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When researchers have more than two groups to compare, they use analysis of variance,
which is commonly called “ANOVA.” When they have more than one independent variable
as well, the comparison of means is called “factorial analysis of variance.”1 This chapter
explains the ways researchers may apply this versatile tool. The steps involved in completing

1It is important not to confuse factorial analysis of variance with factor analysis, which is a method to
examine intercorrelations among variables to determine the number and nature of any underlying
dimensions.
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any factorial ANOVA study will be examined. Then, the use of standard factorial ANOVA will
be followed by applications for random, mixed, and repeated measures applications.

DOING A STUDY THAT INVOLVES
MORE THAN ONE INDEPENDENT VARIABLE

When researchers explore differences among more than two means from two or more variables,
several processes are required as minimums. Five major steps are most prominent.

1. Stating a Hypothesis for Factorial ANOVA. A research hypothesis for a factorial analysis
of variance deals with the differences among means. A hypothesis where ANOVA is an
appropriate test has one or more independent variables measured at the nominal level and
a dependent variable measured at the interval level. For instance, a researcher might wish
to compare the communicator competence ratings of students who receive a combination
of case study readings and classroom instruction on responsive listening. The students
could be randomly assigned to receive (or not to receive) classroom instruction in respon-
sive listening. At the same time, they could be asked to read sets of interpersonal commu-
nication case studies involving people in low, moderate, or high intimacy relationships.
The researcher might state hypotheses for each independent variable (degree of classroom
instruction in responsive listening and relationship intimacy levels of case studies read).

• The researcher might hypothesize that students receiving classroom instruction in
responsive listening have higher communicator competence scores than students not
receiving classroom instruction in responsive listening. The hypothesis would be

H: µstudents receiving classroom instruction in responsive listening > µstudents not receiving classroom instruction in responsive listening.

The null hypothesis tested statistically would be

H0: µstudents receiving classroom instruction in responsive listening = µstudents not receiving classroom instruction in responsive listening. 

Because there are only two levels for this variable, if the null hypothesis were rejected
and the means were as predicted, the research hypothesis would be supported.

• For the relationship intimacy levels of the case studies variable, the researcher might
predict that students reading case studies with high relationship intimacy would have
significantly higher mean communicator competence scores than students reading case
studies with moderate relationship intimacy, who would also have higher mean com-
municator competence ratings than students reading case studies with low relationship
intimacy. The hypothesis would be 

H: µreading high relationship intimacy case studies > µreading moderate relationship intimacy case studies > µ reading low

relationship intimacy case studies. 

Yet, analysis of variance is an omnibus test of the null hypothesis that there simply is no
difference among the means. The null hypothesis would be

H0: µreading high relationship intimacy case studies = µreading moderate relationship intimacy case studies = µreading low

relationship intimacy case studies. 
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Factorial Analysis of Variance— 215

Special Statistical Notation for Factorial Designs

Though there is no rule requiring it, most researchers dealing with factorial experiments use a fairly
consistent notation form. The letter j is used to represent a variable represented on the rows. The
letter k is employed to represent the variable on the columns. As typically is the case, i is used to
reference an instance of a particular data point. Thus, a researcher might state 

∑
Xijk to indicate a

desire to sum each instance of a score from each row and column cell.
Dots also are used in factorial experiments to represent a collection of events that go all the

way through the total. For instance, a researcher would use the notation X−1. to refer to the mean
of the first row computed from all the instances of data in the row.* Similarly, researchers who
see X−.2 know that the symbol refers to the mean of the second column and is computed from
all the data through the column. Similarly, X−.. may refer to the grand mean, but the symbols
X−
−

or X−
−−

often are used instead.

*Though using X− to indicate the mean is the most common, many research reports use M to symbolize means.
This notation may be complicated by the fact that some communication researchers also use M to refer to the
number of messages included in a research study.

Special Discussion 9.1

Rejecting the null hypothesis could mean many things. Therefore, researchers who wish to
speculate that there is a difference between one group and a collection of others must follow up
with specific comparisons involving contrasts between specific combinations of means.
Researchers using ANOVA also can present hypotheses that deal with combinations of variable
levels. Such research hypotheses could look something like:

H: µhighly intelligent > (µmoderately intelligent + µlowly intelligent)/2,

for which the null hypothesis would be

H0: µhighly intelligent = (µmoderately intelligent + µlowly intelligent)/2.

Obviously, researchers would need to use tools to make specific comparisons in addition
to the general ANOVA test.

• Hypotheses about interactions also may posit specific combinations of levels of two
variables that would be distinguished from others. For instance, researchers might spec-
ulate that highly intelligent women would have higher communication competence than
any other combination of levels. Such specific hypotheses would have to be followed
by individual contrasts.

2. The Selection of Levels and Conditions. Researchers must select variable levels with some
care. When researchers can justify selecting variable ranges to reflect the scope of the inde-
pendent variable of interest, then researchers can state that they are concerned with fixed
effects. These levels generally are expected to cover the range in which the variable operates
normally. If the researcher has a primary variable of interest, a hypothesis usually will accom-
pany the selection of the variable and its levels. Sometimes researchers attempt to identify—
roughly speaking—a random selection of variable levels to determine if the variable produces
effects in general. Researchers who take this approach are said to explore random effects.
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3. Inclusion of Additional Variable Suspected of Interacting With Other Predictors. The first
set of variables may not tell the whole story. In addition to considering adding other vari-
ables that would produce important effects one at a time, researchers often include other
variables that might be involved in interactions with the primary variables of interest.

4. Organizing the Conditions and Coding Data. Researchers must prepare study conditions,
collect data, and score measures. For instance, researchers might design an experiment
composed of two independent variables, source credibility (low and high) and use of
humor in a message (without jokes and with jokes). Researchers would need to prepare
all possible combinations of these variable levels. In this case, every participant who
happened to be exposed to a message without jokes could receive a code of 1 for a vari-
able called “Humor.” Those exposed to a message with jokes could receive a code of 2 for
the “Humor” variable. Similarly, those exposed to the message attributed to a source with
little credibility could receive 1 for a variable called “Credibility,” and those exposed to the
message attributed to a highly credible source could receive 2 for the variable.2 Table 9.1
illustrates the possible interactions of these two variables.
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2Researchers sometimes find that credibility manipulations are difficult. When made the object of a
manipulation check, some “low credibility” conditions turn out to be moderately credible. In some
cases, the low credibility induction creates a strong positive violation of expectations (e.g., a high school
student talking intelligently about the International Monetary Fund).

Humor

Without Jokes With Jokes

Low

High

So
ur

ce
C

re
di

bi
lit

y

Table 9.1

5. Testing Assumptions. When completing factorial analysis of variance, researchers
regularly test assumptions underlying the statistic itself. These tests affect the how analy-
ses may be completed and, hence, will be considered for different forms of ANOVA (fixed,
random, mixed, and repeated measures designs) covered in this chapter.

TYPES OF EFFECTS TO TEST

A major reason to complete a factorial analysis of variance study is to identify effects from
variables taken separately and in combinations. Each of these effect types will be considered.

Isolating Main Effects

Because factorial designs involve more than one independent variable, researchers naturally
care whether these variables produce effects one at a time. Called a main effect, this type of
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result is “the effect of an independent variable uninfluenced by other variables” (Vogt, 2005,
p. 183). Because they are main effects, their contributions to total variation in the dependent
variable are additive. That is, the factors do not interact,
and they produce effects that may be added to other
effects to determine the overall impact of variables.

In the figure on the right, the numbers inside the
1 × 2 grid indicate mean scores on the dependent
variable, and the identifiers outside the cells show
independent variable levels. If only one independent
variable is present, as in the case here, the main effect
may be identified by looking at a simple line graph,
such as shown on the diagram. The dependent variable
is indicated on the vertical axis (also known as the
y-axis or the ordinate). Though bar charts often are
used to report research data, line graphs, rather than bar
charts, traditionally are employed to identify different sorts of effects on dependent variables.

