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To understand the logic of statistical hypothesis testing, which underlies many other
tests, it makes sense to begin with comparisons of two groups. Furthermore, comparisons
of two groups (e.g., men and women, people with high communication apprehension and
people with low communication apprehension, people who listen to a speech with evidence
and people who listen to the same speech without any evidence) on some output measure of
interest is common in communication research.

DOING A STUDY THAT TESTS A HYPOTHESIS
OF DIFFERENCES BETWEEN MEANS

Researchers often ask research questions about the means of two groups on some measure
of interest. These two groups usually are categories or levels of an independent variable that
is measured on the nominal level. To understand this process, it helps to grasp what studies
using these tools look like and the general process of hypothesis testing.

Design of a Study That Compares Two Conditions

Researchers who wish to compare the means of two groups usually are involved in com-
pleting experiments or some form of survey research. A survey is an “empirical study that uses
questionnaires or interviews to discover descriptive characteristics of phenomena” (Reinard,
2001, p. 225). On the other hand, an experiment is “the study of the effects of variables manip-
ulated by the researcher, in a situation in which all other variables are controlled, and com-
pleted for the purpose of establishing causal relationships” (Reinard, 2001, p. 256). Unlike the
work in surveys, in experiments researchers introduce variables that were not already present
in the situation (to participants called an “experimental group”), and they withhold those
variables from others (participants in a “control group”). For instance, an experimenter might
expose one group of people to a message with climax order and another group to a message
with anticlimax order. Then, the researcher would compare the dependent variable mean scores
of participants from the two groups. In surveys, researchers do not manipulate variables, and
they often find that independent variables already are organized into two groups, such as
participant sex (men and women), type of cultural background (individualistic or collectivist
cultures), or age (old and young). Some of these variables originally were continuous variables,
but they have been broken into levels called variable factors or just factors.
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Once variables are divided into two categories, researchers may posit hypotheses to be
tested. For comparisons between means, research hypotheses take the form of comparing the
means of two groups, symbolized as

H: µ1 > µ2 (the dependent variable mean of the first group is higher than the mean of
the second group),

H: µ1 < µ2 (the dependent variable mean of the first group is lower than the mean of the
second group), or

H: µ1 ≠ µ2 (the dependent variable mean of the first group is not equal to the mean of the
second group).1

The first two examples are called directional hypotheses because, not surprisingly, they
assert a direction to the differences between means. The last hypothesis is a nondirectional
hypothesis because it asserts a difference between groups but not the nature of that differ-
ence. In contrast to these research hypotheses is the null hypothesis that states that there is
no difference between groups: H0: µ1 = µ2. As will be seen, this null hypothesis is actually
what is tested statistically. In the case of a directional hypothesis, rejection of the null
hypothesis would have to be accompanied by a finding of mean differences in the predicted
direction.

Some, therefore, have suggested that the null hypothesis for the first hypothesis actually
be stated as H0: µ1 ≤ µ2 and that the null hypothesis for the second hypothesis should be stated
as H0: µ1 ≥ µ2. Though it sometimes may sound curious at first, researchers investigating
material hypotheses typically want to reject opposing null hypotheses. The approach that
includes “directions” in null hypotheses attempts to take account of all relationships that
would not support a researcher’s material hypotheses.

Before testing the hypotheses, researchers must examine whether the assumptions under-
lying the use of the statistics have been satisfied. Finally, after the assumptions have been
checked, the primary statistical tools may be employed.

Applying the Logic of Hypothesis Testing

You might think that testing a research hypothesis is a simple matter of checking to see
if the means are in the direction suggested. But because we collect data in samples and try

Tests Comparing Two Means— 147

1As was explained in Chapter 2, though researchers typically deal with sample data, for conceptual
purposes they hypothesize general relationships that may exist in the population as a whole. Hence,
hypothesis notation uses Greek letters to represent population characteristics. The standard abbreviation
for the population mean is the lowercase Greek letter µ (mu). For sample data, the ordinary Roman
alphabet (the ABCs) is used. Sometime in the future, statistics books may not use the Greek alphabet
notation for hypotheses, but until the change becomes universal, it is helpful to learn the typical nota-
tion so that you can understand the meaning of specific concepts you may wish to investigate from other
sources in statistics.
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to make inferences about populations, this approach might not be very helpful. One could
imagine a researcher and a skeptic discussing the matter:

Researcher: I have confirmed my research hypothesis that a speech with internal organiz-
ers is more easily recalled than a speech without internal organizers.

Skeptic: In the first place, you do not confirm or prove hypotheses. You can “support”
them or find them “tenable,” but that’s it. In the second place, even if we
assume that your research design actually manipulated internal organizers
without confounding them with other variables, such as language vividness
and message length, you still do not have evidence of the impact of inter-
nal organizers because you used sample data. I’d bet that if you sampled
the entire population, you would find no difference at all in recall of the
message.

Researcher: But I used random sampling to ensure that my samples would be representative
of the population.

Skeptic: That’s just the point. If you used random sampling—and I would like you to
tell me how you developed a large enough sampling frame to pull off that
trick—then most of the time you would tend to get samples that mirrored the
population characteristics of interest.

Researcher: See!

Skeptic: Not exactly. If you sampled at random, in addition to getting results that might
reflect the population, you occasionally would get samples that represented
extreme results. You do not really know whether your study results reflected
the effects of sampling error or whether they identified a real relationship that
exists in the population.

Researcher: OK, if you don’t believe that internal organizers increase recall of a message,
where is your proof?

Skeptic: Whoa! I don’t have the burden of proof here. You do. Those who assert things
must prove them. Besides, how could I be expected to prove a null hypothesis?2

Researcher: I guess I’ve wasted my time.
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2Sometimes, though not in this example, you can prove a null hypothesis, but doing so requires two
things. First, what is identified must be equally recognized by everyone in a position to make obser-
vations, rather than being a matter of personal preference or subjective judgment. Second, the universe
must be limited, so that a complete search is possible. So, if a dentist tells you, “You do not have any
new cavities,” the dentist is asserting the truth of a null hypothesis. What constitutes a cavity is recog-
nized as the same by everybody with dentistry training (we hope), and the universe in which to search
(the teeth in your mouth) is limited. This situation is rare in everyday life. Thus, under most circum-
stances, it is not possible to prove a null hypothesis.
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There is another way.3 The rest of this chapter will explain this logic of hypothesis testing.
Because it underlies all the other tests of significance, it is useful to be sure to be comfortable
with this logic before proceeding to specific tests.

Reasoning From Reverse: The Logic of Testing the Null Hypothesis

Rather than trying to prove the point directly, researchers may use a process of elimination
to support a hypothesis. Just for the sake of argument, you could assume that the null hypoth-
esis of the skeptic is true. Then, you could ask how improbable it would be to find a differ-
ence as large as observed as a result of random sampling error. If random sampling could
produce a sample such as yours quite often, then you would decide that the evidence is not
good enough to reject the doubts of the skeptic (in other words, you would fail to reject the
null hypothesis). Yet, if your sample could be found quite rarely due to sampling error, then
you would decide that it is unlikely that your sample came from a population described by
the null hypothesis. Now you have two options:

1. Decide that your results are, in fact, just the kind of occurrence that happens at random
once in a while, even though it is admittedly unlikely—and conclude that this occurrence
is one of those random sampling oddities, or

2. Decide that it is so improbable that your results could be found at random from a
population defined by the null hypothesis that the null hypothesis must be untrue.

You do not prove that your research hypothesis is true. Instead, you show how improbable
an explanation the null hypothesis is for your results. If the null hypothesis is improbable,
what’s left? The properly stated research hypothesis is the only alternative. Statistics cannot
prove that your research hypothesis is true, but you can use the statistics that follow to show
how long the odds are against skeptics who would posit a null hypothesis. As you can see, the
null hypothesis is actually the one that researchers test. If they can reject it as improbable,
they use a process of elimination to conclude that the research hypothesis is “supported.”4

Tests Comparing Two Means— 149

3There actually is more than one other way. The approach presented here is a standard treatment of
significance testing, but you should know that serious scholars have suggested other ways to approach
hypothesis testing. Relying on Bayesian probability theory, many are exploring alternatives to the
“process of elimination” approach taken here.
4The logic of hypothesis testing is not a metaphor. The conditional syllogism is used throughout the
process. For instance:

Major premise: If the null hypothesis is true, then no statistically significant differences will be found.

Minor premise: Statistically significant differences were found.

Conclusion: Therefore, the null hypothesis is untrue.

