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The language of modeling reflects different research traditions. Hence, many scholars
lump together path models, structural equation models, causal models, and the like. A
modern trend is to call these things models or causal models in general. The models all
share a common focus in examining the flow of suspected mediating variables that may
explain important phenomena.

The phrase “path analysis” can be traced back at least as far as 1921, when Sewell Wright
(1921, 1934) illustrated how to identify complex models based on information revealed from
correlations. Over the years, at least two general categories of models have been developed.

e Path analysis is “a kind of multivariate analysis in which causal relations among
several variables are represented by graphs (path diagrams) showing the ‘paths’ along
which causal influences travel” (Vogt, 2005, p. 230). In this sort of model, all the
variables are observed variables, also known as manifest variables.

e Structural equation models “describe causal relationships among latent variables
and include coefficients for endogenous variables” (Vogt, 2005, p. 281). As stated in
Chapter 16, latent variables are underlying factors or dimensions that are not observed
directly. These latent variables are also known as unmeasured variables, constructs,
or factors. Structural equation models are “a melding of factor analysis and path
analysis into one comprehensive statistical methodology” (Kaplan, 2000, p. 3). These
structural equation models (SEM for short) actually have two models, a measurement
model that identifies the ways individual measures are related to latent variables (often
considered basic constructs under investigation), and a structural model that illustrates
and tests the hypothesized relationships among variables.

Researchers often combine the methods to examine a structural equation model that
is composed of a combination (or “hybrid”) of observed and latent variables. Different
approaches often are divided into two categories: traditional path models and structural
equation models. Although structural equation modeling was originally developed to
analyze latent composite variables (e.g., Bentler, 1980; Joreskog, 1973), most modeling in
communication research has been restricted to studies of observed variables only. In fact, a
content analysis of structural equation model studies in communication from 1995 through
2000 found that fewer than 7% of the structural equation models involved latent compo-
site variables only (Holbert & Stephenson, 2002). Slightly more than 35% of the studies
involved models with combinations of latent and observable variables. Thus, standard
path analysis with observed variables remains a popular tool for modern communication
researchers.
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THE GOALS OF MODELING

Structural equation modeling and path modeling are elegant ways to examine many hypotheses.
Rather than rely on hypotheses that are stated in words alone, the models exhibit relationships
of interest.

Presentation of a Map of Relationships

The first part of a path model involves a diagram of relationships. Models may show both
direct and indirect effects. In multiple regression analysis, a single output measure is identified
(in the absence of interactions or suppressor variables) as a result of direct paths from predic-
tors. In essence, multiple regression correlation is a form of path modeling. Yet, when there are
moderating variables, it makes sense to consider increasingly complicated models, called path
models. Researchers often find it efficient to describe relationships with a picture, rather than as
a series of propositions (though propositions may be derived from any model). For instance, if
there were a model with five variables, there could be one comprehensive picture of the
process, or the researcher could make potentially 10 separate statements about the relationships

of variables taken a pair at a time (computed as w, where p is the number of variables).

Of course, identifying and picturing paths may be easier said than done. First, past research
that has used modeling has proven notorious for failure to cross-validate. Studies that take
data at one point in time to obtain a random draw of events across conditions are called cross-
sectional studies. As a general rule, cross-sectional studies (which are most common in com-
munication studies) do not provide evidence for the cross-validation for models. Second, it may
be difficult to form a picture of many relationships among variables because the past research
has produced unclear results. Third, it may be difficult to form a picture of relationships because
there may be a bewilderingly large number of causes for many communication phenomena.
None of these limitations, however, should stop thoughtful researchers. Preparing models
that can be tested is justification enough to explore this approach. Sometimes just imagining
possible causal relationships can be helpful to stimulate thinking in productive directions.

Predictions From Causal Ordering of Variables

Researchers often hypothesize about causal order among relationships. When researchers
advance problem questions that deal with multiple variables arranged in some sort of cause-
and-effect arrangement, modeling may be particularly invited. For causal claims, the “cause”
variables should precede the others that are identified as effects. But this stipulation does not
mean that models are simply time-series analyses in which the same variable is measured at
different time periods.

A comment about causality is appropriate here. Although structural equation modeling is
frequently associated with the label “causal modeling” (Asher, 1983), most models are based
on simple associations, and the term “cause” is used to define types of models that attempt to
specify order, rather than assertions of ultimate causes. There are no assumptions of strict
deterministic causality or exact predictions. For those interested in drawing hard-and-fast
causal relationships, it is wise to be warned that “conclusions drawn from causal modeling
with correlational data must be confined to the following limitation: The results of causal
modeling are valid and unbiased only if the assumed model adequately represents the real
causal processes” (Mertler & Vannatta, 2002, p. 199, citing Tate, 1992). Causal modeling is
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Assessing Cause

In his effort to assess causal relationships as a form of inductive reasoning, John Stuart Mill developed
five ways that observations could be examined to discover whether the relationship between them is
causal or accidental. Called Mill’s canons of causality, they include these elements that are suitable
to help assess whether correlations reported in path models really are evidence of causality in “causal
modeling.”

The Method of Agreement: “If two or more instances of the phenomenon under investigation have
only one circumstance in common, the circumstance in which alone all the instances agree is the
cause (or effect) of the given phenomenon” (Mill, 1872/1959, p. 255). Hence, if the path coeffi-
cients come from experiments that share only one common independent variable, the common
element is likely to be the cause.

The Method of Difference: “If an instance in which the phenomenon under investigation occurs, and
an instance in which it does not occur, have every circumstance in common save one, that one occur-
ring only in the former: the circumstances in which alone the two instances differ is the effect, or
the cause, or an indispensable part of the cause, of the phenomenon” (Mill, 1872/1959, p. 256). If
the path coefficients come from experiments where the effect occurred in the presence of the
experimental variable and not when the experimental variable was absent, the common independent
variable is likely to be the cause. This method is the basis of causal claims from experiments.

The Joint Method of Agreement and Difference: “If two or more instances in which the phenome-
non occurs have only one circumstance in common, while two or more instances in which it does
not occur have nothing in common save the absence of that circumstance, the circumstance in
which alone the two sets differ is the effect, or cause, or an indispensable part of the cause, of the
phenomenon” (Mill, 1872/1959, p. 259). The method combines the first two methods to make
strong assertions of causality.