In this case, the diagram shows that when one moves from the low level of the
independent variable (symbolized X1) to the high level,
the dependent variable scores show an upward slope.
Indeed, main effects are indicated for the variable
on the horizontal axis (also known as the x-axis or
abscissa) by the existence of line(s) with some slope.
A flat line, running parallel to the horizontal axis,
would reveal the absence of a main effect. Such a flat
line would mean that as one moves from one level to
another on the independent variable, there is no change
in the dependent variable. If there is a difference in
the numbers, there is a main effect. The bigger the
difference, the bigger is the effect.

When two independent variables are included, the researcher runs out of available axes
on a two-dimensional figure. Thus, separate lines are drawn to represent levels of the second
dependent variable, as shown in the diagram on the right. Separate lines have been drawn
to show the effects of the levels of variable 2.3 To reveal
whether there is a main effect from the independent
variable on the horizontal axis, the researcher looks at
the average dependent variable score when the inde-
pendent variable is at each of its levels (often placing
an imaginary dot on these positions). When an imagi-
nary line connecting these means shows slope, a main
effect is claimed. In this case, as shown in the diagram
on the right, the dotted line shows “imaginary line”
and, because it has slope, a main effect exists from
independent variable 1.

Factorial Analysis of Variance— 217
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3References to “high” and “low” levels refer only to the levels of the independent variables, not what
impact these variables have on the dependent variable.
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To detect a main effect from the variable for which separate lines were drawn, the
researcher looks at the average of each line and looks
for a difference in the dependent variable scores. In short,
the researcher looks for space between the middles of
the lines. In the case of the example shown here on the
left, the middle of each line is indicated by a circle, and
there clearly is space between these points. Thus, in this
example the researchers would identify a main effect from
variable 2.

Isolating Interaction Effects

In addition to main effects, researchers often are interested in exploring the effects of
special combinations of levels of variables. Interaction effects are the “joint effect[s] of two
or more independent variables on a dependent variable” (Vogt, 2005, p. 154). Whereas main
effects are additive effects, interactions are multiplicative. In other words, the interactions are
more than just the result of main effects moving in concert. Instead, they are contributions to
overall effects that go beyond the addition of main effects alone. A direct way to identify the
nature of interactions is to look at the diagrams of means. In general, interaction effects are
revealed when the lines are nonparallel. In fact, they may be so nonparallel that they cross
(but it is not necessary for lines to cross for an interaction to be present). As we shall see, how-
ever, the type of interaction found greatly affects the sorts of interpretations that can be made
of the study results.

Two types of interactions regularly are identified in research reports. Uncrossed or
ordinal interactions are dependent interaction effects that are in the same direction as the
main effects of the variables involved (Reinard, 2001, p. 439). On the other hand, crossed or
disordinal interactions are dependent interaction effects that are not in the same direction
as the main effects of the variables involved (Reinard, 2001, p. 435).

In essence, ordinal interactions indicate the presence of a sort of “bonus effect” when
levels of independent variables are put together. The interaction is in the same direction as

the main effects, just more (or less) so. The diagram
on the left reveals a slight tendency toward non-
parallel lines. Obviously, it would be nice to know
if such interaction effects contribute variation that is
beyond random sampling error alone. Factorial analy-
sis of variance provides such information and will be
described shortly. In this example, the main effects
reveal lowest dependent variable scores when variable
X1 is low and also when variable X2 is low. When these
two levels are combined, however, the effect goes
beyond a simple average of the main effects. Hence,

the effect is not additive. By the way, in this case the so-called “bonus effect” is in a nega-
tive direction—the dependent variable scores are reduced greatly by the combination of
variable levels.

A variation of this type of ordinal interaction involves finding what some researchers
call a “magic cell” in which only one combination of conditions produces dependent variable
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scores that are different from the others. The diagram
on the right illustrates such a situation, in which the only
time that a different dependent variable score is observed
is when independent variable X2 is set at its low level and
independent variable X1 is set at its high level. It is impor-
tant to remember, however, that the “high” and “low”
levels of independent variables refer only to their set-
tings, not the predicted scores on dependent variables.

Another ordinal interaction form occurs when levels
of one variable eliminate the contributions from the
other variable. For instance, in the diagram below on the right, when variable X1 is low, the
different levels of variable X2 influence the dependent variable scores. But when variable X1 is
high, different levels of variable X2 have no influence on
the dependent variable. One might wonder if this inter-
action is ordinal or disordinal, because the lines touch.
The answer is that the interaction is ordinal because the
lines do not cross. One might speculate that the inter-
action could be disordinal if the lines were extended
further. Yet, interpretations are based on the actual levels
and “operating ranges” selected by the researchers. If it
is assumed that independent variable levels are set on
the basis of some logical reasoning, it does not matter
that the lines might cross if somebody else did a differ-
ent study using different levels of independent variables. In fact, if the levels were simple cat-
egories, such as whether the respondents were male of female, it would not make any sense to
wonder what a “higher” level of the variable would be. Furthermore, the researcher does not
really know that the lines might not have retreated in he opposite direction if the levels of the
independent variable had been extended.

It is important for researchers to check alternative
ways of drawing charts. For instance, if the data
from the last example were graphed by switching
which variable appears on the horizontal axis, the
results would be very different. The diagram to the
right shows this condition. The diagram now reveals
a disordinal interaction. So, an inquiring mind might
wonder, is the interaction actually ordinal or disordi-
nal? The answer is that if the lines cross under any cir-
cumstance, the interaction is disordinal, even though
the disordinal interaction may have been “disguised” in one drawing. Though under most
circumstances, disordinal interactions do not hide themselves, wise researchers should
draw diagrams in more than one fashion before making final interpretations of interactions.

The reason identifying interactions is vital lies in the fact that the interpretations of results
are completely different. When there is a disordinal or crossed interaction,

• researchers are not permitted to interpret the main effects involved in the interaction; and
• researchers acting on such information must look at the settings of two variables at

once, rather than independent variables one at a time.
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The reason for these rules may be obvious. With a disordinal interaction, each main effect from
independent variables would accurately predict output about half the time. The rest of the time,
results would not be as initially predicted from the main effects.4 In short, interpreting the main
effects would be misleading when there are disordinal interactions. Yet, this fact does not mean
that the impact of the main effect is dropped from the study. The contribution to the total per-
centage of variance explained is retained. By the way, this requirement to avoid interpreting
main effects for variables involved in disordinal interactions does not apply to other indepen-
dent variable main effects that are not part of the disordinal interaction. If researchers had three
independent variables, any main effect from the third variable could be interpreted provided it
were not part of a disordinal interaction involving the first two variables.

If researchers wish to act upon their research findings, identifying the presence of dis-
ordinal interactions is very important. If there is an ordinal interaction, then it is possible
to take action on one variable at a time, because the interaction is in the same direction as
the main effects. On the other hand, if there is a disordinal interaction, researchers know that
they cannot look at one independent variable at a time. If action is to be taken, one variable
cannot be left to operate at random while the other is fixed.

COMPUTING THE FIXED-EFFECT ANOVA

The fixed-effect analysis of variance is “a model where the levels of the factor under study
(the treatments) are fixed in advance. Inference is valid only for the levels under study”
(Aczel, 1989, p. 379). In this approach, sometimes called the “Type I model” of analysis of
variance, a serious choice is made of the levels of the independent variables, and the con-
ditions are generally considered exhaustive of the variable. For instance, researchers might
examine whether lengthy or brief speeches delivered by male or female speakers differ
in their comprehensibility. Both the factors of speech length and sex of the speakers are
composed of fixed levels that cover the researcher’s range of interest. Most communication
studies using factorial analysis of variance employ the fixed-effect model.

The fixed-effect model ANOVA makes four major assumptions that must be checked:

• Measurement of the dependent variable on the interval or ratio level
• Randomization
• Normal distribution of the dependent variable. Researchers may explore this matter by

examining the kurtosis and skewness of the distributions. As shown in Chapter 4,
researchers also could consider using the Kolmogorov-Smirnov or Shapiro-Wilks
statistics to test the null hypothesis that the sample data do not differ from a normal

220— I N F E R E N T I A L  S T A T I S T I C S

4For instance, in the previous example, there is a main effect from variable X2 (though not from variable
X1). The main effect indicates that the dependent variable scores are highest when X2 is set at its
low level, but this effect will occur only if variable X1 is low. If variable X1 is high, then the dependent
variable effects will be reduced when X2 is at its high level.
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distribution. With large sample sizes, the factorial analysis of variance is relatively
robust to modest violations of normality. But if sample sizes are small (much below 30),
researchers may wish to transform variables before continuing with analyses.