This form of reasoning is known as modus tollens. You may notice that finding no significant differ-
ences would not prove the null hypothesis to be true. In such a case, the minor premise “no statistically
significant differences were found” would commit the fallacy of affirming the consequent. Even with
formal logic, it is difficult to make a valid argument to prove a null hypothesis.
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Steps in Hypothesis Testing

To test a statistical hypothesis, researchers follow several steps. Each will be considered
in turn.

• Determining a decision rule to reject the null hypothesis is the starting point for assess-
ing a hyothesis. This decision rule is called setting a level of alpha risk (α risk). The
researcher announces alpha risk before the research is completed, and it is the decision
rule under which null hypotheses are to be rejected. The decision rule (or “alpha” for
short) is usually set at a probability of .05 for research in communication studies. So, if
a set of results could have been found by random sampling error from a distribution
defined by the null hypothesis no more than 5 times out of 100, the researcher agrees
to reject the null hypothesis explanation. Of course, this level means that 5 times out of
100 (or 1 time out of every 20 tests), when the researcher claims to have found a sig-
nificant difference, the effect really is just attributable to random sampling error. To
make the test understandable, it often is useful to state the null hypothesis explicitly
(though in published research, such a feature is rare).

• Computing a test statistic is the result of using a statistical formula. In this chapter, the
statistics of interest are z and t, but many others are available.

• Finding the critical value to interpret the meaning of the test statistic requires
researchers to look at distributions and tables. Then, based on adjustments for sample
sizes and parameters estimated from samples, researchers look at distributions to iden-
tify critical regions of interest. The critical region of a distribution represents

values that are “critical” to a particular study. They are critical because when a
sample statistic falls in that region, the researcher can reject the null hypothesis.
(For this reason, the critical region also is called the “region of rejection.” (Vogt,
2005, p. 70)

Researchers look at a distribution for their type of data and then identify the
proportion that corresponds to their decision rule for rejecting the null hypothesis.
For instance, if a researcher were using the standard normal curve as the underlying
probability distribution, and using an alpha risk of .05 as the decision rule to reject
the null hypothesis, then 5% of the standard normal curve would have to be identified
as the critical region.

If the research hypothesis is a directional hypothesis, 5% of the distribution that is
the critical region would be on one side of the distribution. In the case of the standard

normal curve, the last 5% of the distribution begins at 1.645 standard
deviations.5 But which side of the distribution is the location of the
critical region? It depends on the hypothesis.

� If the directional hypothesis is stated as H: µ1 > µ2, the 5% of the
distribution that is the critical region is on the right side, as shown in
the diagram on the left.
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5Though it appears in Table C.1 in this book, the value of 1.645 does not appear in most tables of the
standard normal curve and must be interpolated from the surrounding z values.

1.645
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� If the directional hypothesis is stated as H: µ1 < µ2, the 5% of
the distribution that is critical region is on the left side, as
shown in the diagram on the right.
� If the research hypothesis is a nondirectional hypothesis,

the 5% of the distribution that is the critical region would
be divided, with half on one side of the distribution and half
on the other side. Hence, for a null hypothesis such as
H: µ1 ≠ µ2, 2.5% of the distribution that is part of the criti-
cal region is on the right side, and the remaining 2.5% of
the distribution that is part of the critical region is on the
left side. Because the last 2.5% of the distribution starts at
± 1.96 standard deviations, the critical regions can be identified as in the diagram
shown in the right.

• Rejecting or failing to reject the null hypothesis is the final step in statistical hypothesis
testing. If the test statistic falls in any critical region for the particular hypothesis, the
researcher applies the decision rule to reject the null hypothesis, and a real relationship
or “statistically significant” difference is claimed. The term statistical significance
is often defined as a relationship that is beyond what might be expected to occur by
chance alone, but “statistical significance means that the result was unlikely due to
chance; if the null hypothesis is true, an improbable event has occurred” (Johnson,
1995, p. 1999). Either the improbable event can be dismissed, or it can be taken as
evidence that the null hypothesis explanation is unpersuasive. Researchers usually
claim statistical significance with such claims as “statistically significant differences
were found (p < .05).” The p in this statement symbolizes the probability that observed
differences could have been found if the null hypothesis were true. In short, the smaller
this probability is, the more potent the evidence is against the null hypothesis—and, by
a process of elimination, the more tenable is the alternative research hypothesis. It is
important to remember

that a p-value merely indicates the probability of a particular set of data being
generated by the null model—it has little to say about size of a deviation from that
model (especially in the tails of the distribution, where large changes in effects size
cause only small changes in p-values). (Helberg, 1995, ¶ 28)

Of course, the decision a researcher makes to reject a null hypothesis is a “yes” or “no”
option. Sometimes these choices will prove—in the long run—to be sound decisions, and
sometimes they will be mistaken. When completing a study, researchers play the odds, but
they cannot know for sure that they have decided correctly. The options are found in
Table 7.1.

The “Actual Situation” is not known to the researcher at the time of a study, of course.
But there are two options: The null hypothesis could be true, or it might be false. In addi-
tion, researchers might look at statistical analyses completed and decide that the odds seem
to be against the null hypothesis explanation of the data, that the null hypothesis should be
rejected.

Tests Comparing Two Means— 151

−1.96 1.96

−1.645
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Actual Situation

H0 is false H0 is true

Reject H0 Correct decision Type I error
Power α risk

Do not reject H0 Type II error Correct decision
β risk

If the researcher decides to reject the null hypothesis and the null hypothesis is false,
the researcher has made a correct decision. Of course, at the time of the study, the researcher
could not know for sure, but the researcher can compute the probability of correctly rejecting
the null hypothesis. Called statistical power, this term refers to “the probability of rejecting
the null hypothesis when it is false—and therefore should be rejected” (Vogt, 2005, p. 242).
Of course, if a researcher rejects the null hypothesis and it turns out that the null hypothesis
is true, then the researcher has made an incorrect decision. This type of mistake is known
as Type I error.6 One cannot know whether a Type I error has occurred at the time the data
are first analyzed statistically (though in the long run, researchers usually find out). But
researchers can identify the probability that a Type I error might occur. This probability of
incorrectly rejecting the null hypothesis is known as alpha (αα) risk. Many students find it
useful to think of Type I error as a researcher producing a “false positive” claim of support
for the research hypothesis. The researcher thought there was a predicted relationship, but
it was a false positive finding.

The researcher could fail to reject the null hypothesis. If the null hypothesis were false—
if there actually were differences that went undetected—the researcher would have made a
mistake. This type of error is called Type II error. Though at the time the study is conducted,
the researcher cannot know if Type II error has occurred, the probability that the error might
have occurred can be identified as beta (ββ) risk. Students sometimes find it useful to think of
Type II error as a researcher producing a “false negative” claim about the research hypothe-
sis. Though the data seemed to suggest the absence of a relationship, it actually was a false
negative finding. In general, researchers control beta risk by using large enough sample sizes
for statistics to detect relationships in the data. Of course, if the researcher fails to reject the
null hypothesis that is true, the decision is a correct one. As you might expect, 1 – β is the
power of a statistical test.

In passing, it might be mentioned that researchers must have a hypothesis before using
these steps of statistical hypothesis testing. It is not appropriate to compose a hypothesis
after the data are examined. Similarly, it is not appropriate to set a decision rule after a test
statistic has been computed.
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Table 7.1

Researcher’s
Decision Based
on Statistical 
Testing Decision

6One might wonder why they are called Type I error and Type II error (to be discussed later). The
reason appears to go all the way back to Aristotle, who identified two types of errors: to say about
that which is true that it is untrue, and to say about that which is untrue that it is true.
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ASSUMPTIONS IN PARAMETRIC HYPOTHESIS TESTING

When comparing two means, a family of statistical tests called parametric tests is used.
Parametric statistics are methods that “make assumptions about populations from which
the samples were drawn” (Reinard, 2001, p. 341). Four major assumptions underlie the use
of parametric tests:

• Interval or ratio level measurement of dependent variables;
• Randomization in sampling and any assignment of events to experimental and control

conditions;
• Normal probability distribution of dependent variables; and
• Equal (homogeneous) variances of the dependent variable in the population (and the

corresponding requirement that sample variances remain equal within the limits of
sampling error).

Many of these assumptions are not about sample data; they are inferences about population
elements. For instance, the one assumption states that the populations have normal probabil-
ity distributions. But because population characteristics rarely are known to the researcher,
unbiased sample statistics are taken as the next best indicator of these characteristics.