The Method of Residues: “Subduct from any phenomenon such part as is known by previous induc-
tions to be the effect of certain antecedents, and the residue of the phenomenon is the effect of the
remaining antecedents” (Mill, 1872/1959, p. 260). If all the alternative pathways to a variable can be
eliminated as causes on the basis of other proof, the remaining path suspected as causal is the cause.

The Method of Concomitant Variation: “Whatever phenomenon varies in any manner whenever
another phenomenon varies in some particular manner, is either a cause or an effect of that phenom-
enon, or is connected with it through some fact of causation” (Mill, 1872/1959, p. 263). In path analy-
sis, this canon indicates that a high path coefficient means that some causal forces are operating.

Though these canons are helpful, there are some difficulties with this form (and any form) of
inductive reasoning. Inductive reasoning can only lead to conclusions that have a high probability
of being true. Furthermore, the methods work best when careful control is practiced and when
all the possible antecedent circumstances are controlled or otherwise carefully taken into account.
In essence, the cause cannot be identified until the researcher already knows all of the possible
causes. Researchers may not be ready to make such claims.

best considered a search for “proximate” causes in which variables that trigger others can be
found. There is no search for final causes. Instead, the “causal modeling techniques examine
whether a pattern of intercorrelations among variables ‘fits’ the researcher’s underlying theory
of which variables are causing other variables” (Mertler & Vannatta, 2002, p. 199).
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Despite such concerns, however, there are occasions when causal patterns can be inferred
even though one has correlational data. First, if a variable suspected of being a cause occurs
first in a sequence, then it is possible that it is a cause of other effects. If variables occur
simultaneously, it is difficult to argue that one is the cause and another is an effect. Thus,
researchers constructing causal models feel increasingly confident if they can submit that
causal variables occurred before the effect variables. Second, if it is clearly impossible
for a variable to have been the cause of another, it can be eliminated as a competing
path. For instance, sex of the subject cannot be the effect of one’s level of communication
apprehension; communication apprehension does not determine whether a person is male or
female. Third, if spurious correlations (‘“nonsense” correlations between variables that
appear related but are, in fact, not causally associated) can be eliminated from the list of
possible causal forces, a remaining causal claim may become viable.

HOW TO DO A MODELING STUDY

Many steps are involved in examining structural equation or path models. Although the
process can be elaborate, only the major steps are listed here.

Step 1: Develop a Theoretically or
Conceptually Based Ordering of Variables

The order of variables should be developed based on past research, theory development,
or conceptualizations based in research. Ultimately, the purpose of any model is to predict
dependent variables. These models may be most useful when researchers take into account
some mediating processes.

In these models, variables are of two forms:

e Exogenous variables (also known as “prior variables”) are variables that have no
predictors. Their values are dependent on systems “from outside the system being studied.
A causal system says nothing about its exogenous variables. Their values are given, not
analyzed” (Vogt, 2005, p. 110). Their values are assumed to be measured without error.

¢ Endogenous variables are predicted by other variables. Their variability is assumed to
be explained by their predictors. A dependent variable is sometimes distinguished as a
special form of endogenous variable that is the final object of prediction in the model.

Researchers selecting variables for their models must take into account the potential difficulty
created by multicollinearity, or high levels of interrelationship among independent predictor
variables.

Multicollinearity is literally built into a set of structural equations. If X, causes X, and X,
causes Xj, it is all but inevitable that X, and X, are correlated. If X, is a strong cause of X,
it may be difficult, if not impossible, to disentangle the causal effects of X, and X, on X,
with a small sample. (Kenny, 1979, p. 85)

If two predictors have intercorrelations greater than the average of their reliabilities, no claims
of discriminant validity can be made for the measurements (Campbell & Fiske, 1959). Thus,
the usefulness of redundant multiple indicators for the same cause is greatly limited.
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Causal Analysis Through Corresponding Regressions

The search for causality using the method of concomitant variation has stimulated some
researchers to look for traces left by corresponding regressions. One interesting and controversial
approach was initiated by Chambers (1986), who started with the observation that although
causally related variables should have high positive correlations, not all the scores in a distribution
would share that pattern. When dependent variables’ scores were divided into high, moderate, and
low scores, it was found that moderate scores were associated with either high or low values of the
independent variable. Furthermore, Monte Carlo studies revealed that when a causal relation is
present, the variance of the dependent variable scores associated with moderately scoring inde-
pendent variables is lower than the variance of the independent variable scores associated with the
moderately scoring dependent variables.

This information led Chambers (1991) to suggest a way to infer a presence of a causal relation-
ship: When there are two variables, the researcher may run two regressions, with the first variable
as independent in the first and the second as dependent, and then with independent and depen-
dent variables switched in the second regression. For each case, the researcher follows these steps:

1. The residuals in the dependent variable predicted scores are computed for each event in the
study.

2. The deviations of the independent variable around its mean are identified for each event in
the study.

3. The deviations are correlated.
4. The first three steps are repeated with the independent and dependent variables reversed.

5. The two correlations may be compared. When the actual cause of dependent variable effects is
the independent variable, the correlation should be higher than when the noncausal factor is
the independent variable. The reason is that the moderate dependent variable values should be
more closely associated with moderate independent variable values when the actual cause is
used as a predictor. The overall correlations should be inverse because when predictor variable
scores are extreme, dependent variable residuals should decline (increased variability occurs
among moderate scores). In an application of this method to an example in the social sciences,
Chambers (1991, p. 66) recommended that researchers faced with the absence of any inverse
correlations assume that there are no causal relationships among the chief variables of interest.

This approach assumes the following: bivariate causality in which one of the measured variables
is the cause, moderate sample sizes of at least 50 events, correlations in the range of .2 to .9, and
additivity of error terms in determining the dependent variable. These assumptions (especially the
first one) are not casual ones, and the approach is not universally accepted.

x1/x
—

Although some researchers do not include hypotheses in their exploration of path
models, they eventually find themselves engaging in statistical hypothesis testing none-
theless. Hence, a typical hypothesis in a modeling study

2 \Jr) posits that one variable affects another. For instance, in
X, the causal model shown on the left, researchers might
/ examine if there is a significant regression of variable X,

3 on variables X, and X;.
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Such a hypothesis might be stated verbally as
H,: X, increases X, or H,: p,, > 0.
The null hypothesis to be tested would be

H,: p,, <0, which states that the relationship between variables X, and X, is equal to 0 or
some negative value below 0.

Other hypotheses include the following statements:

H,: X; decreases X, or H,: p,; < 0. The null hypothesis would be

H,: p,; 2 0, which states that the relationship between variables X, and X is equal to 0 or
some positive value above 0.