• Homogeneous variances. Researchers examine variances to detect if the variances
are within the limits of sampling error and may use such tools as the F test (or Fmax)
of variances or Levene’s test. If variances are unequal, researchers may look for ceil-
ing or floor effects (by correlating means and variances). If heterogeneous variances
exist in the absence of ceiling and floor effects, researchers have evidence of events
by treatments interaction, and they should continue the search for moderating vari-
ables to include in the research effort.

The first two of these assumptions are matters that must be considered by researchers in their
design or research. The third and fourth assumptions may be considered by examining data.

As mentioned in Chapter 8, the fixed-effect model also assumes these elements that are
dependent on the research design choices and presumptions made by researchers:

• The elements in the model reflect the sum of all the elements that affect the dependent
variable.

• The experiment contains all treatment levels of interest.
• The error effects are independent and normally distributed.
• The samples are independent, which means that knowledge of an individual’s score

on some measure neither predicts the degree of that individual’s error nor affects the
probability of predicting any other individual’s responses.

Assessing Effects

Main effects for factorial analysis of variance are rather easy to compute. Researchers start
by looking at the “between-groups variances” for each input variable separately. Table 9.2
shows such an example. To compute main effects mean squares is a relatively simple task
because it uses the same formula as one-way analysis of variance, n * s2

X– . Degrees of freedom
for this term are the number of groups minus one. The process is repeated for the other main
effects as well.

To compute interactions from levels of independent variables, researchers take each cell
value and then subtract away the mean that would be expected by the row and column means
(and means of “slices,” in the case of three-way ANOVAs). Then, the contribution is con-
trasted by adding the grand mean (only once in the case of two-factor analysis of variance).
Any remaining variation is attributable to interaction effects beyond influences of main
effects alone. The degrees of freedom for interaction effects are simply the product of the
degrees of freedom for each main effect involved in the interaction.

Within-groups variance (also known as error variance) is the same as a pooled variance s2
p

introduced in Chapter 8. If sample sizes are equal, the pooled variance is simply the mean of
the variances within each cell group. If the sample sizes are unequal, a formula that adjusts
for sample sizes is used.

Factorial Analysis of Variance— 221

(Text continues on page 225)
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Table 9.2 Example of a Two-Way Analysis of Variance

A researcher was interested in student’s perceptions of their teachers’ overall verbal communication
and  nonverbal immediacy with students (measured on a set of 18 seven-point “communication satis-
faction” scales, with a possible range for the total of 18 to 126). The researcher thought that female
students might report greater communication of teacher immediacy than male students generally. The
researcher also suspected that students who were highly individualistic by nature (measured by a stan-
dard scale and then divided into “high” and “low” groups based on their scores) might report greater
communication of teacher immediacy than would students who were low on individualism. The
hypothesis for the sex of student was H1: µwomen > µmen. The hypothesis about individualism predicted
H2: µhighly individualistic students > µlowly individualistic students. The researcher had a number of male and female
students complete scales to rate their individualism and their perceptions of teacher verbal and non-
verbal communication of immediacy. Their scores are found in the grid below, along with a list of
means (X−) and variances (s2). To compute the sources of variation, researchers must examine two main
effects and an interaction effect.

Low

Individualism

High

Male 

102, 103, 95, 80,
95, 110, 109, 102,
94, 98, 90, 101,
108, 105, 90, 96,
90, 93, 111, 95, 88,
81, 87, 91, 85, 89

X−11 = 95.69

s2
11 = 76.30

114, 105, 104, 110,
76, 87, 84, 105, 85,
96, 91, 109, 95, 98,
101, 83, 99, 75,
103, 113, 101, 93,
102, 116, 104, 103

X−21 = 98.15

s2
21 = 125.42

X−
−

.1 = 96.92

Female

97, 86, 104, 95, 92,
82, 91, 99, 74, 106,
90, 109, 89, 104,
101, 102, 71, 86,
89, 112, 90, 94, 94,
86, 107, 94

X−12 = 94.00

s2
12 = 102.80

76, 101, 112, 104,
100, 109, 104, 99,
100, 116, 108, 106,
90, 111, 90, 110,
105, 102, 103, 92,
98, 114, 85, 104,
89, 94

X−22 = 100.85

s2
22 = 91.74

X−
−

.2 = 97.43

X−
−

.1 = 94.85

X−
−

.2 = 99.50

X−
−−

= 97.18

Sex of Student

09-Reinard.qxd  3/2/2006  11:21 AM  Page 222



Factorial Analysis of Variance— 223

• The mean square for individualism is computed as MSindividuals = n in the row * s2
X
– or, equivalently

using the computational formula with j as the rows (individualism), k as the columns (sex of subjects),
and i as instances of scores:

Using the conceptual formula, one may substitute scores as MSindividuals = n in the row * s2
X– . The

equation then can be shown:

• The mean square for sex of participants are computed as MSsex of participants = n in the column * s2
X– or,

equivalently using a computational formula with j as the rows (individualism), k as the columns (sex
of participants), and i as instances of scores:

Using the first formula, one may substitute scores as MSsex of participants = n in the column s2
X– to get the

following equality:

= 52 ∗
∑ (

X
------

k − X
---------)2

k − 1

= 52 ∗ (96.92 − 97.18)2 + (97.43 − 97.18)2

2 − 1

= 52 ∗ .07 + .06

1
= 52 ∗ .13
= 6.76.

⎛
⎜⎜⎜⎜⎜⎝

∑
k

(∑
j

∑
i

Xijk

)2

n.k
−

(∑
k

∑
j

∑
i

Xijk

)2

n..

⎞
⎟⎟⎟⎟⎟⎠ /degrees of freedom.

= 52 ∗
∑ (

X
------

j − X
---------)2

j − 1

= 52 ∗ (94.85 − 97.18)2 + (99.5 − 97.18)2

2 − 1

= 52 ∗ 5.43 + 5.38

1
= 52 ∗ 10.81
= 562.12

⎛
⎜⎜⎜⎜⎜⎝

∑
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(∑
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∑
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Xijk

)2

nj.
−

(∑
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∑
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∑
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Xijk

)2

n..

⎞
⎟⎟⎟⎟⎟⎠

/
degrees of freedom.

(Continued)
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• The mean square for the interaction between individualism and sex of subjects in this case
is computed as MSinteraction = (n in each cell condition *

∑
[cell mean − row mean − column mean +

grand mean]2) / degrees of freedom or, equivalently using the computational formula with j as the
rows (individualism) k as the columns (sex of subjects), and X−

−−
as the grand mean:

Substituting the scores, one finds:

• Within groups variance (also known as error variance) is the same as a pooled variance s2
p. If sample

sizes are equal, the pooled variance is simply the mean of the variances within each cell group.  If the
sample sizes are unequal, the following formula that adjusts for sample sizes is used

For these data, the pooled variance is 99.07.  This term is the mean square, not the sums of squares.
When entered into the ANOVA table, the numbers are revealed as:

Sums of Degrees of Mean Eta 
Sources of Variation Squares Freedom Square F Squared

Individuality 562.12 1 562.12 5.67* .05
Sex of participants 6.76 1 6.76 <1
Individuality x sex of subjects 125.32 1 125.32 1.26
Within-groups variance 9907 100 99.07
Within-groups variance 9907 100 99.07

Total 1,0601.2 104

*p < .05.

S2
p = (n1 − 1)s2

1 + (n2 − 1)s2
2 + . . . (n − 1)s2

n

n1 − 1 + n2 − 1 + . . . nn − 1
.

=
(

26 ∗
[

(95.69 − 94.85 − 96.92 + 97.18)2 + (94 − 94.85 − 97.43 + 97.18)2+
(98.15 − 99.5 − 96.92 + 97.18)2 + (100.85 − 99.5 − 97.43 + 97.18)2

])
/1

= (26 ∗ [1.21 + 1.21 + 1.19 + 1.21])/1 = 125.32.

⎛
⎝njk ∗

∑
j

∑
k

(
X
---

jk − X
------

j. − X
------

.k + X
---------)2

⎞
⎠ /degrees of freedom.