Tests Comparing Two Means— 153

Troubled Language Use in Hypothesis Testing

Reasoning by a process of elimination often has created difficulties for researchers in reporting their
findings. One writer (Thompson, 1994, p. 6) explains:

Many of the problems in contemporary uses of statistical significance testing originate
in the language researchers use. Several names can refer to a single concept (e.g., “SOS
(BETWEEN)” = “SOS(EXPLAINED)” = “SOS(MODEL)” = “SOS(REGRESSION)”), and different
meanings are given to terms in different contexts (e.g., “univariate” means having only one
dependent variable but potentially many predictor variables, but may also refer to a statistic
that can be computed with only a single variable).

Overcoming three habits of language will help avoid unconscious misinterpretations:

– Say “statistically significant” rather than “significant.” Referring to the concept as a phrase
will help break the erroneous association between rejecting a null hypothesis and obtain-
ing an important result.

– Don’t say things like “my results approached statistical significance.” This language makes
little sense in the context of the statistical significance testing logic. My favorite response
to this is offered by a fellow editor who responds, “How did you know your results were
not trying to avoid being statistically significant?”

– Don’t say things like “the statistical significance testing evaluated whether the results
were ‘due to chance’.” This language gives the impression that replicability is evaluated
by statistical significance testing.

Special Discussion 7.1
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Researchers, therefore, look at sample data to get evidence about whether the assumptions
have been met in the population as a whole.

Effects of Violating Parametric Assumptions

Naturally, scholars are interested in what happens if the assumptions underlying these
parametric tests are not satisfied. Some matters, such as the required level of measurement
and randomization, seem fairly firm. If one wishes to ask how rarely one’s study results could
be found by random sampling error, it is vital for researchers to reference distributions with
randomness in mind. Though there may be controversy regarding whether many measures
used in communication research really are interval level measures, regardless of the way the
researcher comes down on the issue, using at least quasi-interval measurement is presumed.7

Univariate parametric tests seem to be resistant to the effects of violating the assumption of
normality (see classic studies by Boneau [1960] and Hsu and Feldt [1969]). When the sample
sizes are at least 15 in each condition, the actual number of Type I errors tends to be off by an
average of only ±1%. If the sample sizes are under 6 per condition, a skewed distribution can
lead to more Type I errors than the ±1% range limit. If there is a nonnormal distribution,
researchers may want to know why. According to the central limit theorem (Chapter 4), distrib-
utions of means will tend toward normality as sample sizes used to compute the means are
increased. Hence, if one still finds nonnormal distributions, it may be that some uncontrolled
variables are introducing nonrandom influences that should be isolated and studied. What should
researchers do if the distributions are nonnormal and sample sizes do not permit one to believe
that assumptions have been satisfied? One option is to use nonparametric test alternatives. This
approach, however, frequently reduces statistical power (Hodges & Lehmann, 1956; Tanizaki,
1997) and introduces bias when multiple violations of assumptions exist (Zimmerman, 1998).

Another option is to use transformations of nonnormal data. Yet another option is to
employ a “robust” statistic, such as Yuen’s t (Yuen, 1974).8 The ideal solution, of course,
involves taking steps to avoid the problem of nonnormal distributions—by use of adequate
sample sizes and control of extraneous variables when sampling.

Studies of the assumption of homogeneous variances of the dependent variable in the
population have revealed that the effect of violating this assumption usually is trivial if sample
sizes are equal in comparison groups (Glass, Peckham, & Sanders, 1972). If sample sizes are not
equal, the impact still is not great unless the ratio of the largest to the smallest sample size is more
than 5 to 4. If the variances are unequal and the largest variance comes from the group with the
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7As was mentioned in Chapter 2, there is some controversy regarding whether most measures in
communication studies and the social sciences are interval or quasi-interval data. Over the years, Monte
Carlo simulation studies have revealed that the effects of true intervality are relatively unimportant for
the sorts of data typically found by social science researchers (Baker, Hardyk, & Petrinovich, 1966;
Borgatta & Bohrnstedt, 1980). For a review of this controversy, see Velleman and Wilkinson (1993).
8This method involves trimming data to compute means and winsorizing data to compute a measure of
within-groups variance (see Chapter 3). Though it has some effect on overcoming the problem of het-
erogeneous variances, Yuen’s t primarily addresses the difficulties of nonnormal distributions. Yet, the
method suffers criticisms of winsorizing and trimming generally, including the charge that it may give
misleading results because it arbitrarily dismisses actual unexplained variability that probably should
not be dropped arbitrarily. Furthermore, methods using trimmed means often have lower power than
methods that use standard nonparametric techniques (Keselman & Zumbo, 1997).
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largest sample size, Type I error actually would be lower than the announced alpha risk. So,
researchers would think that they were rejecting the null hypothesis at the .05 level when they
really were rejecting it at the .04 or .03 level. Thus, the test would be increasingly conservative.
If the largest variance comes from the group with the smallest sample size, the resulting Type I
error would be greater than the announced alpha risk. So, researchers would claim rejecting null
hypotheses at the .05 level when, in fact, they were rejecting null hypotheses at a .06, .07, or
greater probability level. In other words, the test would be increasingly likely to reject null
hypotheses erroneously. It might be mentioned that if the heterogeneity in variances accompanies
other violations, the violations could be increasingly important (Lix & Keselman, 1998).

Testing the Assumptions

There are formal ways to test assumptions of normal distributions and homogeneous
variances. These two matters will be examined.

Testing for Normal Distributions

The assumption of an underlying normal probability distribution in the population is
often checked by looking at a plot of sample data. Examining skewness and kurtosis
statistics may be all that is necessary. Yet, there are other ways to check on such informa-
tion. The Lilliefors modification of the Kolmogorov-Smirnov one-sample test (often called
the Lilliefors test for normality) may be used to test the assumption of normality (Lilliefors,
1967). The Lilliefors test transforms data into z scores. Then, the cumulative frequency dis-
tribution of the data is compared to the cumulative frequency distribution that would be
expected based on the z values. For instance, suppose there were 10 scores on a measure of
interpersonal solidarity: 5, 10, 14, 6, 8, 8, 7, 11, 9, 12. Arranging the scores from the lowest
to highest z scores produces the following:

The CFD is the cumulative frequency distribution of scores (expressed as proportions—
with 10 scores, each score is one tenth of the total or 0.1). Because there were two people
with scores of 8, they both share the same location on the cumulative distribution. The method
involves looking at the discrepancy between the cumulative frequency distribution for the raw
and z scores. The researcher needs to compute the sample mean and standard deviation for the
raw data (in this case, the mean is 9 and the standard deviation is 2.79). Then, the researcher
looks at the table of the standard normal curve and identifies the proportion of the area that is
to the left of the particular z score. For instance, the score of 5 corresponds to a z score of –1.43:

. Checking the table of the standard normal curve reveals that this z score

identifies the location of the area under the standard normal curve that exceeds .0764 of all scores.
As the figure below shows, this value is placed in the row identified as “area below z.” Differences
in cumulative frequency distributions are inserted in a separate row in the table of comparisons.

z = X − X
---

s
= 5 − 9

2.79
= −1.43

Tests Comparing Two Means— 155

Scores 5 6 7 8 8 9 10 11 12 14

CFD 0.1 0.2 0.3 0.5 0.5 0.6 0.7 0.8 0.9 1

z score −1.43 −1.08 −0.72 −0.36 −0.36 0 0.39 0.72 1.08 1.79
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The largest difference is .14. The critical values are found in Appendix C.12. For alpha risk
of .05, the minimum critical difference is .258. Because the test statistic is smaller than this
critical value, the assumption of a normal distribution continues to be tenable. The Lilliefors
test has been shown to be powerful, especially when detecting “heavy-tailed” distributions
(Young & Seaman, 1990).

To use SPSS to produce such a test, the researcher selects Descriptive Statistics from
the Analyze menu. On the drop-
down menu, the researcher then
selects Explore. . . . On the dialog
box that appears, the researcher
moves the dependent variable into
the “Dependent List:” field. In this
case, the same data from the example
above are used. Hence, the “solidar-
ity” variable is moved by use of the
arrow button. The box for both plots
and statistics is checked, though the
researcher might choose only the sta-
tistical analysis if desired.

Clicking on the Plots. . . button
produces a dialog box in which the
specific “Normality plots with tests”
choices may be checked.