H;: X, decreases X,, or H;: p,; < 0. The null hypothesis would be

H,: p,, 2 0, which states that the relationship between variables X, and X, is equal to 0 or
some positive value above 0.

H,: X, increases X, or H;: p,, > 0. The null hypothesis would be

H,: p;, 0, which states that the relationship between variables X, and X, is equal to 0 or
some negative value below 0.

For path models, some sources (Causality Lab, 2004) recommend that researchers present
hypotheses in a single graphic display. The path parameters and their directions (indicated by
positive and negative signs to indicate direct and inverse relationships) may receive special
attention. Hypothesis testing may be completed by conducting statistical tests of the fit of
the model to the data. Unlike some other hypothesis tests, the researchers are not hoping for
statistically significant differences. In this situation, researchers actually speculate that the
model does not deviate from the data. Rejecting this null hypothesis would mean rejection of
the model.

Step 2: Construct the Model

Path models start with a structural equation. As has been seen, the paths themselves are
part of a causal model that is expressed diagrammatically. Although it is not strictly required
that a diagram be displayed, there are many advantages in doing so, not the least of which is
an economy of presentation.

Many computer programs contain protocols for labeling model elements. Some of the
most frequently used symbols are identified here.

e Xs identify observed or measured variables. In many structural equation modeling
programs, these measured variables are placed in boxes.

e zs often are used to identify observed or measured variables. These z symbols indicate
that the variable is in the form of a standard score or z score with a mean of 0 and a
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standard deviation of 1. Representing variables as z scores can make the process of
understanding predictive equations increasingly clear. In this chapter, Xs are used to
indicate both variables and variable values.

e Latent variables are identified by variables placed in circles or ovals.

Identify Predictive Links

Models are drawn to identify direct and indirect effects. Direct effects are indicated by
straight arrows drawn from a variable (assumed to be a cause) to another variable (which is
the effect). These paths may lead from an exogenous variable, but not to one. If there is more
than one exogenous variable, a curved line (often with arrows) ( is drawn to identify that
there is no causal relationship. Curved arrows also may be drawn to indicate relationships
among covariances for which causality is not claimed. Naturally, exogenous variables are ini-
tially presumed to be uncorrelated, but if there is reason for expressing an association between
them, it would be indicated in the statement of the coefficients.

Indirect effects are influences on variables as mediated by the presence of another
endogenous variable. Sometimes the mediating variable is called an “intervening variable”
(though that term has some extra meaning of its own), sometimes it is called a “moderator
variable,” and sometimes it is not given a special name at all. Nevertheless, the ability to
be isolated for indirect effects is one of the great advantages of using structural equation
modeling techniques. A mediated path (indicated by the absence of a direct path between two
variables) to other exogenous variables does not mean that there is no relationship. At the very
most, it indicates that a partial relationship is absent when other predictors with direct paths
are held constant. As an illustration, at one time it was theorized that evidence produced
attitude change in persuasive messages by increasing the credibility of the source, which in
turn affected attitude change. The model (Evidence Use — Source Credibility — Attitude
Change) predicted an indirect effect of evidence on attitude change.

The simple model previously shown has one exogenous variable (X,) and three
endogenous variables (X, also may be known as a dependent variable). The directions of the

relationships are indicated by the plus and minus signs repre-

senting direct and inverse relationships, respectively. Although

the arrows indicate direct effects (not to be confused with “direct
X;  relationships”) between pairs of variables, the X, and X, endoge-

nous variables also reveal that there are indirect paths between
\ s X, and X,. Once all the effects are diagramed, it becomes easy
to report total effects.

The path coefficients, p coefficients, or structural coefficients
are links between the variables involved in direct effects. The
paths are symbolized by such terms as p,,, p;,, p,,. and so forth.
As a matter of tradition, the variable predicted is listed first
because this variable is the one that is regressed against the pre-
dictor variables. When there is one predictor of an exogenous
variable, the path coefficient is the zero-order correlation (7)
between variables. When a variable has two or more predictors,
the paths are in the form of beta weights. As the diagram at the left shows, these path coeffi-
cients are simply applications of regression analyses. These paths may be interpreted as the

\/

Endogenous Variable

X,

\/
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amount of change in one variable that is associated with a standard deviation change in the
other.

Although models may be categorized in several ways, two basic forms of models are
recursive and nonrecursive. In recursive models, all paths move in one direction only (e.g.,
A — B). There are no feedback loops (no A==B) and no reciprocal patterns between pairs of
variables (no a<—g). To fit a nonrecursive model to the data, “ordinary least squares regres-
sion will provide good estimates of the parameters when the necessary assumptions are made
about the properties of the residual terms” (Asher, 1983, p. 15). For other models, including
nonrecursive models, estimation methods beyond ordinary least squares must be enlisted.

In a path diagram, other symbols typically are used, with specific meanings.

e An arrow — with a single direction indicates the direct effect of one variable on another.

e A curved line indicates the covariance or correlation between pairs of error terms or the
correlation between a pair of exogenous variables. A curved line indicates that a causal
interpretation is not invited for the relationship.

Some rules generally are followed for constructing models (Mertler & Vannatta, 2002,
p- 207). First, a path may pass through a given variable only once. Second, “no path may go
backward on an arrow after going forward on another arrow (although it is acceptable to go
forward on an arrow after first going backward” (p. 207). Third, only one bidirectional arrow
can appear on a single path.

Specify Error Terms

In addition to the observed and latent variables, some measure of residual error in pre-
diction also has to be included. By implication, this error term reveals the influence of other
direct predictors not in the model. For path models, error terms reveal the absence of pre-
dictability for each R? or r in the model. In structural equation models, the error terms also
are called disturbances (and the disturbance term is the residual term described in Chapter
13). Error terms are symbolized as arrows (sometimes with dotted lines) connected to the pre-
dicted endogenous variables. These terms usually are identified with numbered subscripts as
e,, e,, 5, or ¢, to indicate that they are involved in predicting values for particular predicted
variables. Because these terms deal with prediction error and not measurement error, they are
not presented for exogenous variables. Because each endogenous variable has a disturbance
term, the implication is drawn that each structural equation has a disturbance or error term.

Several assumptions are made about the error terms:

e That residuals (differences between the observed and predicted values of the dependent
variable) are normally distributed.

e That variability of the residuals holds the same relationship pattern through the entire
range of the variables.
That residuals are independent of the exogenous variables and from each other.
That there is a linear relationship between observed and predicted values of the depen-
dent variable (this assumption also means that the residuals have a mean of zero).