Table 9.2 (Continued)
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• The degrees of freedom for each main effect are the number of levels of the variable, minus one. The
degrees of freedom for the interaction effect are determined by multiplying the main effect degrees of
freedom for each variable involved in the interaction. Hence, in this case, degrees of freedom for the
interaction term equal one (1 * 1 = 1). The within-groups degrees of freedom are the total number of
events minus the number of groups in the study. In this case, there were 104 events, minus four sample
groups of cells. Thus, degrees of freedom equal 100.

• To test the statistical hypothesis of “no difference” with an alpha risk of .05, the researcher finds the
critical value of F with the numerator degrees of freedom from the effect and degrees of freedom in
the denominator equal to the number of degrees of freedom for the within-groups (or “error”) term.
In this case, with 1 and 100 degrees of freedom, the critical F ratio is 3.936. Thus, the main effect
from individualism was statistically significant.

• To identify the source of differences from the main effect, one need only look at the marginal means
(because there are only two levels). Those with high individualism showed the highest ratings com-
munication immediacy. This effect was associated with 5% of the total variance.

• In this case, there was no statistically significant interaction effect. Yet, if a statistically significant
interaction had been found, the researcher would want to examine diagrams of the specific interaction
patterns.

• To investigate whether the assumptions underlying the analysis of variance held, the homogeneity of
variance was tested. In this case, the F test was

The critical F(d.f.: 25,25) with α at .025 was 2.23. Thus, the assumption of homogeneous variance held.

F = largest s2

smallest s2
= 102.90

76.30
= 1.35.

After the factorial analysis of variance is completed, researchers would be well advised to
determine the size of each significant effect. The formula for eta squared (η2) used for the
one-way analysis of variance may be used here. The formula is

In each case, the “between-groups sums of squares” are the sums of squares associated
with each individual statistically significant effect, whether a main or interaction effect. This
convenient formula permits the researcher to determine the share of total variance that is
contributed by each individual source that produces a significant difference.

η2 = between-groups sums of squares

total sums of squares
.
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As an illustration of a fixed-effect factorial
analysis of variance, data from a study of
perceived teacher immediacy will be consid-
ered. From the Analyze menu, the researcher
would choose General Linear Model and then
Univariate. . . . The dependent variable “imme-
diacy” would be identified and moved to the
“Dependent Variable:” field. The two inde-
pendent variables, “sex” and “indhilo” (individ-
ualism) of the respondents, are highlighted and
transferred to the “Fixed Factor(s):” field.

The researcher then would click on the
Model. . . button to specify the “Full factorial”
option (if it has not already been identified). The
dialog box also includes the method to be used
to compute sums of squares. The default is
Type III, which includes a full factorial with no
missing data cells. This reference to Type III
refers only to the sums of squares, not the type
of factorial design. Afterward, the researcher
would click on the Continue button. (See illus-
tration on the top right column.)

The researcher then clicks on the Options
to identify the effects to be tested. In this case,
the researcher requests displays of means for
all effects by transferring the effects from the
“Factor(s) and Factor Interactions:” field to the
“Display Means for:” field. In addition, boxes

are checked to obtain “Descriptive statistics,”
“Estimates of effect size,” and “Homogeneity
[of variance] tests.” Afterward, the researcher
clicks the Continue button.

To obtain a plot of the results, the researcher
would click on the Plots. . . button. Because it
is wise to include two diagrams with different
variables placed on the horizontal axis, two
plots are requested. The first plot, “sex*indhilo,”
places “sex” on the horizontal axis. The second
plot, “indhilo*sex,” places “indhilo” on the
horizontal axis. The researcher would click on
Continue and then OK. (See illustration on the
top of left column on p. 227.)
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Levene’s test was not statistically significant.
Hence, the researcher would conclude that the
assumption that the variances were the same could
not be rejected.

These steps would produce the following results:

The ANOVA table indicated that the
individualism variables produced a significant
difference and that no significant interaction
effect was present. In the estimated marginal
means, those with high mean ratings of individ-
ualism (Group 2) reported greater perceptions
of the teacher immediacy than others (Group 1).

Although the ANOVA showed that that inter-
actions were not statistically significant, it is inter-
esting to note that the type of interaction would
have been disordinal because when the chart was
drawn with individualism on the horizontal axis,
the result was crossed interaction, as shown in the
second chart below.

Estimated Marginal Means of IMMED
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Estimated Marginal Means of IMMED

92

94

96

98

100

102

Indhilo

Indhilo Sex

F df1 df2 Sig.

.503 3 100 .881

Univariate Analysis of Variance

Levene’s Test of Equality of error Variances

Dependent Variable: IMMED

Tests the null hypothesis that the error variance of the
dependent variable is equal across groups.

a. Design: Intercept+ SEX+INDHILO+SEX*INDHILO

SEX INDHILO Mean Std. Deviation N

1 1 95.69 8.74 26
2 98.15 11.20 26
Total 96.92 10.02 52

2 1 94.00 10.14 26
2 100.85 9.58 26
Total 97.42 10.36 52

Total 1 94.85 9.41 52
2 99.50 10.41 52
Total 97.17 10.15 104

Descriptive Statistics

Dependent Variable: IMMED

Type III Sum Mean
Source of Squares df Square F Sig.

Corrected Model 694.577a 3 231.526 2.337 .078
Intercept 962031.115 1 982031.115 9913.190 .000
SEX 6.500 1 6.500 .066 .798
INDHILO 563.115 1 563.115 5.684 .019
SEX*INDHILO 124.962 1 124.962 1.261 .264
Error 9906.308 100 99.063
Total 992632.000 104
Corrected Total 10600.885 103

Tests of Between-Subjects Effects

Dependent Variable: IMMED

a. R Squared = .066 (Adjusted R Squared = .037)

95% Confidence Interval

INDHILO Mean Std. Error Lower Bound Upper Bound

1 94.846 1.380 92.108 97.585
2 99.500 1.380 96.762 102.238

3. INDHILO

Dependent Variable: IMMED
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When completing a “two-way” or two-factor
analysis of variance, Excel requires that each level
of one independent variable should be identified
by separate columns. The rows must group the
levels of the dependent variable. So, the data
must be arranged in a way similar to the one
shown below. In addition, the rows must group
the scores of the dependent variable.

To complete the two-way ANOVA, the
researcher selects Data Analysis from the Tools
menu. From the dialog box that appears, the
researcher selects “Anova: Two-Factor With
Replication” and then clicks the OK button. In
the box that appears, the researcher clicks on 

and then highlights the location on the spread-
sheet where the data begin through the location
where the data end.

The researcher clicks on to return to the
dialog box. To select a location to place output,
the researcher clicks on the “Output Range:” win-
dow and goes to an available location such as
one starting at cell A55. After making a selection,
the researcher clicks on to return to the dialog
box. In the dialog box, the researcher must spec-
ify a desired alpha risk for use in significance
testing (.05 in this case). In addition, the researcher
identifies the “Rows per sample:” a number that
corresponds to the sample size in each cell.

After clicking on the OK button, the following
output appears. Inspecting the column marked
P-value makes it clear that the only significant
effect was a main effect for the column variable,
individualism. A look at the means of the high
and low individualism groups reveals that the
highest ratings (dependent variable: immediacy)
were from the high individualism group partici-
pants. Excel does not have built-in functions for
designs involving more than two independent
variables, but this chapter’s Web site includes
references to other add-in programs that help fill
these additional needs.
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5This is not meant to equate random effects with repeated measures. Whereas random-effects testing
involves further partialing of the within-subjects error term, random effects do not require repeated
measures designs.

RANDOM- AND MIXED-EFFECTS DESIGNS

Though in “fixed-effects” analysis of variance designs, the levels of a variable are fixed to
include the full range of levels that a researcher considers important, there are times when
researchers take random draws of examples from populations as variable levels. There also
are times when the same participants are measured repeatedly.5 This discussion will consider
each of these approaches.