Among other things, the results of the analysis include the following table. The
Kolmogorov-Smirnov value is .14, which corresponds to the results produced in our calcula-
tions above. This value is associated with a probability value of .20, which is well above the
standard of .05 used to identify statistically significant deviations from normality. Hence, this
test did not suggest that the assumption of an underlying normal distribution was untenable.
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Scores 5 6 7 8 8 9 10 11 12 14

CFD 0.1 0.2 0.3 0.5 0.5 0.6 0.7 0.8 0.9 1

z score −1.43 −1.08 −0.72 −0.36 −0.36 0 0.39 0.72 1.08 1.79

Area below z 0.08 0.14 0.24 0.36 0.36 0.5 0.64 0.76 0.86 0.96

Difference 0.02 0.06 0.06 0.14 0.14 0.1 0.06 0.04 0.04 0.04
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A popular alternative is the Shapiro-Wilk test, which remains powerful even when sample sizes
are as small as 20 (Wilk, Shapiro, & Chen, 1965). This test examines the null hypothesis that the
sample distribution is normal. Hence, a statistically significant difference means that the distribu-
tion is not normal. In this case, the probability associated with this test was .962, a value suggest-
ing that the assumption of a normal distribution remained tenable for these data.

Another choice is the Anderson-Darling test for normality (T. W. Anderson & Darling,
1954).9 Though involving more complicated computations, the Anderson-Darling test is more
powerful than the Lilliefors modification of the Kolmogorov-Smirnov test (Crown, 2000;
Spinelli & Stephens, 1987; Stephens, 1974). Computer programs have been developed for this
test (Calzada & Scariano, 2002), and a link to one can be found on this chapter’s Web site.

Testing for Homogeneous Variances Among Two or More Groups

To test the equality of variances, there are several options. One of the most popular is the
F test (sometimes called Fmax) for the equality of two variances. The null hypothesis to be
tested is H0: σ1

2 = σ 2
2. This formula (sometimes known as Fmax)

10 takes the largest variance and
divides it by the smallest variance:

Though popular, this measure tends to exaggerate the chances of finding heterogeneous
variances as sample sizes increase. An alternative formula is Levene’s test, which subtracts
each score from its cell mean and then performs a test called analysis of variance on the dif-
ference scores. Other tests often are suitable options for different sorts of data.11 In each case,
a distribution is referenced to see if the test statistic falls in the critical region corresponding

F = σ2
largest

σ2
smallest

.
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9The discrete Anderson-Darling test statistic is

In this formula, pi is the cumulative probabilities for each value of the variable (transformed
into z scores). To estimate the significance of the test statistic, the following formula may be used:

(see Nelson, 1998).

10Another related test, sometimes called Hartley’s H, is, in fact, the F test for which there are equal cell
sizes and for which the table of critical values has been simplified.
11For instance, when sample sizes are unequal and when any of the variances is very small, Cochran’s
C often is indicated.

α ≈ 3.6789468e− A∗
.1749916

A∗ =
{

−1

n

[
n∑
i

(2i − 1)[ln(pi) + ln(1 − pn+1−i )]

]
− n

} (
1 + .75

n
+ 2.25

n2

)
.

Kolmogorov-Smirnova Shapiro-Wilk

Statistic df Sig. Statistic df Sig.

solidarity .140 10 .200* .979 10 .962

Tests of Normality

*This is a lower bound of the true significance.
a. Lilliefors Significance Correction.
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“The F-Test Two-Sample for Variances” dialog box (above right) includes fields into which the
researcher must identify the location of the scores for each of the groups. The step is accomplished
by clicking on the symbol in the “Variable 1 Range:” field. This step puts the researcher on
the spreadsheet where data are located. By clicking on the first cell in which data appear for the

first group of scores and highlighting the remaining data in that row
(by holding down the left mouse button), the cell range in which the
first group’s data are found can be input. Clicking on the symbol
on the drop-down menu returns the researcher to the main dialog box.
Then, the process of highlighting the cell range may be completed
for the second group of data scores. If the researcher has highlighted
cells that contain variable or group labels, the “Labels” box should
be checked to prevent attempts to analyze group variable names as
data. The researcher also must specify a location in which the output 
is to be placed. In this case, the researcher has identified the “Output
Range:” to begin at cell D13. Clicking the OK button causes the
output to be produced. As can be seen on the left, the observed F sta-

tistic of 1.67 has an accompanying probability level (“P(F < = f) one-tail”) that is larger than the
standard .05 (or smaller) probability necessary to reject the null hypothesis. Hence, the researcher

concluded that the assumption of homogeneous variances
continues to hold.

SPSS also provides ways to examine the assumption of
homogeneous variances. Regularly provided as part of the
t test, for independent samples, SPSS reports Levene’s test.
Because getting this output will be covered in the section on
using SPSS for the two-sample t test, the individual steps to
get this output will not also be presented here. Because
Levene’s test is robust to violations of the assumption of

to the decision rule the researcher sets. If the test statistic is located in the critical region, the
null hypothesis (of equal variances) is rejected. If not, the assumption continues to “hold.”

For the data found in the two-sample test in the example found in Table 7.4 (in the section
“Conducting the Hypothesis Test for the Difference Between Two Sample Means,” pp. 165–166),
a test of the assumption of heterogeneous variances is included using the F test. The test statistic
of 1.68 is smaller than the critical value of F (2.95 with 17 and 14 degrees of freedom at the
assigned alpha risk). Hence, the assumption of homogeneous variances cannot be rejected.

The test can be completed by Excel. After the data have been placed in separate columns
(perhaps labeled “explicit” and “no explicit” as shown on page 166), the researcher selects
Data Analysis. . . from the Tools menu. In the “Data Analysis” dialog box, the “F-Test
Two-Sample for Variances” is highlighted. Then the researcher clicks on the OK button.
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F-Test Two-Sample for Variances

Variable 1 Variable 2

Mean 9.625 8

Variance 8.383333 5

Observations 16 15

df 15 14

F 1.676667

P(F<=f) one-tail 0.170421

F Critical one-tail 2.463004

Levene’s Test for
Equality of Variances

F Sig.

attitude Equal variances .030 .863
assumed

Equal variances
not assumed
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normal distributions, it often is preferred for tests of computing homogeneous variances. In this
case, the Levene test produced an F ratio of .03, which produced a very high significance “Sig.”
value. Thus, the null hypothesis of equal variances in the two groups could not be rejected. If the
Levene test had indicated statistically significant differences, the researcher would have been
invited to use the t test computation method in which “equal variances [are] not assumed.”

Aside from the desire to determine if heterogeneous variances have affected actual risk
levels in hypothesis testing, there is another reason to look at heterogeneous variances. Two
categories of influences can be responsible for unequal variances. First, there may be ceiling
or floor effects in the data. In other words, it may be that there are conditions where the
means are so high (or low) that there is not enough room left in the measurement range for
the scores to show normal spread.12 By looking at the means and checking that the cells with
the means near the top of their measurement range also have low variances, a ceiling effect
may be identified. Similarly, looking at the cells with means near the low end of the
measurement range and checking that they also had small variances would reveal floor
effects. If more than two groups are compared, a correlation between the cell means and vari-
ances could be computed. A high inverse correlation would point to a ceiling effect, and a
high direct correlation would suggest a floor effect. Of course, the actual means have to be
examined to tell if the ceiling or floor effect actually is present.

Second, if there is no ceiling or floor effect, the heterogeneous variances indicate the
presence of participants by treatments interactions. This condition suggests that there is
at least one other additional variable—and perhaps many more than one—that is mixing
nonrandom variation with the chief variables in the study. Thus, there are uncontrolled vari-
ables affecting the observed relationships. Researchers would be encouraged to reconsider
their studies and to look for additional variables that should be included in future research.

COMPARING SAMPLE AND POPULATION MEANS

Comparisons of samples with some population mean—such as a historical standard or simply
a defining characteristic—can be completed under two conditions. First, the population stan-
dard deviation may be known. Second, sample standard deviations may be substituted for
population standard deviations.