Naturally, the assumptions can be assessed rather than just presumed.
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Step 3: Gather Reliable Data of Relationships Related to Theory

Because structural equation modeling extends multiple regression correlation, it stands
to reason that the requirements of sampling adequacy also apply here. In the first place, the
sampling should be a random sample of adequate size. With nonrandom samples, selection
bias may jeopardize the model’s overall validity (Muthen & Joreskog, 1983). Traditional
advice recommends sample sizes of at least 104 events plus the number of independent
variables (Tabachnick & Fidell, 2001, p. 117). Other guidelines have advised at least 15
events per predictor variable (J. P. Stevens, 2002, p. 143). For structural equation modeling,
increased sample sizes are routinely advised. Various experts advise 100 events with highly
reliable measures and 200 with moderately reliable measures (Hoyle & Kenny, 1999), 150
(J. C. Anderson & Gerbing, 1988), and 200 (Chou & Bentler, 1995).

Step 4: Test the Model

Much of the statistical work in structural equation modeling involves checking assump-
tions, assessing variance explained, and assessing the model’s fit to the data.

Check Assumptions

In addition to assumptions previously mentioned, several routinely tested assumptions
underlie the use of structural equation models.

e Variability of the residuals is assumed to hold the same relationship pattern through the
entire range of the variables (homoscedasticity).

e Data are assumed to be sampled independently of each other; with independence, resid-
uals are independent of the exogenous variables and from each other (thus, the covari-
ances of errors are zero).

e A linear relationship between observed and predicted values of the dependent variable
is assumed. This assumption also means that the residuals have a mean of zero.

The assumptions of homoscedasticity and of independence of residuals can be examined
by looking at charts of data distributions. Furthermore, because of the use of least squares
methods, the residuals are, in fact, uncorrelated with the exogenous variables.

In structural modeling, this result requires that the disturbances be uncorrelated with the
causes of the endogenous variables . . . the assumption of uncorrelated errors implies that: 1.
The endogenous variable must not cause any of the variables that cause it; that is, there
is no reverse causation. 2. The causal variables must be measured without error and with
perfect validity. 3. None of the unmeasured causes must cause any of the causal variables;
that is, there are no common causes, or third variables. (Kenny, 1979, p. 65)

Although modest violations of homoscedasticity may not greatly affect statistical test results,
violating the independence assumption can make a great difference. Independence can be
ensured by taking care in the sampling process; hence, researchers are well advised to explain
how their sampling ensured independence of observations. Avoiding reverse causation can be
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addressed by design choices and ruling out arrangements that could result in a reverse
sequence.’

“Perfect” measurement may not be completely possible, but it may be very closely approx-
imated. For instance, when a variable is an experimental manipulation, such as the number of
deliberate repetitions used by a speaker, the measurement may be assumed (aside from some
philosophic nit-picking) to have reliability of 1. Measurement of such variables as participant
age, sex, and academic major may be very close to reliability of 1.0. Observed correlation
coefficients may be corrected for attenuation of measurement (see Schmidt & Hunter, 1996).
Not only does the correction permit researchers to address the question of measurement reli-
ability, but “correction for attenuation due to error of measurement produces a point estimate
closer to the population value of the population corrected effect size” (Boster, 2002, p. 483).

Under specific circumstances, two other assumptions may be added.

e When hypotheses about regression equations are involved, the assumption of normal
distribution of errors (residuals) is included (Kenny, 1979, p. 62). Although statistical
tests are robust to violations of this assumption, it may be checked by consulting charts
of residuals, much as is ordinarily done in multiple regression analysis.

e When variables are studied in a single cross-section analysis, the equilibrium assumption
is made that “if X, is assumed to cause X, with a lag of k units, and if X, and X, are con-
temporaneously measured at time #, equilibrium exists if X, = X,; that is, X, did not change
between times 7 — k and 7’ (Kenny, 1979, p. 66). In short, the cross section is assumed to
capture the causality if the causal variable has not shown change from one time to another.
Except for cross-validation studies, this assumption typically remains untested.

Depending on the specific tools at work, the researcher may find that there are other
assumptions that must be made. Sometimes assumptions about unidirectional causation and
independent errors require examining subsets (“blocks”) of endogenous variables and their
associated errors. Such a model is called block recursive.

Variance Explained

Researchers typically report the overall effect sizes for each exogenous variable. Because
the SEM approach is an extension of multiple regression correlation, it makes sense to use that
option to get the job done. Both corrected and uncorrected R* coefficients usually are reported.

Check Deviations From Predicted Expectations

Testing the fit of a structural equation model involves both inspecting parameters
and applying specific statistical tools such as confidence intervals, goodness-of-fit tests, and
various indices. Other tests involve looking at deviations from expectations.

lObviously, lack of reverse causation, perfect measurement, and lack of common causes are rather
stringent assumptions. Reverse causation can be ruled out by theory or logic; for example, variables
measured at one point in time do not cause variables measured earlier in time. “If reverse causation
cannot be ruled out, however, a nonhierarchical model must be specified, the parameters of which
cannot be estimated by an ordinary regression analysis. . . .” The common cause problem can be solved
by measuring the third variables (although these variables must be perfectly measured), but it is still log-
ically impossible to demonstrate that all third variables have been excluded if the multiple correlation is
less than one. (Kenny, 1979, p. 66)
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Sound models tend to have relatively small residual errors. Thus, researchers often look at
these errors to check whether the model has disturbances that suggest the operation of other
forces. Bollen (2002, p. 617) explains:

Some authors describe &, [the disturbance term or residual error] as a random variable that
has three components: (a) an inherent, unpredictable random component present in virtu-
ally all outcomes, (b) a component that consists of a large number of omitted variables that
influence Y, and (c) random measurement error in Y; (e.g., Johnston, 1984, pp. 14-15;
Maddala, 1983, p. 32).

Other authors would add a fourth component, such as would occur if a researcher assumes a
linear relation when a curvilinear one is more appropriate (e.g., Hanushek & Jackson, 1977,
pp. 12—-13; Weisberg, 1980, p. 6). Thus, researchers often look at the disturbance terms early in
assessing model fit because they may provide circumstantial evidence that the model has
omitted other, important variables.”