Understanding Random-Effects Designs

In analysis of variance, the random effects model is an experimental design in which the
levels of the factor are random, in the sense that they are drawn at random from a population
of levels rather than fixed by an investigator. Also called “variance components model” and
“Model II ANOVA design,”

[t]he random-effects model is used when there is a large number of categories or levels
of a factor. For example, say researchers in a survey organization wanted to see whether
different kinds of telephone interviewers get different response rates. Because there are
[sic] potentially a very large number of categories (difference in accent, quality of voice,

Anova: Two-Factor With Replication
Summary Low Individualism High Individualism Total

Male
Count 26 26 52
Sum 2488 2552 5040
Average 95.69230769 98.15384615 96.92307692
Variance 76.30153846 125.4153846 100.4253394

Female
Count 26 26 52
Sum 2444 2622 5066
Average 94 100.8461538 97.42307692
Variance 102.8 91.73536462 107.3076923

Total
Count 52 52
Sum 4932 5174
Average 94.84615385 99.5
Variance 88.52488689 108.2941176
ANOVA
Source of
Variation SS df MS F P-value F crit
Sample 6.5 1 6.5 0.06561476 0.798358302 3.936150961
Columns 563.1153846 1 563.1153846 5.684412418 0.019002603 3.936150961
Interaction 124.9615365 1 124.9615385 1.261434051 0.264069015 3.936150961
Within 9906.307692 100 99.06307692

Total 10600.88462 103
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etc.), perhaps as many as there are individual telephone interviewers, a sample is chosen
randomly from the population of interviewers, which is also, in this case, a population
of levels. On the other hand, if the survey organization were interested only in, say, the
difference in response rate between male and female interviewers, they would use a
fixed-effects model. (Vogt, 2005, pp. 260–261)

In this model, the researcher attempts to make an inference about the meaningfulness of
an entire population of a variable. If a researcher finds that that variable fails to produce
statistically significant effects, the researcher may have some reason to move to other vari-
ables that actually might produce different effects in the dependent variable. For most
research in communication studies, the random-effects model is not used; instead, either a
fixed- or mixed-effects model is employed.

For the random-effects model, several assumptions must be made in addition to the
ones typically required of any parametric tests (i.e., interval or ratio level measurement of the
dependent variable, randomization, normal distribution, homogeneity of variances). In par-
ticular, this model assumes that the error terms are independent and normally distributed. This
assumption means, among other things, that knowing the factor level would not allow one to
predict whether an error term was above or below zero.

Computationally, a one-factor fixed-effects model and the one-factor random-effects
model are equivalent, but they differ in the additional assumption (independent and normally
distributed error terms) and the interpretation of the meaning of an effect. The existence of a
statistically significant effect means that the variable from which random selections of levels
were made produces significant effects on the dependent variable. Hence, the variable bears
further inquiry to determine fixed levels that produce predictable outcomes. It is, therefore, a
variable “screening” exercise. It should be added that the computation of statistical signifi-
cance for the random-effect variable does change when two-factor mixed-effect designs are
involved. These highly useful designs are considered next.

Use of Mixed-Effects Designs

Sometimes researchers employ one or more fixed effects and one or more random effects.
The mixed-effects ANOVA (also known as “Model III ANOVA”) combines (mixes) between-
subjects factors and within-subjects factors.

The Logic of Combining Fixed and “Random” Effects

One might wonder why communication researchers would want to complete studies where
some variables are fixed and others are treated as randomly selected examples of variable
levels. For example, suppose a researcher presented participants with four messages with
or without emotional language (the fixed effect). Furthermore, suppose the researcher used
messages on two different topics. If the researcher were interested in these specific messages,
the message topics would be a fixed effect. If instead the researcher were interested in the
influences of messages in general, the message topics would be a random effect. Statistically,
if one uses a completely fixed-effect ANOVA, the “between-groups variance term” includes
both the treatment and reactions to the specific message “replications” used. Some scholars
have recommended that researchers who study message characteristics should include at
least two examples of message and more than one topic (Clark, 1973; Jackson, Brashers,
& Massey, 1992; Jackson & Jacobs, 1983; Jackson, O’Keefe, & Jacobs, 1988; Jackson,
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O’Keefe, Jacobs, & Brashers, 1989).6 A remaining controversy is whether the effect should
be treated as a random selection of a variable level from the population of theoretic possi-
bilities, or whether the effect should be considered a fixed effect and studied as any other
primary variable of interest. If a rationale can justify the use of a fixed-effect approach, that
method probably should be used. But if the researcher is using multiple messages simply for
the purpose of control, the mixed-effect ANOVA is a particularly appropriate tool.

In the mixed-effects model, the fixed effect and interaction mean squares are identified the
same way they are for the fixed-effect model. But for the computation of the F statistic, things
change. In the mixed-effects model, each main effect mean square is divided by the inter-
action mean square between the fixed-effect variable and the random-effect variable. The use
of the interaction mean square allows the shared contribution of the random influence to
be controlled in estimates of the primary fixed effects of interest. For the interaction term
itself, the within-groups mean square is used to compute the F value. Naturally, the degrees
of freedom are computed differently depending on whether the within-groups mean square or
the interaction mean square is used as the divisor:

• For the fixed effect, the degrees of freedom are

[for the numerator] number of levels in the fixed effect – 1

[for the denominator] degrees of freedom in the interaction term
(number of levels in the fixed effect – 1) * (number of levels

in the random variable – 1)

• For the random effect, the degrees of freedom are

[for the numerator] number of levels in the random effect – 1

[for the denominator] degrees of freedom in the interaction term
(number of levels in the fixed effect – 1) * (number of levels

in the random variable – 1)

• For the interaction effect, the degrees of freedom are

[for the numerator] (number of levels in the fixed effect – 1) *
(number of levels in the random variable – 1)

[for the denominator] degrees of freedom in the within-groups
term (number of events in the study – number of groups)

6At one time, communication researchers routinely studied message variables by presenting participants
with one example of a message and a message topic. Critics suggested that it often was difficult to know
if the results could be generalized beyond the specific message and the specific topics. This position is
controversial. Though admitting the value of replications, some have disagreed that using single mes-
sages is a flawed approach (especially when a series of studies across many topics has been completed)
(Burgoon, Hall, & Pfau, 1991). Furthermore, some argue that insisting on multiple message replications
may be an unfair demand that may drive out most worthy message-effects research. Settling the matter
is not within the purview of this book. Yet, this chapter accepts the view that all researchers must shoulder
a burden of proof and present arguments and reasons to support the proposition that the message examples
they study are representative of some meaningful class of messages.

.

.

.
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Table 9.3 Example of Mixed-Effects Model

A researcher wanted to know if a message using deliberate ambiguity would produce more attitude
change among initially hostile audiences than messages with clear language. The hypothesis was

H1: µambiguous > µunambiguous.

But the researcher wanted to determine if the strategies, rather than the particular topic of the messages,
were responsible. So, the use of the message strategies was the fixed effect, and three different messages
were designed with and without the ambiguous language used.

Message Message Message 
Topic 1 Topic 2 Topic 3 X−j. X−j. − X−

−

Unambiguous language 29, 20, 22, 33 36, 23, 25, 24 38, 26, 21, 27 n = 12
X−1k 26 27 28 27 −3.165
s2

lk 36.67 36.67 51.33

Ambiguous language 42, 32, 25, 29 31, 45, 27, 37 31, 31, 25, 45 n = 12
X−2k 32 35 33 33.33 3.165
s2

2k 52.67 61.33 72

X−.k n = 8 n = 8 n = 8
29 31 30.5 30.165

X−.k – X−
−

–1.165 .835 .335

These messages were approximately the same length and had human interest quotients of nearly the iden-
tical levels. Computing sources of variation involves both fixed and random effects:

where

nj is the number of events in each level of the fixed effect and

j is the number of levels for the fixed effect.

Mean Squarefixed effect =
nj ∗ ∑ (

X
---

j − X
------)2

j − 1
,

As can be seen, if there is a great interaction between the fixed effect and the random effect,
the chances of finding a statistically significant fixed effect are reduced. But if the interaction
is modest, the test can be quite powerful. Table 9.3 shows the steps involved in such a mixed-
effects study.
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(Continued)

In this case, the numbers are

where

nk is the number of events in level of the random effect and

k is the number of levels for the random effect.