When the Population Standard Deviation Is Known

Under many circumstances, if a researcher wishes to compare a mean from a sample
against characteristics of a well-defined population, the z test (using the standard normal
curve) would be an appropriate option. In addition to requiring that population means and
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12As Paul R. Cohen (1995) explains:

Technically, a ceiling effect occurs when the dependent variable, y, is equal in the control and
treatment conditions, and both are equal to the best possible value of y. In practice, we use the term
when performance is nearly as good as possible in the treatment and control conditions. Note that
“good” sometimes means large (i.e., higher accuracy is better) and sometimes it means small (e.g.,
low run times are better), so the ceiling can be approached from above or below. A ceiling thus
bounds the abstract “goodness” of performance. Floor effects occur when performance is nearly as
bad as possible in the treatment and control conditions. Again, poor performance might involve small
or large scores, so the “floor” can be approached from above or below. (p. 80)
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standard deviations be known, the use of z requires fairly large samples, at least 30 events.
The formula for z is

To adapt to a comparison with means instead of X scores, one might imagine that one could
simply use the following modification:

Using this formula would be incorrect. The scores compared in the numerator and denominator
of the formula are not the same types of data. The sigma (σ) score in the denominator is the stan-
dard deviation of raw scores, but the numerator does not compare scores, but means. A distri-
bution of means has a much smaller standard deviation than a distribution of scores. The reason
is found in the central limit theorem, which was introduced in Chapter 4. This theorem states that
a sampling distribution of means tends toward a normal distribution with increased sample sizes
regardless of the shape of the parent population. As a result of the central limit theorem, the stan-
dard deviation of means (σX

−, called the “standard error of the mean”) could be computed as

So, a new sample could be compared with a population mean, but the following formula is required:

where 

In this case, the size of the new sample (n) is substituted for N, the number of events in the
population.

The z test also can be used to determine how often a set of findings might occur at random.
For instance, one might wonder how unusual it would be to find a sample of 50 people with
a mean of 70 or higher from a population in which the mean on a measure of communication
apprehension is 65.6 and the standard deviation is 15.3. Inserting these numbers into the
formula reveals these results:

Looking up the value on the z table (a portion of which is shown below on the left) reveals
that the area from the mean to a z score of 2.04 includes
.4793 of the total area. Thus, only .0207 lies above that
point. So, we may say that in the population, only 2.07%
of the time will one find a random sample of 50 with a
mean score of 70 or above. An example of the z test of
statistical significance is found in Table 7.2.

z = X
--- − µ

σ√
n

= 70 − 65.6
15.3√

50

= 4.4

2.16
= 2.04.

σX
--- = σ√

n
.

z = X
--- − µ

σX
---

,

σX
--- = σ√

N
.

z = X
--- − µ

σ
.

z = X − µ

σ
.
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z .00 .01 .02 .03 .04

0.0 .0000 .0040 .0080 .0120 .0160

0.1 .0398 .0438 .0478 .0517 .0557

2.0 .4772 .4778 .4783 .4788 .4793
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Table 7.2 The One-Sample z Test

The Personal Report of Communication Apprehension has a known population mean (from studies of
52 university samples including more than 25,000 participants) of 65.6 and a standard deviation of 15.3
(see McCroskey, Beatty, Kearney, & Plax, 1985). Yet another study of 64 pharmacy students found an initial
communication apprehension mean of 62.14 (Berger & McCroskey, 1982).

The one-sample z test may be used to test the null hypothesis that there is no difference between the sample
mean and the population mean, H0: µpharmacy students = µpopulation.

13 If the null hypothesis is tested with a two-tailed
(nondirectional) test featuring an alpha risk of .05, the critical value of z (the point where the critical region
begins) would be ±1.96. The test statistic would be computed as follows:

Thus, the null hypothesis would not be rejected. One would conclude that there is no significant difference in
the mean communication anxiety of pharmacy students and the general population.

13The null hypothesis sometimes is stated as H0: µ = µ0. In this case, µ0 represents a particular assigned
population value for purposes of comparison.

z = X
--- − µ

σ√
n

z = 62.14 − 65.6
15.3√

64

= −3.46

1.91
= −1.81
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When the Population Standard Deviation Is Unknown

Researchers often have only sample data. Thus, they cannot always use the z test, because
they may not know the population standard deviation. An alternative is to substitute the
sample standard deviation, s, an unbiased estimate of the population standard deviation, σ.

But the z test also requires sample sizes of at least 30. So, if either the population standard
deviation is not known or the sample size is below 30, using t (or Student’s t)14 is required.
By either design or accident, the symbol in the t distribution emphasizes that the t test focuses
on testing the difference between two means.15

The t distribution shares many characteristics with the standard normal curve. In fact, as an
inspection of the table of critical values of t will reveal (Appendix C.4), with an infinite sample
size, the standard normal curve and the t distribution are identical. But as sample sizes get

14The Student t distribution has nothing to do with educational research. William Sealy Gosset trained
as a mathematician at Oxford University and worked for the Guinness Brewery in Dublin, Ireland.
Guinness is the same organization responsible for Guinness Stout Malt Liquor and the famous book of
world records. While doing experiments related to temperature, he developed the t distribution and the
t test. Because Guinness had a policy that prevented employees from publishing under their own names,
he published his discovery under the pen name “Student” (1908), and the label has stuck.
15There is a song (“Tea for Two”) from a 1924 musical called No, No, Nanette. Aside from constituting
a way for modern students to remember the purpose of the t test, it has nothing to do with Student’s
t test.
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smaller and smaller, the t distribution tends to flatten out. To use the t distribution, one must
identify the degrees of freedom, which is calculated as the number of events in a sample minus
the number of parameters estimated from sample statistics. By looking at the formula for the
test statistic, one may identify the number of X-bars (X−s) used to estimate population means.

The t test making comparisons of a sample mean and a population mean uses the follow-
ing formula:

where sX
− is equal to . This formula differs from the z test by the use of the sample

standard deviation, s, instead of the population standard deviation, σ. Thus, the t test is
actually one more building block formula that follows a basic pattern of statistical uses that
were identified earlier in this text.

s√
n

t = X
--- − µ

s√
n

,
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Building Block Formula Box 6: One-Sample z and t

z = X
--- − µ

σX
---

t = X
--- − µ

sX
---

Because the one-sample t formula includes only one X− in the numerator, degrees of free-
dom are equal to n – 1. These degrees of freedom may be used to enter the table found in
Appendix C.4 to find critical values of t. (A portion of this table is reproduced below.)

In addition to testing the
difference between a sample
mean and a standard or a his-
torical mean, the one-sample
t test also is useful when a
researcher wishes to exam-
ine whether a sample is rep-
resentative of the population.
In particular, researchers
may use this test when they

wish to tell if the population and sample means actually are from the same populations.

Table 7.3 The One-Sample t Test

The population mean for class grades of undergraduates at a university is 2.59 (possible range: 0 to 4).
A researcher noticed that a group of 17 students taking courses in Intercultural Communication had the
following grades in that class: 4, 3, 2, 2, 2, 2, 1, 1, 1, 4, 3, 2, 2, 2, 1, 1, and 1.

The mean of this sample is 2, and the standard deviation is 1.0. One may wonder if this sample is unrep-
resentative of the ordinary population of students. Using the one-sample t test, the researchers may test the
null hypothesis H0: µ1 = µ0, which states that the mean grade of the sample of students taking Intercultural

.10 .05 .025 .01 .005 ← Alpha risk for one-tailed tests

.20 .10 .05 .02 .01 ← Alpha risk for two-tailed tests

degrees
of freedom

1 1.078 6.314 12.706 31.821 63.657 Degrees of freedom are
2 1.886 2.920 4.303 6.965 9.925 computed by taking the

. . . . . . number of events in the study
19 1.328 1.729 2.093 2.539 2.861 and subtracting the
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Using SPSS for the One-Sample t

Though Excel does not have built-in functions that permit the direct computation of the one-
sample t test, SPSS has such an option. To use the SPSS package for this application of the
t test, the researcher starts by clicking on the Analyze menu followed by selecting Compare
Means from the drop-down menu that appears. Then, the One-
Sample T Test. . . option is selected. In the “One-Sample T Test”
dialog box, the researcher selects the sample measure of interest
and uses the arrow key to move it to the “Test Variable(s):” field.
As an example, we may use the same data as employed in Table
7.3, in which case the variable “gpa” is selected for analysis. In
this example, the population mean against which comparisons
are made is 2.59. Hence, this value is entered into the “Test
Value:” field. To execute the program, the researcher clicks the OK button.

The output shows that the probability of finding a difference such as that observed here by ran-
dom sampling error is only .027, or 2.7 chances out of a hundred. 