Many statistical tools for testing goodness of fit have been developed for use in structural
equation modeling. As reviewed in Chapter 16, there are many approaches. These tools
attempt to examine whether models have “verisimilitude,” or the appearance of truth (see
review in Meehl & Waller, 2002). The most popular tool used to assess fit is an application
of chi-square called the likelihood ratio test and the GFI (goodness-of-fit index). These
models, it should be remembered, are only estimates of relationships. As one author (Cudeck,
1991) explains, “A ‘correctly specified model’ is, always has been, and always will be a
fiction. . . . All that can be hoped is that a model captures some reasonable approximation
to the truth” (p. 261). Hence, instead of alleging “proof™ for their models, researchers claim
that their models are “supported” or are “found tenable.”

Step 5: Revise the Model

Among articles in communication journals from 1995 to 2000, models using observed
variables alone failed to fit the data 20.5% of the time. Of models involving combinations of
observed and latent variables, 79.5% failed to fit the data (Holbert & Stephenson, 2002).
Thus, researchers often revisit their models to see if other specifications make sense.

On other occasions, the question is not whether the model fits, but which of several
competing models best fits the data (J. C. Anderson & Gerbing, 1988). Sometimes researchers
find that a model can be improved by adding a direct path between variables that have higher
correlations than is predicted for them. Sometimes variables can be deleted as a way to
improve a model. Other guidelines have been suggested over the years. To create equivalent
models with improved fit, researchers may examine the possibility of inverting the order
of variables or permitting residuals to be correlated (Stelzl, 1986). In addition, for “just-
identified” models (a term to be defined subsequently), a replacing rule may be applied to
permit interchanging direct paths, reciprocal paths, and correlated residuals when there are
direct paths leading to other variables in the model (Lee & Hershberger, 1990, 1991).

“Bollen (2002, pp. 617-619) suggests that increases in disturbances may indicate latent variables
that exhibit nonrandom influences. Although there are some technical difficulties with calling observed
disturbances indications of latent variables, there is little doubt that large residuals may indicate that
variables not included in a model exhibit nonrandom influences.
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PATH MODELS

Although the term “path model” is often used interchangeably with any modeling, we already
have identified it as part of the tradition that examines structural equation modeling with
observed or manifest variables. Although structural equation model testing has been streamlined
by computer programs, it is helpful to remember that no computer (yet) can construct a path
model; so path modeling requires some serious thinking about causes for phenomena. Path
models are most concerned with the roles of moderator variables and indirect or mediated paths.

Designing of Models

For any path model that describes data, the researcher expects relationships between mod-
erator and dependent variables (identified as endogenous variables that are last in a sequence)
to be greater than relationships between exogenous and dependent variables. Furthermore,
adjacent variables should have larger relationships than variables that are mediated by several
endogenous variables. An illustration might make this process increasingly understand-
able. The model identified as “Figure 17.1: Path Model 1” hypothesizes that receivers’ levels
of communication apprehension influence their levels of interpersonal trust with acquain-
tances. Yet, this communication apprehension effect occurs by inversely influencing percep-
tions of interpersonal solidarity with others, which affects the amount of self-disclosure they
share with their acquaintances. A model of these relationships may be found in Path Model 1
shown below. Pearson product moment correlations have been placed above each direct path.

Figure 17.1 Path Model 1

€, €, e,
\/ \/ \/

Communication r=_40 Interpersonal r= .35 Amountof Self- r= 40 Interpersonal
Apprehension —>  Solidarity ——> Disclosure ——> Trust
X X X X

1 2 3 4

Starting with the interpersonal trust variable, the size of the correlation coefficients
between it and other variables should decline as one moves to the variables further and
further to the left. A moderator variable should be more closely associated with the dependent
variable than an exogenous variable is. In fact, the dependent variable’s association with the
exogenous variable would be considered spurious. In this simple path model, the theoretically
expected correlations between any two variables are simply the products of all the paths
between them in addition to any error terms. Thus, Table 17.1 shows how the predicted paths
for this simple model would be computed. The diagram shows terms e, e,, and e,. As will be
explained subsequently, these elements are the disturbance (or residual error) terms for pre-
dicting each endogenous variable. Diagrams typically omit disturbance terms for exogenous
variables because they involve measurement error rather than prediction error.
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Table 17.1
& e3 ey
v v v
Communication ,_ 49 Interpersonal ,_35 AmountofSelf- ,_,0 Interpersonal
Apprehension ————  Solidarity ———> Disclosure ——> Trust
X X5 X3 Xy

Predicted correlation between Interpersonal Trust X, and Interperonal Solidarity X,:

Interpersonal  ._ 35 Amountof Self- ,_,, Interpersonal
Solidarity ———> Disclosure ——> Trust
> X3 X4
Psy = .35 ® .40 =.14

Predicted correlation between Interpersonal Trust X, and Communication Apprehension Xj:
Communication ,_ ,, Interpersonal ._55 AmountofSelf- ._,, Interpersonal

Apprehension ——»  Solidarity ———> Disclosure ——»> Trust
X X5 X3 X,
P4t = -.40 * .35 * 40 =-.056

Predicted correlation between Amount of Self-Disclosure X3 and Communication Apprehension X:

Communication ,_ 445 Interpersonal . _ 5z Amount of Self-

Apprehension — >  Solidarity —— > Disclosure
X, X, X5

P3y = -.40 * .35 = .14

Computing Coefficients and Testing Models

After a model is selected for examination, researchers specify the nature of the causes
within the model for each variable. This information permits computing the theoretically
expected path coefficients among variables in the model. To illustrate a path model where
each variable is not predicted by one variable alone, consider the case of the researcher using
the previously identified variables. As shown in Figure 17.2, the researcher might hypothesize
a different arrangement with two exogenous variables, interpersonal solidarity and interper-
sonal attraction. These two variables are assumed to be uncorrelated, even though the actual
correlation coefficient between them is .09.

Computing Path Coefficients

Defining structural equations that identify the source of variation for each variable is
essential to computing path coefficients. The two exogenous variables, interpersonal solidarity
and interpersonal attraction, are not predicted by other variables but are caused by e, the error
or disturbance term, which is assumed to equal zero. As mentioned previously, disturbance
terms for exogenous variables indicate measurement error, rather than prediction error; hence, it
is not necessary to insert error terms for the exogenous variables on path diagrams. Because X,
is explained by no variables except elements outside the model, its predicted values may be sym-
bolized as z;, = e,. This statement is called the structural equation for variable X,. Because
interpersonal attraction X, also is an exogenous variable, its structural equation is z, = e,.
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For the amount of self-disclosure, variable X, there are two paths (one each from X, and
X,) forming the prediction. Hence, the structural equation for X, is z; = p;,z, + p3z, + 5.
Because the interpersonal trust variable, X,, is predicted by only variable X;, the structural
equation for variable X, is z, = z; + e,. To figure out what path coefficients are expected to be,
researchers apply either of two rules.

e The so-called first law of path analysis states that to derive the correlation of any
variable with an endogenous variable Y,

vz = LPyxilxiz
where
Dyy; 1s the path from variable X to Y and

Py 18 the path indicating the correlation between X, and Z, and the set of X, variables
that includes all the causes of variable Y (from Kenny, 1979, p. 36).