In this case, the data entry yields

where

njk is the number of events in each cell,

j is the number of levels for the fixed effect,

k is the number of levels for the random effect,

X−jk is the mean of each individual cell,

X−j. is the mean of the corresponding level of the fixed effect,

X−.k is the mean of the corresponding level of the random effect, and

X− is the grand mean.

In this case, the data entry yields

Mean Squareinteraction effect (messages) = 4 ∗ [(26.67 − 27 − 29 + 30.165)2 + . . . (33 − 33.33 − 30.5 + 30.165)2]

(2 − 1) ∗ (3 − 1)

= 4 ∗ 2.33

2
= 9.32

2
= 4.66

Mean Squarewithin groups =
∑

s2
jk

j ∗ k
,

Mean Squarerandom effect (messages) = 8 ∗ (−1.1652 + .8852 + .3352)

3 − 1
= 8 ∗ 2.165

2
= 8.66

Mean Squareinteraction effect (messages) =
njk ∗ ∑ (

X
---

jk − X
---

j. − X
---

.k + X
------)2

(j − 1) ∗ (k − 1)
,

Mean Squarefixed effect = 12 ∗ (−3.1652 + 3.1652)

2 − 1
= 12 ∗ 20.03

1
= 240.41

Mean Squarerandom effect (messages) =
nk ∗ ∑ (

X
---

k − X
------)2

k − 1
,
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In addition to the assumption of parametric statistics generally (interval or ratio level mea-
surement of the dependent variable, normal distribution, randomization, and homogeneity of
variance), the mixed effects ANOVA also assumes the following:

• Random effects, error effects, and interaction effects are normally distributed.
• Compound symmetry is made. This assumption holds that the covariance matrices

for the levels of the “between factor” are homogeneous. Though a test for this
assumption is available (Box, 1950), trusting routine testing for this assumption is not
widely recommended (Kirk, 1982, p. 503). In addition, though violating this assump-
tion slightly increases true Type I error, the effects tend to be small (Collier, Baker,
Mandeville, & Hayes, 1967).
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where

s2
jk is variance within each cell,

j is the number of levels for the fixed effect, and

k is the number of levels for the random effect.

In this case, the data are

The ANOVA table for this effect is

Source SS d.f. MS F

Ambiguity (fixed) 240.41 1 240.41 51.59
Messages (random) 17.32 2 8.66 1.86
Interaction 9.32 2 4.66 .09
Within groups 9.32 18 51.78

To compute the F ratios for both the fixed and random effects, the mean squares are divided by the
interaction mean square. Therefore, the degrees of freedom to identify critical F values are for the fixed
and random effects in the numerator and the interaction term for the denominator. Thus, the degrees
of freedom for ambiguity are 1 in the numerator and 2 in the denominator. With alpha risk of .05, the
critical F ratio is 18.5.

For the random effect, degrees of freedom are 2 for the numerator and 2 for the denominator. The
critical F ratio is 19 with alpha risk at .05.

For the interaction term, the within-groups mean square is used in the denominator to compute the
F ratio. Thus, the degrees of freedom are 2 and 18. This critical F ratio is 3.55.

Mean Squarewithin groups = 36.67 + 36.67 + 51.33 + 52.67 + 61.33 + 72

2 ∗ 3
= 310.67

6
= 51.78.

Table 9.3 (Continued)

09-Reinard.qxd  3/2/2006  11:21 AM  Page 234



Factorial Analysis of Variance— 235

In an example of a mixed model, Table 9.3
shows a study involving a researcher who
examined whether use of deliberately ambigu-
ous language in two sample speeches presented
to initially hostile audience members would
produce more positive attitudes than would the
use of clear statements. The three messages
would be random factors, and the strategic
message ambiguity would be the fixed factor.
To complete such analysis in SPSS, a researcher
would select General Linear Model from the
Analyze menu followed by Univariate. In the
dialog box that appears, the researcher would
transfer the appropriate dependent, indepen-
dent, and random factors. The researcher clicks
on the Model. . . button to specify the “Full
Factorial” option (if it has not already been
identified). Then the researcher clicks on the
Continue button.

In the Univariate dialog box, the researcher
clicks on the Options. . . button. The researcher
highlights all the effects and transfers them
to the “Display Means for:” field. To complete
the report, the “Descriptive statistics” and
“Homogeneity tests” boxes should be checked.
The researcher then clicks on the Continue and
OK buttons.

The results appear in the output window.
As can be seen by the results below, the test
of homogeneous variances was not statistically
significant. Thus, the assumption of homoge-
neous variances was considered tenable.

Using SPSS for Mixed-Effects ANOVA

AMBITG MSSTOPIC Mean Std. Deviation N

unambig 1 26.00 6.06 4
2 27.00 6.06 4
3 28.00 7.16 4
Total 27.00 5.89 12

ambig 1 32.00 7.26 4
2 35.00 7.83 4
3 33.00 8.49 4
Total 33.33 7.24 12

Total 1 29.00 6.97 8
2 31.00 7.76 8
3 30.50 7.75 8
Total 30.17 7.22 24

Descriptive Statistics

Dependent Variable: ATTITUDE

F df1 df2 Sig.

.103 5 18 .990

Levene’s Test of Equality of Error Variance’s

Dependent Variable: ATTITUDE

Tests the null hypothesis that the error variance of the
dependent variable is equal across groups.

a. Design: Intercept+AMBITG+MSSTOPIC+AMBITG
*MSSTOPIC
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The ANOVA table revealed a statistically
significant main effect from the deliberate
ambiguity fixed effect. The previously presented
means showed that the unambiguous messages
produced less favorable attitudes toward the topic

than the deliberately ambiguous messages. As the
researcher hoped, the random effect “msstopic”
was not statistically significant, indicating that
the effects were related to the message strategy
across the selection of message examples.
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The Repeated Measures Design

An interesting application of the mixed model design is called the repeated measure
ANOVA, in which each experimental unit (person or item) is assigned to all treatments
of at least one fixed factor. Then, several different observations are made of them. For
instance, researchers could take communication apprehension measures from students
in a public speaking class several times during the semester. Then, the repeated measures
could be referenced. Similarly, researchers could expose people to three or more message
treatments (with and without evidence, for instance) in random order as part of a counterbal-
anced design. The order in which the same people received the message could be tracked as
a repeated measure. If there were any significant fatigue effects, they might be studied
directly. In short, communication scholars may use this method in very creative ways.

For conceptual purposes, it makes sense to imagine a simple case. If people were surveyed
at different times, shifts in their measured scores could be explained over time. Statistically
significant differences could be tracked as repeated measures. The repeated measure is, in
fact, treated as a fixed effect. The participants themselves would be used as a random effect
because they would be selections of people from the larger population. If the fixed effect
were diagrammed in a column and the random effect (the different participants) assigned to
individual rows, there would be only one participant in each of the cells. It would not really
be possible to determine a within-groups variance. Thus, just as with a mixed-effect design,
the researcher could enlist the interaction term to substitute for the within-groups variance.
Special Discussion 9.2 shows an example of this repeated measure design.

Type III Sum Mean
Source of Squares df Square F Sig.

Intercept Hypothesis 21840.667 1 21840.667 2520.077 .000
Error 17.333 2 8.667a

AMBITG Hypothesis 240.667 1 240.667 51.571 .019
Error 9.333 2 4.667b

MSSTOPIC Hypothesis 17.333 2 8.667 1.857 .350
Error 9.333 2 4.667b

AMBITG * MSSTOPIC Hypothesis 9.333 2 4.667 .090 .914
Error 932.000 18 51.778c

Tests of Between-Subjects Effects

Dependent Variable: ATTITUDE

a. MS(MSSTOPIC)

b. MS(AMBITG * MSSTOPIC)

c. MS(Error)
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Counterbalanced Designs

There are many times that participants in a study must be exposed to a series of treatments. They
may be presented with three or more messages with different persuasive appeals or language
treatments. These exposures could stimulate change in subjects even though the fixed effects may
not be responsible. There are several ways that it may occur:

• Subjects may become “testwise” by the end of the study rather than remaining relatively
“naive” as they were at the beginning.

• Subjects may grow fatigued over time.
• Cumulative exposure to content may make a subject increasingly sensitive to message

elements by the end of the study.