Communication classes is equal to the population mean of 2.59 (in fact, the null hypothesis could have
been written as H0: µ1 = 2.59). With a sample of 17, degrees of freedom are n – 1 or 16. Using a two-tailed
t test with alpha risk at .05, the critical value of t is  2.120. Using the one-sample t test, one would find:

Because the test statistic is greater than the critical value (remember, the negative value does not mean
subtraction, but a location on the t distribution), the null hypothesis would be rejected. One would con-
clude that the sample is not representative of the population. Thus, researchers would want to determine
why and explore possible explanations.

t = X
--- − µ

s√
n

z = 2. − 2.59
1√
17

= −.59
1

4.1231

= −.59

.2425
= −2.433.
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Std. Error
N Mean Std. Deviation Mean

gpa 17 2.0000 1.00000 .24254

One-Sample Statistics

One-Sample Test

Test Value = 2.59

95% Confidence 
Interval of the Difference

t df Sig. (2-tailed) Mean Difference Lower Upper

gpa −2.433 16 .027 − .59000 −1.1042 − .0758

Table 7.3 (Continued)

Because this probability is below the .05 usually employed as a decision rule, most
researchers would reject the null hypothesis and conclude that there is a difference between
this sample mean and the traditional population mean.
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COMPARING THE MEANS OF TWO
SAMPLE GROUPS: THE TWO-SAMPLE t TEST

Researchers often do not have a population standard against which to make comparisons, but
they often have control groups to help them draw conclusions. If researchers wish to compare
two sample groups, the two-sample t test is appropriate.

Using t as a Sampling Distribution of Mean Differences

To make this comparison, the null hypothesis takes the form H0: µ1 = µ2, which tests that
the dependent variable mean of the first group is equal to the mean of the second group.
Actual alternative research hypotheses may be directional or nondirectional.

In addition to the assumptions of parametric statistics generally, the two-sample t test also
assumes independence. This assumption means that the events in the sample are unaffected
by each other. In many cases, this sort of thing is quite reasonable, but in some cases, it is not.
For example, some researchers sample college classrooms. If these classes are required in an
academic major, students probably interact with each other and may discuss things that happen
in their classes, such as a new teaching approach or a study in which are they participating.
Thus, the samples of student responses from such classes may not be completely independent.

Conducting the Hypothesis Test for the
Difference Between Two Sample Means

To examine a hypothesis about two means, such as H1: µ1 > µ2, the researcher must state
a null hypothesis for direct testing. Then, it is useful for the researcher to test the assumption
of homogeneous variances before computing the actual t test statistic. As we have seen:

• If sample sizes are equal in the two groups, the result of heterogeneous variances on Type
I error rate is negligible. If variances are equal (within the limits of sampling error), the
so-called pooled standard deviation (sp) or “equal variances” model may be used.

• But if sample sizes are unequal, a significant heterogeneity in variances requires the
researchers to use the “separate variance” (also called unequal variances t) method of
conducting the independent samples t test. Using the pooled standard deviation when
assuming equal variances, the formula for t is

The formula looks a lot like the one-sample t test formula. With equal sample sizes, the
pooled standard deviation (sp) is simply the square root of the average of the variances. With
unequal sample sizes, the following formula for the pooled standard deviation is used:

Because there are two sample sizes, instead of dividing the standard deviation esti-
mate by √n, the pooled standard deviation is multiplied by the sum of the square root of the

sp =
√

(n1 − 1)s2
1 + (n2 − 1)s2

2

n1 − 1 + n2 − 1
.

t = X
---

1 − X
---

2

sp

√
1
n1

+ 1
n2

.
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fractions (equivalent to dividing a term by n).16 An alternative formula for t with unequal
variances is the separate variance estimate in which the variance for the control group is used
as the measure of variance in the denominator of the t statistic. In addition, the following is
a popular formula (used in Excel, for instance) employed when the variances are unequal:

To determine if a statistically significant difference exists between the two means,
researchers enter the t distribution with degrees of freedom that adjust sample sizes for the
number of population parameters estimated from sample means.

• If the variances are equal between the two groups, degrees of freedom are equal to n – 2
(because there are two sample means in the numerator of the t formula).

• If the variances are significantly different, the formula for degrees of freedom is:

This formula usually yields a number with a decimal point. So, the result must be rounded to
a whole number.

d.f. =

(
s2

1
n1

+ s2
1

n1

)2

(
s2

1
n1

)2

n1 − 1
+

(
s2

2
n2

)2

n2 − 1

t ′ = X
---

1 − X
---

2√
s2

1
n1

+ s2
2

n2

.

1
n
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Building Block Formula Box 7: Independent Samples t Test

t = X
---

1 − X
---

2

sp

√
1
n1

+ 1
n2

16Multiplying a value by the fraction 1
n produces the same result as dividing a value by n.

Table 7.4 Independent Samples t Test

A researcher wondered whether it would be more persuasive for a speaker to include an explicit statement
of the advocated position even when the audience was initially hostile to the topic. Thus, as part of a pilot
study, a randomly selected group of 16 individuals was given a message with an explicit statement of the
persuasive proposition. A control group of 15 individuals was given the message with the explicit statement
omitted.  The chief dependent variable was attitude toward the topic, measured on a set of interval level
scales with possible scores ranging from 3 (most negative attitude) to 21 (most positive attitude).

The study hypothesis was H: µexplicit statement of proposition > µno explicit statement of proposition included. The null hypothesis
was H0: µexplicit statement of proposition = µno explicit statement of proposition included. The researcher tested the null hypothesis
with alpha risk of .05.

(Continued)
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The following data were collected:

Explicit No Explicit 
Statement Group Statement Group

9 6
6 5

15 7
14 8
8 10

11 11
8 6
7 9
9 4

10 8
9 7

10 12
9 8
4 10

12 9
13

Mean = 9.63 8
Variance = 8.38 5

• Using a one-tailed t test, with n − 2 
degrees of freedom (31 − 2 = 29),
the critical value of t is 1.699. 

• Computing t assuming equal variances, the following computations are made:

Because 1.73 is greater than the critical value (1.699), the null hypothesis is rejected.

• To determine the effect size in terms of a correlation, the following formula is used:

Inserting the information from this pilot study, the following computations may be completed:

Thus, using the interpretation guides for correlations found in Chapter 5, this degree of relationship is
equivalent to a “slight,” “moderate,” or “medium” relationship.

r =
√

2.99

2.99 + 29
= √

.09 = 0.3.

r =
√

t2

t2 + degrees of freedom
.

t = X
---

1 − X
---

2

sp

√
1
n1

+ 1
n2

sp =
√

(n1 − 1)s2
1 + (n2 − 1)s2

2

n1 − 1 + n2 − 1

t = 9.63 − 8

2.6
√

1
16 + 1

15

sp =
√

(16 − 1)8.38 + (15 − 1)5

16 − 1 + 15 − 1

t = 1.63

2.6
√

.13
sp =

√
195.7

29
= √

6.75 = 2.6

t = 1.63

2.6 ∗ .36
= 1.63

.94
= 1.73

Test the assumption of homogeneous variances.

• Testing H0: σ2
1 = σ2

2 at alpha risk of .05:

• Critical value:

Therefore, no significant heterogeneity of vari-
ances was claimed, and the assumption of homo-
geneous variances was maintained. (When Excel
computes this test, it uses a one-tailed probability,
in this case involving a critical value of 2.463.)

d.f. : = nlargest − 1

nsmallest − 1
= 15

14
Critical F(15,14)withα/2: 2.949

F =
S2

largest

S2
smallest

F = 9.63

5
= 1.68

Table 7.4 (Continued)
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Computers have made easy work of completing statistical hypothesis testing for comparing two
sample means. The methods in both SPSS and Excel will be reviewed here.

SPSS

For the pooled standard deviation and separate standard deviation methods, the t test can be
completed in one step. From the Analyze menu, select Compare Means. Several alternative t tests are
provided: Means. . . includes descriptive statistics and various ways of testing the equality means;
One-Sample T Test . . . ; Independent-Samples T Test. . . ; Paired-Samples T Test. . . ; and One-Way
Anova. . . . To illustrate the use of the program here, the choice of an “Independent Samples T Test”
will be made. In the dialog box that emerges, the researcher highlights the dependent variables of
interest and transfers them to the fields marked “Test Variable(s):”. Separate t tests will be completed
for each of the variables listed as a test variable.

Using SPSS and Excel to Compute the Two-Sample t

To identify the two groups, a categorization variable is highlighted and then transferred to the box
marked “Grouping Variable:”. It is assumed that the two groups are identified by taking such values
as 1 or 2 in this variable. But sometimes researchers want to use grouping variables that originally had
three or more groups. After the Define Groups. . . button is clicked, another dialog box opens and the
researcher indicates the values used to identify group one and group two. Sometimes researchers take
a continuous variable and break it down into two categories or groups. For instance, a researcher might
want everyone with an IQ score equal to or below 100 to be in the first group and all those with higher
scores in the second group. In such a case, the researcher would have clicked on the “Cut Point” radio
button and entered a number in the field that became active. Participants with scores above that point
are placed in the first group, and the rest are identified as members of the second group.
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After the researcher is done, the Continue and
OK buttons are clicked and the following output at
the left appears. The first portion of the output pro-
vides simple descriptive statistics about the sample.