In other words, the correlation between two variables is obtained by adding the
products of each structural parameter for every variable that causes the effects on the
endogenous variables. “A simple procedure to employ is to write all the path coeffi-
cients of the endogenous variable including the disturbance. Next to each path write the
correlation of the exogenous variable of that path with the variable Z. Multiply each
path and correlation and sum the products” (Kenny, 1979, p. 36).

e The tracing rule states that the correlation of any variable with an endogenous variable
Y is equal to the sum of all the products of the paths between the two variables. All
traced paths between the two variables are included, provided that (a) no variable is
entered more than once and (b) no variable is entered in one direction and exited in the
same direction (Kenny, 1979, pp. 37-42).

The two rules produce the same results and, hence, researchers may view them as convenient
substitutes for each other. Even so, the tracing rule approach is more prone to clerical errors
on the part of the researcher than is the approach using the first law of path analysis.

As an example, consider how the predicted correlations can be found for Path Model 2 in
Figure 17.2. Because there are no reciprocal causes or feedback loops, the model is clearly

Figure 17.2 Path Model 2

€y =. .89 A =. .92
Interpersonal . 1
Solidarity . .
X, \\\\\\\\\* ,
A \4
B=.29 Amount of
r=.40 Interpersonal
Self-
. —_— Trust
Disclosure
X X
B=.38 3
Interpersonal /
Attraction
X

2
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recursive.’ A friendly word of advice: The material in the rest of this section is really pretty
easy, but you have to follow it slowly—one step at a time—to see the common sense that is
involved.

For the relationship between interpersonal solidarity (X,) and the amount of self-
disclosure in the relationship (X;), there is a direct path. But X, has two predictors,
which must be taken into account. To compute the expected correlation, one multiplies
structural equations. You may remember from Chapter 5 that to compute a population
correlation using the original z score method, one takes the average of the products of

the z scores for all the events in the sample, % or % Z z.zy- Thus, to find the value

of this predicted equation, one multiplies the structural equation values together for
each event and then divides by N. In this case, the correlation is predicted as % >z

Because the error terms are uncorrelated with other elements in the model, their coef-
ficients are 0 and the structural equation for z; simplifies to p;,z, + p;,z,. Once this ele-
ment is substituted, the formula for the predicted correlation between X, and X, becomes

1 T .
N > z2i(pnz2 + puz). When the terms are multiplied out, the equation becomes

Z P322221 i Z PsJZ%
N N
which is equivalent to

*
N N

N N

(Zpsz ZZ2Z1> T (Zl’zz X Zﬁ)

*Another way to isolate whether a model is recursive is to take all the structural equations for the model
and place them in a matrix, with any residual error terms placed on the right. If a matrix of zeros appears
in the upper or lower diagonal (depending on the form of notation used), the model is recursive (see
Asher, 1983, pp. 88-89). For instance, a model to be presented shortly includes the following structural
equations: X = peszs + g Xy = P52t €53 X, = PusZy + Pty + P42y + €4, X3 = P32y + P32, + €53 X, = € and
X, = e,. Inserting them into a matrix of coefficients yields the pattern shown below. Because all the
entries in the upper diagonal are 0, the system is recursive.

X, X, X, X, X, X, e
1 0 0 0 0 0 e
0 1 0 0 0 0 e,
Pk Pl 0 0 0 )
Pty Pt P35 1 0 0 €
0 0 0 —DsaZy 1 0 es
0 0 0 0 —Dess 1 e
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At this point, you may notice that % is the formula for the Pearson product-moment

correlation r between variables X, and X,.*
X
N
standard scores already are deviations from a mean of zero, the squared z values also

are the squared deviations of z scores from their means. The mean of the sum of these
values is also known as the population variance of z scores. The population variance
of zis 1 because z scores have standard deviations of 1. Thus, this term in the formula
becomes a constant equal to 1.

You also may notice that

is the average of squared standard scores. Because the

Thus, the equation further simplifies to

(5= m) + (52 1).

In addition, if all the values of p., or p,, are the same (as they are when using the same
path scores), the average of the paths is equal to the original path coefficients.
Therefore, the predicted path coefficient formula reduces to p;, = p5,r|, + p,. Inserting
the appropriate numbers, the coefficient becomes (.38 * .09) + .29 = .26.

“Here is the idea. The chapter on correlations (Chapter 5) explained that the earliest formula for
correlation is the mean of the products of the z scores for the two variables. So, for variable X and

variable Y, the formula is pxy = Z]Z\;ZY. This formula is a population formula because the standard

deviation used to compute z scores has N in the denominator. With sample standard deviations used, the
formula here divides not by N, but by n — 1. If the path equation for Variable 4 (z,) is inserted in place
of 2y the formula becomes

Y z2x(paze +e4)
—

Px4 =

This formula translates to

2
2 2 X 2
D (Pa3zaZe + €42y) _ > pasz n Y e4Zy
N - N N

Pxs =

But an assumption of the model is that there is no correlation between z and e. So, the formula becomes

Lraty g
N
In addition, the population variance of ( z ~ )18 1 because z scores have standard deviations of 1.

Y pasiy Yops D%

The term =N is equivalent to *

N N
(Zm . Z}\fﬁ) +0.