There are several ways to deal the problem, such as lengthening the time between expo-
sures to treatments or reducing the numbers of treatments subjects receive. Another option
involves counterbalancing, which presents “conditions (treatments) in all possible orders to
avoid order effects” (Vogt, 2005, p. 67). In short, the researcher randomly assigns subjects to
receive the treatments in random order. A variation of this form is called the Latin square
design, which is “a method of allocating subjects, in a within-subjects experiment, to treat-
ment group orders. So called because the treatments are symbolized by Latin (not Greek)
letters” (Vogt, 2005, p. 169). For the Latin square, the number of rows and columns must be
equal (a square). For instance, researchers might counterbalance four treatments (A, B, C, and
D) in the following fashion.

Order of Presentation

Person 1 A B C D

Person 2 B C D A

Person 3 C D A B

Person 4 D A B C

This method ensures that the order effects are “balanced” so that order biases do not affect
reactions to one treatment any more than any other. The influence of order does not disappear,
but it is mixed (confounded) with measures of error variance.

Alternatively, the data may be analyzed (and usually will be) by use of a mixed-effects model
ANOVA. This analysis of data can grow increasingly complex as the researcher interprets the
meaning of the independent variable as a within-groups variable and may include the counter-
balancing sequence as an added between-subjects factor. Thus, in a mixed-effects design, the
number of effects to examine may increase.

Special Discussion 9.2
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The repeated measures ANOVA embodies several assumptions. In addition to interval or ratio
level measurement of the dependent variable, normal distribution, randomization, and homo-
geneity of variances, two other assumptions are featured prominently. The first of these is the
independence of observations. There is no way to test the matter. Instead, the researcher must use
a sound experimental design with a different person for each “row” in the random effect.

A second assumption is sphericity. The notion is related to the requirement of compound
symmetry in mixed-effect designs. One scholar explains:

For many years it was thought that stronger condition, called uniformity (compound
symmetry), was necessary. The uniformity condition required that the population variances
for all treatments be equal and also that all population covariances are equal. However,
Huynh and Feldt (1970) and Rouanet and Lepine (1970) showed that sphericity is an exact
condition for the F test to be valid. Sphericity requires that the variances of the difference
for all pairs of repeated measures be equal. (J. P. Stevens, 2002, p. 500)

Of course, if a matrix has compound symmetry, it will meet the sphericity assumption by
definition.

Sphericity is the assumption “of independent observations with a constant variance” (Upton
& Cook, 2002, p. 344). For instance, if a researcher took listening ability measures of interper-
sonal communication students for three consecutive weeks, there would be a difference between
Week 1 and Week 2 and between Week 2 and Week 3. In essence, two new variables would be
created for analysis. If these new variables were uncorrelated with each other, sums of squares
would equal zero. The matrix of such data would be called orthonormal. When a matrix of
the new variables and the covariance of the original variables are compared, then (using the
language of matrix operations) “the sphericity assumption says that the covariance matrix for
the new (transformed) variables is a diagonal matrix with equal variance in the diagonal. . . .
Saying that the off diagonal elements are 0 means that the covariance for all transformed vari-
ables are 0, which implies that the correlations are 0” (J. P. Stevens, 2002, p. 501). If this
assumed sphericity is not present, then the F test statistic tends to be inflated. In other words,
researchers will mistakenly reject null hypotheses more often than their announced alpha risks.

To test for sphericity, Mauchly’s test usually is involved. This test is given by

where

S is a k × k sample covariance matrix,

det(S) is the determinant of the k × k covariance matrix, and

tr(S) is the trace of the k × k covariance matrix.

Because this formula is mildly complicated, no computation example will be shown here.
Instead, this test will be revisited in the section on using SPSS to help analyze data. After the
W is computed, the “chi-square” (χ2) distribution may be used to assess whether the data show
a statistically significant difference from sphericity. If the observed chi-square value is greater

W = det(S)
(

k + 1

tr(S)

)k+1

,
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than the required critical value at the specific alpha risk set by the researcher, the null hypoth-
esis of sphericity is rejected.

This measure reports if there is a correlation between pairs of repeated measures. If the
observed statistic for Mauchly’s test is statistically significant and the underlying distributions
are normal, then the assumption of sphericity is rejected and an adjustment will be necessary.
It may be useful to switch to the multivariate form of repeated measures ANOVA in which
sphericity is not assumed. It should be mentioned that although Mauchly’s test is a popular
tool, it has been criticized for its inaccuracy when multivariate normality cannot be assured
(Keselman, Rogan, Mendoza, & Breen, 1980; Rogan, Keselman, & Mendoza, 1979). Thus,
prudent researchers need to be careful about mechanical use of this test. It makes sense to
check the underlying normality of the distributions of data (and the transformed variables
tracking the differences between each pair of repeated measures) before relying on the
Mauchly test.

If sphericity is not an assumption the researcher is prepared to make, a novice researcher
probably should suspend analyses until help is found to determine what elements are troubling
the data set. For an experienced researcher, it may make sense to use a statistical adjustment.
A value known as epsilon (ε) is identified (Greenhouse & Geisser, 1959)7 under these circum-
stances. Epsilon may range from 0 to 1. If sphericity is perfectly met, ε = 1.0. If sphericity is
not met, then epsilon will be lower than 1.0 (the worst case would be a number equal to ,
where k is the number of treatment conditions or repeated measures). To adjust the analy-
sis of variance, the Greenhouse-Geisser estimator multiplies the numerator and denomi-
nator degrees of freedom by ε. Though this approach tends to keep true Type I error close
to the announced alpha risk (Collier et al., 1967; Stoloff, 1967), when the value of ε is
greater than .7, an alternative called the Huynh-Feldt estimator is recommended (Huynh,
1978; Huynh & Feldt, 1976).8 Otherwise, the Greenhouse-Geisser approach will tend to

1

k − 1

7ε^ is computed as

where

s– is the mean of all the entries in the covariance matrix S,

s–ii is the mean of entries on the main diagonal of S,

s–i is the mean of all entries in row i of S, and

s–ij is the ijth entry of S.

8When the value of ε is greater than .7, Huynh and Feldt (1976) recommend that the computation of
epsilon be adjusted as follows:

ε̄ = n(i − 1)ε̂ − 2

(i − 1)[(n − 1) − i − 1)ε̂]
.

ε̂ = k2 (s̄ii − s̄)2

(k − 1)

(∑ ∑
s2

ijs − 2k
∑
i

s̄2
i + k2s̄2

) ,
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produce unacceptably conservative tests of statistical significance. For this reason, the
method sometimes is known as the “Greenhouse-Geisser conservative F test” or sometimes
just “the conservative F test.” Unfortunately, using the Huynh-Feldt estimate of epsilon
often may overestimate ε and, hence, will tend to increase the chances of committing
Type I error. Hence, if sphericity is a problem, researchers are advised to look at both
the Greenhouse-Geisser and the Huynh-Feldt formulations and to assume that the true
F ratio lies somewhere between the two values. Kirk (1982, p. 261) recommends a three-
step approach:

1. Check to see if the F statistic would be significant if sphericity were assumed (if not,
stop the analysis, because there is little reason to believe that a statistically significant
difference is present).

2. Use the Greenhouse-Geisser conservative F test (if the test is significant, claim a differ-
ence and stop).

3. Use the Huynh-Feldt method to see if the observed test statistic exceeds the critical
value (if so, a difference is claimed as statistically significant).

Table 9.4 shows an example of such an analysis.
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Table 9.4 Repeated Measures Example

A researcher was interested in learning if students changed their attitudes toward a topic that simply was
mentioned but not explained in another speech. The attitudes about the “Simpson Environmental
Protection Act” were taken for six people at 2, 4, and 6 weeks following their hearing a speech that men-
tioned the nonexistent act.

Subject Time 1 Time 2 Time 3 Mean

1 4 5 8 5.67
2 1 2 5 2.67
3 2 3 5 3.33
4 5 4 8 5.67
5 1 3 6 3.33
6 5 7 10 7.33

Mean 3 4 7 Grand mean = 4.67
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Computation:

where n is the number of events measured at each time

where k is the number of repeated measures (times each event is measured)

Degrees of freedom for the time (a.k.a. within subjects) (columns) effect are the number of levels minus one.

Degrees of freedom for the subject (rows) effect are the number of levels minus one.