The next section of the output provides infor-
mation about the Levene test of homogeneous

variances. A “Sig.” value of .05 or smaller for the Levene test is taken as evidence that the two
samples did not have equal variances. If such is found, then the t test that is based on “Equal vari-
ances not assumed” is used. The t test in the example below shows no significant difference in the
means at the .05 level (.075 is found). Of course, these results are for a two-tailed t test. If a one-tailed
test were used, then the results would have been statistically significant (.075 divided by two would
have produced a probability of .0375).

Std. Std. Error
FALEXPER N Mean Deviation Mean

ATTITUDE 1.00 23 19.8696 6.0250 1.2563
2.00 29 22.3793 3.8952 .7233

Group Statistics

Excel

To compute the F test for homogeneous variances, researchers using Excel select Data
Analysis. . . from the Tools menu. In this example, we will illustrate the use of the t test when unequal
variances are present. Thus, the effort begins with the F test of differences in variances. In the dialog
box that appears, one may select F-Test Two-Sample for Variances and click OK. Using the high-
lighting tools, the researcher selects data for the first variable and second variable (indicated in the
“Variable 1 Range:” and the “Variable 2 Range:” fields).
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Levene’s Test 
for Equality of

Variances t-test for Equality of Means

95% Confidence
Interval of the

Mean Std. Error Difference

F Sig. t df Sig. (2-tailed) Difference Difference Lower Upper

ATTITUDE Equal variances assumed 3.606 .063 −1.817 50 .076 −2.5097 1.3812 −5.2839 .2844
Equal variances not assumed −1.731 35.903 .092 −2.5097 1.4498 −6.4500 .4305

Independent Samples Test
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Clicking on the OK button reveals the following output.

As can be seen, the output reveals the results of the F test of the difference between variances.
Because there is a statistically significant difference in the variances (indicated by a p value smaller
than .05), the researchers would be invited to use a t test for unequal variances.

To use Excel to compute an independent samples t test, select Data Analysis from the Tools menu
and then choose t-Test Two Sample Assuming Unequal Variances. In the dialog box that appears,
select ranges to indicate the scores for variables 1 and 2.

After identifying the variable ranges, click on OK to complete the analysis. The result is found on
output such as that on page 170. As can be seen, the one-tailed probability level is less than .05, which
would indicate a statistically significant difference. If researchers had chosen a two-tailed test,
however, the difference would not be statistically significant by usual standards.
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Effect Size Computations

Statistical significance really tells us only how improbable the null hypothesis is when it
comes to explaining sample results. But a statistically significant effect may be large or small.
To learn if the results are substantial or not, it is useful to look at the size of relationships. To use
the language of correlation, researchers may take information from a t test by use of this formula:

Squaring this number reveals the proportion of variance in one variable that may be explained
by knowledge of variation in the other alone.

Confidence Intervals for Mean Differences

To say that a mean difference of five points on a scale is beyond what might have been
expected to occur by sampling error tells only part of the story. The mean difference is only
a single best estimate of the difference, called a point estimate because it is a single number.
But the true population difference may lie within an interval around the observed differences.
An alternative way of using these data employs a confidence coefficient or degree of confi-
dence followed by an interval (called, not surprisingly, a confidence interval) into which the
population difference is likely to fall. As shorthand, researchers often report such confidence

r =
√

t2

t2 + degrees of freedom
.
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intervals with such brief statements as “the 90% confidence interval of the differences in
means is 3.5 to 6.5.” The numbers 3.5 and 6.5 are known as the lower and upper confidence
bounds (or confidence limits). The statement indicates that the researcher is 90% “confi-
dent” that the difference in means lies somewhere between 3.5 and 6.5 on the measure in use.
To be precise, however, a 95% confidence interval means that if a large number of random
samples were drawn and confidence intervals were computed, 95% of them would include (or
capture) the mean difference parameter of interest. The fact that a 95% confidence interval
has been drawn, however, also means that there is a 5% chance that the report made by the
researcher is way off, not even close.

To compute a confidence interval for differences in means, such as the study found in the
independent samples t test example in Table 7.4, the following formula may be used:

where X−1 − X−2 is the difference in means, t(α/2,d.f.) is the critical value of t found in the t table
(the α corresponds to the announced confidence interval [e.g., 1 – α of .05 corresponds to a
95% degree of confidence]), the α/2 term means that the critical value should be two-tailed
(in this case, the two-tailed critical t value with alpha risk of .05 and 29 degrees of freedom
is 2.045), and sX−1 − X−2

is the standard error of the mean differences and includes everything in
the denominator of the t test formula

For the example, the confidence interval may be identified:

In other words, the researcher is 95% confident that the difference between means is
somewhere between –.29 and 3.55. Because the confidence interval includes zero, one would
conclude that the mean difference is not significantly different from zero. But the example
found a significant difference between the groups. How can this situation exist? The test in
the example was a one-tailed test, but the confidence interval was a two-tailed test.

One-tailed confidence intervals can be constructed. One could imagine a person asking
only about one side of the confidence interval, such as “what is the minimum mean difference
improvement that can be expected if the controversial proposition is stated explicitly?” Such
a person would not care to know the upper limit, just the least improvement to be expected.
The difference in the formula is that a one-sided critical t value (1.699) is used, such as:

95% C.I. = X
---

1 − X
---

2 ± (t(α/1,d.f.) ∗ sX
---
1−X

---
2
)

95% C.I. = 1.63 ± (1.699 ∗ .94)

95% C.I. = 1.63 ± (1.59)

95% C.I. = 163 ± (2.045 ∗ .94)

95% C.I. = 1.63 ± 1.92

(
sp

√
1

n1
+ 1

n2

)
.

95% C.I. = X
---

1 − X
---

2 ± (t(α/2,d.f.) ∗ sx̄1−x̄2),
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In other words, the researcher is 95% confident that the difference between means is at least
0.04. This number might be taken as the smallest difference for which one might be confident.

COMPARING MEANS DIFFERENCES OF
PAIRED SCORES: THE PAIRED DIFFERENCE t

Researchers often give people a pretest, followed by some treatment, and then a posttest. The
“before and after” designs gather sample data from every person twice; thus, the samples are
not independent. A way to deal with such data is to use the t test for paired differences.

Conducting the Hypothesis Test for Paired Differences

Instead of dealing with mean differences among groups, researchers using the paired dif-
ferences t test subtract the posttest from the pretest and examine the size of these differences.
The null hypothesis in the paired samples t test is H0: µdifference = 0. Because the same sample
is examined twice, the degrees of freedom for the t test are based on the number of events,
not the number of scores. The degrees of freedom are equal to n – 1.

The formula for the paired samples t test is a bit different from those for the other t tests:

where X−diff is the mean difference between the paired scores (often pretest and posttest; when
the research hypothesis speculates that the posttest scores will be higher than the pretest
scores, the difference would have a negative sign before it; if the research hypothesis specu-
lates that the posttest scores will be lower than the pretest scores, the difference would have
a positive value), sD is the standard deviation of the difference scores, and n is the number of
events in the sample (not the number of total scores).

t = X
---

diff

sD√
n

,

Table 7.5 Paired Difference t Test

A researcher explored the hypothesis that students who go through a unit of instruction on communica-
tion styles have higher posttest scores on a measure of perceived comfort in communication with difficult
people (possible range: 3 to 21) than they did on a pretest. A sample of 19 people was collected, and fol-
lowing the pretest, sample members were given instruction and then posttested. Because the researcher
predicted that the posttest scores would be higher than the pretest scores, a negative value is predicted in
the one-tailed hypothesis: H: µdifference < 0. The null hypothesis is

H0: µdifference = 0.

Degrees of freedom are n – 1 or 19 – 1 = 18.

The critical value of t (one tailed) with alpha risk of .05 is –1.734.

The following data were collected:
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Pretest Posttest Difference

3 5 −2
12 11 1
7 9 −2

20 18 2
18 19 −1
16 18 −2
14 17 −3
15 18 −3
16 18 −2
17 19 −2
7 6 1
8 10 −1

18 17 1
10 14 −4
12 15 −3
14 15 −1
13 15 −2
15 16 −1
16 17 −1

Mean = −1.37
Standard Deviation = 1.61

Table 7.5 (Continued)

The null hypothesis would be rejected
because the test statistic (–3.7) is beyond
the critical value of –1.734. (It is helpful to
remember that the negative sign is not a
symbol for subtraction but instead a way to
identify the place where the critical region
begins. In this case, the critical region starts
at –1.734 and extends out to –∞. For these
data, the test statistic of –3.7 falls into the
critical region.)

t = X
---

diff

sD√
n

t = −1.37
1.61√

19

= −1.37
1.61
4.36

= −1.37

.37
= −3.7

Using SPSS and Excel to Compute the Paired Differences t

Both SPSS and Excel include ways to conduct the paired differences t test. The basic format remains
relatively unchanged from that which has been described previously. Hence, only the chief differ-
ences will be examined in this brief treatment.