, which means that the formula becomes:

N

Z P43
N

Hence, the formula may be cast as fxa = < * 1) +0. Because the path (p,;) is constant, the sum of these

elements divided by N also is the value of the path, which simplifies to py, = p,;. Thus, when there is
only one predictor for a variable, the expected path is the correlation between the two variables.
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e The predicted correlation between interpersonal attraction (X,) and amount of
self-disclosure (X,) is computed from the product of the two structural equations for
variables X, (z, = e,) and X; (z; = p;,2, + P52, + ¢;). Using methods similar to those
described to identify the correlation for the relationship between X, and X, one may

. 1
take the average of the products of the z scores for all the events in the sample, 5 > zaror

1 . .
~ > 2. As we have seen, because the error terms are uncorrelated with other elements in

the model, their coefficients are 0 and the structural equation for z, simplifies to p;,z, + py,z,.
After substitutions, the formula for the predicted correlation between X, and X, becomes

1 T .
v > z1(pnz + puzi). When the terms are multiplied, the equation becomes

Z Pszzg

+
N

N N

_ (Zpsz . ZZ%) N (Zpsl i} Z;m),

which is equivalent to p,, = p,, + p5,7,. Inserting the numbers, the coefficient becomes

—38 + (.09 * .29) = -.35.

e For the predicted correlations between interpersonal solidarity (X,) and interper-
sonal trust (X,), one multiplies each of the paths by the path between Variable 3 and
Variable 4. Because the intermediate formulae already have been computed, the process
simplifies to p,; = p3,(P5,75 + P31) = P34 P31t 12 + P34 P, - Inserting the values, this path is
revealed to be (.40 * —38 *.09) + (.40 * .29) = .10.

e For the predicted correlations between interpersonal attraction (X) and interpersonal
trust (X,), one multiplies each of the paths by the path between Variable 3 and
Variable 4. Because the intermediate formulae already have been computed, the process

simplifies t0 p,, = P, P53, = P34(P3y + P31712) = P3aP3 + P3aP31 7, Inserting the values,

this path is revealed to be (.40 * —38) + (.40 * .29 * .09) = —.14.

The results of these predictions may be placed in a table such as Table 17.2. A cursory look
at the table shows relatively small differences between the observed and predicted equations.
You will notice that when a path consists of a single predictor, the predicted direct path is
constrained to equal its predicted value.

Table 17.2

Lower Diagonal:

Upper Diagonal: Observed Correlations

Predicted Correlations® X, X, X; X,
X,: Interpersonal solidarity 1 .09 .29 11
X,: Interpersonal attraction .00(.09) 1 -.35 -.03
X,: Amount of self-disclosure .26(.03) —.35(.00) 1 .40
X,: Interpersonal trust .10(.01) —.14(.11) .40(.00)b 1

a. Absolute differences between observed and predicted values in parentheses.

b. The predicted correlation is constrained to equal its observed value.
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Computing R and Residuals for Each Predicted Variable

Researchers regularly report the percentage of variance explained for both the dependent
variable and the other endogenous variables. Variance explained is not a test of the fit of the
model to the data, because models that fit the data well may not account for large portions
of variance (Bielby & Hauser, 1977). Nevertheless, it is a piece of descriptive information
that reveals the usefulness of the model. In the case of endogenous variables with multiple
predictors, the multiple regression correlation term, R* is most typically reported. For
endogenous variables with single predictors, the simple 7* is reported because it is equivalent
to R? in these circumstances. Thus, in Path Model 2, the R for the prediction of interpersonal
trust is equal to the Pearson product-moment r of .40 which, when transformed into a coeffi-
cient of determination (), indicates that 16% of the variance in trust can be explained by a
knowledge of the amount of self-disclosure. In this case, R for the prediction of the amount
of self-disclosure is .45, whose coefficient of determination R? is .20, indicating that 20%
of the variance in the amount of self-disclosure could be explained by a knowledge of inter-
personal solidarity and interpersonal attraction ratings.

To compute disturbance terms in predicting each endogenous variable, the formula v1 — R
may be used. These values may be placed on a path model diagram next to the e symbols near
the predicted variables. Disturbance terms are omitted for the exogenous variables because
this residual error value identifies prediction error, not measurement error.

Checking Fit of the Model to the Data

Once the predicted path coefficients have been computed, some steps have to be made to
ensure that they are comparable to the actual correlations among variables. There are several
options (see Bollen & Long, 1993).

Perhaps the most direct way involves constructing confidence intervals around observed
correlations and examining whether the predicted correlations fall within that range. If the
differences are smaller than the confidence interval, the observed correlation is within the
limits of random sampling error of the predicted correlation. Hence, the prediction is said
to fit the data. This method permits researchers to target specific details about the location of
any predictive shortcomings. The formula for a two-tailed 95% confidence interval around a

. . . . 1.96 . . .
correlation coefficient is £——=. If observed and predicted correlations differ by more than

Jn

.96 . . . .. .
T (in either direction, because it is a two-tailed test), then the model does not fit the data.

Other tests rely on a global examination of fit. Although very popular, they may leave the
researcher knowing that there is a misspecification in the model, but not knowing where.’
Inspecting other modification indices may help, however. Two of the most popular tools for
traditional path modeling are the likelihood ratio chi-square test and the root mean square
approximation RMSEA. Other related tools, such as the goodness-of-fit index, are associated

3In different—but instructive—research, a comparison of several techniques was examined to determine if
error variances of misspecified models could be detected when using a z test, a Wald test, a likelihood ratio
chi-square test, a Lagrangian multiplier test, and confidence intervals. Researchers found that “the use of
confidence intervals as well as four other proposed tests yielded similar results when testing whether the
error variance was greater than or equal to zero” (Chen, Bollen, Paxton, Curran, & Kirby, 2001, p. 468).
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with the measures supported by specific programs (e.g., Amos, LISREL, EQS) designed for
the analysis of covariance matrices.

The likelihood ratio chi-square test is a global test and takes the form x> = N & where @ is
equal to In IC*| — In IS| + trace (SC*™') — m (where C* is the maximum likelihood estimate of
the population covariance matrix, assuming the null hypothesis; S is the covariance matrix of
the sample). The trace is the sum of the diagonal elements of a matrix. Though it seems most
suitable for models involving 75 to 200 events, for moderate to small samples it leads to exces-
sive rejection of null hypotheses (and hence, false claims that a model does not fit) (see Neill &
Dunn, 1975; Steiger, 1980, p. 248). Others observe that as samples grow beyond 200 events,
the test “is almost always statistically significant. Chi square is also affected by the size of the
correlation in the model: the larger the correlations, the poorer the fit” (Kenny, 2003,  2).