Degrees of freedom for the interaction effect are degrees of freedom for each of the main effects in the
interaction multiplied by each other. 

Because there is only one event in each “cell,” within-groups variation is impossible to compute,
but as with other mixed-effects designs, researchers may use the interaction mean square to get the job
done. The following ANOVA table shows the results of the repeated measures analysis. As can be seen,
the results show that the within-subjects “column” produced a statistically significant effect. Thus, the
treatments evinced different effects on the dependent variable. Of course, because the subjects were
different, it is not surprising that they showed some differences from each other as well, even though
it is a matter of secondary interest here.

Source Sums of Squares d.f. Mean Square F

Columns (time) 52 2 26 65
Rows (subjects) 50 5 10 25
Interaction error 4 10 0.4

These results show a repeated measures analysis assuming sphericity and with no adjustments
made. Given the complexity involved in completing Mauchly’s W by hand, the application of this test
to these data is covered in this chapter’s section on using SPSS. For these data, the sphericity assump-
tion was tenable and the Mauchly’s test was not statistically significant.

Interaction SS :
∑ (

X
---

jk − X
---

j. − X
---

.k + X
------)2

= [(4 − 5.67 − 3 + 4.67)2 + . . . (10 − 7.33 − 7 + 4.67)2] = 4

MS(Subjects)(rows) = k ∗ s2
X
---
j.

= 3 ∗ 3.33 = 10,

MS Time(a.k.a. within subjects)(columns) = n ∗ s2
X
---
.k

= 6 ∗ 4.33 = 26,
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In the repeated measures design, the repeated
measure sequence on which participants differ
from one occasion to another is called the
“within-subject factor.” To run a repeated mea-
sures ANOVA, the researcher selects General
Linear Model from the Analyze menu. Then,
the researcher selects Repeated Measures. . . .
In the Repeated Measures Define Factor(s)
dialog box, the researcher assigns a name to the
“Within-Subject Factor” on which the repeated
measures were taken. As a default, the name
“factor1” is used as a starting point. The
researcher specifies the “Number of Levels,” or
times that the repeated measure was taken. The
researcher clicks on the Add to include this
repeated measure variable in analyses.

Then, the researcher clicks on the Define but-
ton to list the variables that have been used to
identify each of the measurement occasions. For
instance, in this case, the researcher measured
the dependent variable three times for each
person. The first time the variable was identified
as “time1,” the second time was called “time2,”
and the third time was “time3.” In the Repeated
Measures dialog box on the top of the right col-
umn, the researcher highlights the three variable

“times” and then transfers them to the field
marked “Within-Subject Variables (factor1):”.
Because the term “Subject” is simply a variable
identifying the code number for the participants,
it is not treated as another fixed variable.

Clicking the Options. . . button offers
analysis tools of interest. The mean effects to
be reported are highlighted and transferred
to the field “Display Means for:”, and the box
to display descriptive statistics is checked.
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Using SPSS for Repeated Measures ANOVA
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After clicking the Continue button, the researcher clicks the
Contrasts button. In the dialog box, “factor1” may be selected for a
contrast. Because there are three levels, a linear and a quadratic
effect could be examined. Afterward, the researcher would click
Continue and then OK.

The first set of results shows the means, standard deviations, and
sample size for each dependent variable scored at each time.

This output also includes the results of multi-
variate tests of significance. In this case, all tests
have the same F ratios. As will be seen below,
these F ratios are identical to the F ratio found for

the test of the linear effect of the within-subjects effect. The multivariate option is used when there
are additional main effects to test and/or when the assumption of sphericity is not tenable.

The major test of the repeated measures ANOVA is reported on page 243. Because the sphericity
assumption was reasonable, the standard ANOVA was employed and no adjusted tests were required. The
“sphericity assumed” test showed a statistically significant F ratio. To identify the location of the differ-
ences, the researcher called for a trend analysis for the means, as reported on the “Tests of Within-Subject
Contrasts” found on page 244.

Mean Std. Deviation N

TIME1 3.00 1.90 6
TIME2 4.00 1.79 6
TIME3 7.00 2.00 6

Descriptive Statistics

Effect Value F Hypothesis df Error df Sig.

FACTOR1 Pillai’s Trace .981 102.000a 2.000 4.000 .000
Wilks’ Lambda .019 102.000a 2.000 4.000 .000
Hotelling’s Trace 51.000 102.000a 2.000 4.000 .000
Roy’s Largest Root 51.000 102.000a 2.000 4.000 .000

Multivariate Testsb

a. Exact statistic
b. Design: Intercept
Within Subjects Design: FACTOR1

Epsilona

Approx. Greenhouse- Huynh- Lower-
Within Subjects Effect Mauchly’s W Chi-Square df Sig. Geisser Feldt bound

FACTOR1 .667 1.622 2 .444 .750 1.000 .500

Mauchly’s Test of Sphericityb

Measure: MEASURE_1

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables is propor-
tional to an identity matrix.

a. May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed in
the Tests of Within-Subject Effect table.

b. Design: Intercept
Within Subjects Design: FACTOR1

As can be seen here, the Mauchly’s W was not statistically significant. Thus, the sphericity assump-
tion was tenable, and the univariate repeated measures approach could be retained.
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To complete a repeated measures design, the
researcher selects Data Analysis from the
Tools menu and then chooses “Anova: Two-
Factor Without Replication.” After making this
selection, the researcher clicks the OK button.

The data on the spreadsheet must be arranged
in a particular way. The occasions for measuring
the dependent variable are placed in columns,
and the participants from whom repeated mea-
sures are taken are arranged as separate rows.
The researcher selects the data by highlighting
the cells in which the data are located.
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As shown here, a linear and a nonlinear (quadratic) effect were found. Thus, the presence of statisti-
cally significant effects when using higher-order polynomials would reveal that the best fit to the
means is a curvilinear one. This effect is revealed by examining the means, which showed that the third
condition was substantially above (higher than) the remaining means.

Using Excel for Repeated Measures ANOVA

Type III Sum
Source of Squares df Mean Square F Sig.

FACTOR1 Sphericity Assumed 52.000 2 26.000 65.000 .000
Greenhouse-Geisser 52.000 1.500 34.667 65.000 .000
Huynh-Feldt 52.000 2.000 26.000 65.000 .000
Lower-bound 52.000 1.000 52.000 65.000 .000

Error(FACTOR1) Sphericity Assumed 4.000 10 .400
Greenhouse-Geisser 4.000 7.500 .533
Huynh-Feldt 4.000 10.000 .400
Lower-bound 4.000 5.000 .800

Tests of Within-Subjects Effects

Measure: MEASURE_1

Type III Sum
Source FACTOR1 of Squares df Mean Square F Sig.

FACTOR1 Linear 48.000 1 48.000 120.000 .000
Quadratic 4.000 1 4.000 10.000 .025

Error (FACTOR1) Linear 2.000 5 .400
Quadratic 2.000 5 .400

Tests of Within-Subjects Contrasts

Measure: MEASURE_1
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Following the selection, the researcher clicks to return
to the dialog box. In the dialog box, the researcher must
specify a desired alpha risk for use in significance testing
(.05 in this case). In addition, the researcher specifies a loca-
tion for the output (starting at cell A9 in this case) and then
clicks OK.

The output appears as shown below. The analysis assumes
sphericity but does not test for it. In addition, the alternative

significance testing tools are not included. Overall, however, the major results are that a statistically
significant difference was found from the repeated measures. Because this matter is the chief inde-
pendent variable, it is the critical element for the researcher’s hypotheses.

Anova: Two-Factor Without Replication

SUMMARY Count Sum Average Variance

1 3 17 5.666667 4.33333
2 3 8 2.666667 4.33333
3 3 10 3.333333 2.33333
4 3 17 5.666667 4.33333
5 3 10 3.333333 6.33333
6 3 22 7.333333 6.33333

mess1 6 18 3 3.6
mess2 6 24 4 3.2
mess3 6 42 7 4

ANOVA

Source of Variation SS df MS F P-value F crit

Rows 50 5 10 25 2.37771E-05 3.325837
Columns 52 2 26 65 1.85934E-06 4.102816
Error 4 10 0.4

Total 106 17
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