SPSS

From the Analyze menu, researchers select Compare
Means from the drop-down menu, followed by Paired-
Samples T Test. . . from the subsequent menu that
appears. In the dialog box that appears, two separate
variables for each participant must be selected and
transferred into the “Paired Variables:” field by high-
lighting them and moving them with the arrow key.

Clicking the OK button causes the program to execute. The output produced by this process is a
little different from the previous example. In addition to a set of descriptive statistics, a measure of
correlation between the two measures appears. This correlation is not a measure of effect size, but a
measure of association between the two sets of scores.
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A regular feature of the t test in SPSS is the presentation of confidence intervals. If the confidence
interval contains zero, then no statistically significant difference between the means is revealed. In
this case, because the 95% confidence interval extends from –1.6 to 0.26, it includes zero, which
indicates no statistically significant difference.

This correlation should be reasonably large when there is no statistically significant difference
between two sets of scores. If the difference between the pairs scores is large and the correlation is low,
researchers may wish to consider whether they really wished to use the independent samples t test
instead. As can be seen in the output, there was no statistically significant difference in the paired scores.

Excel

The paired samples t test also may be computed with Excel. The researcher begins by selecting Data
Analysis. . . from the Tools menu. Then, on the drop-down menu that appears, the researcher chooses
t-Test: Paired Two Sample for Means option. In the “t-Test: Paired Two Sample for Means” dialog box,
the researcher clicks the symbol in the “Variable 1 Range:” field and highlights the cells where the first
set of data scores are located. Clicking on the symbol on the drop-down menu returns the researcher
to the main dialog box. Then, the same process can be followed to identify the “Variable 2 Range:” of data.
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The “Labels” box should be checked if the researcher has highlighted any cells with variable or
group labels. Before clicking on the OK button, the researcher also will want to select a location for
the placement of output in the “Output Range” field.

Paired Samples Correlations

N Correlation Sig.

Pair 1 ATTITUDE & ATT5 66 .843 .000

Paired Samples Test

Paised Difference

95% Confidence
Interval of 

the Difference
Std. Std. Error

Mean Deviation Mean Lower Upper t df Sig. (2-tailed)

Pair 1 ATTITUDE - ATT −.67 3.788 .466 −1.60 .26 −1.430 65 .158
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The output differs from that of other t tests by including a measure of correlation between the two
measures. In this case, the correlation is quite high, so any differences between the two sets of scores
should be modest (exactly the situation found in this case).

Confidence Intervals for Paired Differences

A confidence interval may be constructed around mean paired differences using the formula

where X−diff is the mean paired differences,

t(α/2,d.f.) is the critical value of t (with α corresponding to the announced confidence interval;
e.g., 1 – α of .05 corresponds to a 95% degree of confidence),

α/2 means that the critical value should be two-tailed, and 

is the standard error of the mean paired differences and includes everything in the 

denominator of the paired t-test formula.

For the example of the paired t test, a 95% confidence interval would be computed as follows:

Thus, the researcher would claim 95% confidence that the difference between the pretest and
posttest is somewhere between –1.09 and –2.37.

95% C.I. = −1.73 ± (−1.734 ∗ .37)

95% C.I. = −1.73 ± (−.64)

sD√
n

95% C.I. = X
---

diff ± (t(α/2,d.f.) ∗ sD√
n
),
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ASSESSING POWER

Statistical power is “the probability of rejecting the null hypothesis when it is false—and
therefore should be rejected” (Vogt, 2005, p. 242). Some writers recommend that
researchers routinely compute power before they complete studies. This step may help
researchers select appropriate sample sizes. Furthermore, when researchers propose a new
study, it makes sense to compute power to decide if there are enough possible data to make
a study feasible.

There are many ways to increase the power of a statistical significance test. First, the
researcher may decide to examine only large differences. Large differences are more easily
detected with statistical significance tests than are small differences. A popular rule of thumb
has been Cohen’s (J. Cohen, 1988) effect size guidelines. He suggests that an effect size
difference of below 0.2 standard deviations is small, up to a 0.5 standard deviation difference
is medium, and 0.8 standard deviations or greater is large. For correlations, he suggests that
associations below r = .1 are small, in the range of r = .3 are medium, and above r = .5 are
large. Yet, these guidelines and the use of “after the fact” power analyses have been ques-
tioned in recent years, especially when used as a basis for trying to balance power and sample
size issues (see Lenth, 2001). Second, researchers may exercise control to minimize the
size of the population standard deviation. Third, the researcher could raise the alpha risk. If
alpha risk were raised from .05 to .10, for instance, more null hypotheses are likely to
be rejected than when the decision rule is kept at .05. Finally, of course, researchers may
increase sample size.

This last option is the one researchers have given their greatest attention (probably because
the first three options are difficult to apply). They often wonder how large their sample sizes
would have to be for statistical significance to be claimed. They identify the level of power
desired, typically .80 or .90; the alpha risk to be used in the statistical significance test;
and the smallest size for an effect they would be interested in reporting. Once done, the
researchers may use formulae and occasionally tables to determine the power of a test. The
power of a test is computed as 1 – β where

and C = upper confidence limit, such as

Suppose you were doing a study on the trustworthiness of television news anchors. On scales
ranging from 5 to 35 points, the traditional mean has been 22 with a standard deviation of 16.
You have a sample size of 100 and wish to identify differences in trustworthiness ratings of
25 in comparison with the traditional mean (22) in trustworthiness ratings. What would be the
power of a one-tailed test?

95% UL = µ0 +
(

1.645 ∗ σ√
n

)
.

β = P

(
Z <

C − µ1

σ/
√

n

)
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The Treachery of After-the-Fact Power Analyses

Sometimes researchers compute power after they have completed their studies and analyzed most of
their data, but such an approach is generally not advised. In the first place, computing power after
the fact does not reveal anything that the probability level of the hypothesis test does not (Hoenig &
Heisey, 2001). In fact, after-the-fact power statistics are simply proportional to alpha risk: The smaller
the alpha risk, the greater the power. In the second place, the effort to show high power in the
absence of statistical significance probably is misleading because it often is a veiled effort to “prove”
a null hypothesis. When advertisers state that “no product has been shown superior to the ingredients
contained in [their product],” they are asserting the truth of a null hypothesis, generally in the absence
of evidence. The use of power analyses, however, cannot prove that a null hypothesis is true.

As a superior alternative, some writers have suggested reporting confidence intervals (S. N.
Goodman & Berlin, 1994; M. Levine & Ensome, 2001). If one computes a confidence interval around
a mean difference (or around a correlation) and finds that the confidence interval is very small, then
the failure to find support for a research hypothesis may have some practical value (because it would
indicate that only trivial effects remained undetected). A broad confidence interval might indicate a
need to increase sample sizes and reduce background variation in future research. Indeed, the
National Center for Educational Statistics of the U.S. Department of Education developed a program
of statistical standards for researchers in which it stated that one of the preferred options when a null
hypothesis is not rejected is to “use a 95% confidence interval to describe the magnitude of the
possible difference or effect” (National Center for Educational Statistics, 2002, Standard 5-1-5: 7).

Special Discussion 7.2

Using the formula on page 176, one would find the following:

To compute this beta, we look at the z table and ask how much area exists below the point
identified. On the z table, the area from 0 to –0.23 standard deviations includes .091 of the
total area. The area below that point includes .50 (50% of the distribution) minus .091, which
comes out to .409. Thus, power is computed as follows:

Power = 1 – .409 = .591.

This estimate means that a new mean as large as that identified with such a sample and such
population characteristics will be detected as statistically significant 59.1% of the time.

C = µ0 +
(

1.645 ∗ σ√
n

)

= 22 +
(

1.645 ∗ 16√
100

)
= 22 + (1.645 ∗ 1.6) = 22 + 2.63 = 24.63

Power = 1 − β

Power = 1 − P

(
Z <

C − µ1

σ/
√

n

)

= 1 − P

(
Z <

24.632 − 25

16/
√

100

)
= 1 − P

(
Z <

−.368

1.6

)
= 1 − P(Z < −.23)
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