooting R
 
Glossary
Appendix

 
Table of the standard normal distribution

 
Critical Values of the t-Distribution

 
Critical Values of the F-Distribution

 
Critical Values of the chi-square Distribution

 
 
References

Supplements

Click for online resources

Companion Website to accompany Discovering Statistics Using R

Not using R much at our institution

Dr Katherine Hinderer
Nursing Dept, Salisbury University
March 28, 2014

This book is very useful for extra work associated with the course.
It covers too much to be essential.
I find the explanations of statistical methods very clear indeed and if a student needs to learn about a topic not covered by the course this book is invaluable.

Mr Edward Thomas
School of Geographical Sciences, Bristol University
March 28, 2014

An excellent, funny and detailed guide to Andy Field's life-story, with plenty of useful information about data analysis with R too.

Dr Rob Thomas
Cardiff School of Biosciences, Cardiff University
March 19, 2014

Less suitable for introduction to statistics courses, more suitable for computational statistics course. Does not have any chapters on foundational issues, like probability theory, distributions, etc...

Mr Loren Wagner
Economics Dept, Univ Of Wisconsin-Milwaukee
March 15, 2014

I am trained in SPSS so am going to need a good chunk of spare time to get comfortable with R myself before I could start teaching on it. This will be first on my list though when I get that time...

Dr Eric Jensen
Department of Sociology, Warwick University
March 6, 2014

Great Text, but staying with Easier Software (SPSS) for the time being.

Dr Michael Tunik
Pediatrics Dept, New York Univ Sch Of Medicine
January 22, 2014

Another excellent text from Andy Field! I recommend this to my postgraduate students and to students on the Research Methods module of our PHD in Perception, Cognition and Action

Dr Denis O'Hora
Please select your department, National University of Ireland, Galway
January 22, 2014

very relevant book but the level of benifit to studnets on the current programme does not meet the requirments of including as core material

Mr Bernard Mccarthy
School of Nursing and Midwifery, National University of Ireland, Galway
December 17, 2013

In this book, Andy Field gives an introduction to R (and statistics in general) with his trademark humor and easy-to-follow teaching style. My students and I found it very helpful and I will be sure to continue to recommend it to others who want to get started with R.

Ms Sara Jahnke
Clinical Psychology and Psychotherapy, Dresden University of Technology
December 10, 2013

We don't use R right now. Still SPSS. So this is one for the future.

Sandrino Smeets
Nijmegen School of Management, Radboud University Nijmegen
November 29, 2013

Sample Materials & Chapters

Chapter One