The root mean square error of approximation (RMSEA) is most often reserved for analy-
sis of covariance matrices, but it also has applications when correlations are used. This measure
is based on the RMR (root mean square residual), which is the square root of the average
squared amount by which the observed and expected sample variances and covariances differ.
But such estimates do not adjust for the number of paths in the model. The RMSEA takes the
square root of the F, values that have been divided by the number of degrees of freedom for test-
ing the model. Taking the square root of the resulting ratio gives the population root mean square
error of approximation, or RMSEA (though its developers [Steiger & Lind, 1980] referred to it
as RMS). This approach “can be interpreted as a root mean square standardized measure of bad-
ness of fit of a particular model . . .” (Steiger, 1998, p. 413). To accept a model, a general rule
of thumb is that the RMSEA should be below .05 or .06 (Hu & Bentler, 1999). The RMSEA
coefficient is not a probability statement. Indeed, one of its developers (Steiger, 2000) chided
others who use it as a form of statistical hypothesis testing.

When path models have troubled fit to data, researchers sometimes rely on repairs of
convenience regardless of whether there is a theoretic justification for doing so. For instance,
a researcher with a sample of 200 participants examined the tenability of Path Model 3.
Structural equations were defined and predicted correlations were computed.® It might be

With this complex model, the structural equations were z, =z, + €5 25 = 2, + €53 2, = Py 2y + ParZs + PasZs T€45
23 = D312, F P2y + €55 2, = e,; and z, = e,. Thus, the predicted correlations for X and X; as well as for X; and
X, were equal to their observed values. That is, p,; = rs and p,, = r,. Other paths also were computed:

Pes = PesPsa-

Because multiple sources predict Variable 4 and Variable 3, and because the tracing rule requires each
variable to be entered only once and that no variable is both entered and exited through an arrowhead on
the path, the path analyst must take care not to violate these rules preventing inappropriate duplications.

D3 = PesPsaPaz t PesPsaPart23 + PesPsaPai "3
De> = PesPssPar + PesPssPazls3 T PosPsaPaiT125
Po1 = PesPssPat T PosPsaPasl13 T PesPsaParl 125
Ps3 = PsaPa3 t PsaParlo3 + PsaParT13
Psy = PsaPay T PsaPaslos + PPt
D51 = PsyPay T PsaPy3li3 T PsyPapl 15
Pz =Paz T Puli3 Pl
Py =Pyt PayT1y + Pyslss
Py =Pyt Dyli3+ DipTins
D3 =Dy + Py and
P31 = P3Pyl
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mentioned that some path analysts believe that examining predicted relationships with direct
paths do not help test model fit, since the predicted correlations are simply the direct paths
after accounting for spurious correlations. These predicted values involving direct paths
always are close to the observed correlations. In this example, such instances are identified
on Figure 17.3 as predicted correlations including a direct path. Other cases, where an
endogenous variable is predicted from only one variable, are identified as predicted correla-
tions that are constrained to equal their observed values.

Figure 17.3 Path Model 3

e;=.96 e,=.83 e;=.94 €=-79
| I | |
Perceived : : : !
Source I I I I
Character ‘ : ; :
X p=ts v v v
=. =. Behavioral
Message B=.40 > Salience " 33 atituge O I‘ra\t;r:/tli?)f
Believability X, X,
5 X
X, 6
B=-.24 3

Life Stress

Xy

For this model, confidence intervals revealed that one observed correlation was much higher

. . 1.96 1.96
than predicted. The 95% confidence interval was +— =+—— =+ .138 = .14,

Vi V200

As Table 17.3 shows, the difference between the predicted and the observed correlations
between life stress (X,) and behavioral intentions (X,) was larger (though inverse) than the
confidence interval.

Table 17.3

Upper Diagonal: Observed Correlations

Lower Diagonal:

Predicted Correlations® X, X, X, X, X, X,
X,: Source character 1 .05 14 33 .10 .16
X,: Life stress .00 (.05) 1 -23 =22 -.09 -.20
X,: Message believability .14°(.00) —.23°.00) 1 47 .26 .04
X,: Topic salience .33°(.00) —.22°(.00) 47°.00) 1 33 24
X: Attitude .11 .(01) -.07 (.02) .16 (.10) 33° 1 .61

B

- Behavioral intention .07 (.09) —.04?16) .09 (.05) .20(.04) 61° 1

a. Absolute differences between observed and predicted values in parentheses.
b. The predicted correlation is constrained to equal its observed value.
c. Predicted correlation includes a direct path between varriables.
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There also was a sizable difference between the observed and predicted correlations for
the relationship between message believability (X;) and attitudes (X;). Furthermore, the
source character ratings showed a somewhat odd pattern. Rather than coefficients declining
as they moved further away from adjacent variables, there sometimes was a jump in predict-
ing behavioral intentions. The researcher would have to reject the model. The RMSEA was .11,
and the y* value was 35.67 with 8 degrees of freedom (p < .05; critical value 15.51).

Some researchers might fiddle with the model in hopes of making it work. For instance,
direct paths could be added between message believability and attitude, and between life
stress and behavior intentions. But there are two difficulties with this strategy. First, the two
predictor variables of attitude (believability and salience) had a higher correlation with each
other than with the attitude measure. The beta weights would be .27 from the salience mea-
sure and .14 from the belivevability measure. Second, as shown below, it makes no theoretic
sense, even if it worked.

€5 =I .94 €=-78
I
I
Perceived | :
Source | [
Character | |
X, B=15 ! ;
Message _ B=-40  _ ggjience B=27 !
Believability X \ v
4 Attitude  B=-60 ,
B x. ——> Behavioral
5 Intention
X

Life Stress 6

Furthermore, it did not really work in this case. Enlisting the Amos program for further
analysis, the chi-square likelihood ratio was 21.622, which, with 6 degrees of freedom, was
statistically significant. Furthermore, in this revised model the predicted correlation
between believability and behavioral intentions became too high (.20) to fit the data (the
observed correlation was .04; the deviation was .16). Another direct path could be added,
of course, but the model would soon become so unwieldy that its usefulness in summariz-
ing relationships would become doubtful. By reducing the number of indirect effects that
may be examined, the process rapidly becomes a model of direct effects that do not require
modeling at all.

Overfitting

Researchers sometimes force a model to fit by including so many direct and mediated
paths that little predictive error is possible to identify. This problem is called overfitting
(and should not be confused with overidentification, which is not a defect in path analy-
sis). This tendency often leads to developing path models that do not cross-validate and
that fail to advance understanding. There is more than one reason such a condition
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emerges. The researcher may capitalize on chance findings, especially when small
samples are used. Furthermore, measurement imperfections may prevent clear isolation of
relationships.

Researchers frequently find evidence to support more than one path model to describe
a data set. Experience with path analysis usually reveals that models with small numbers of
paths tend to cross-validate more often than complex models. There are some guidelines to
decide which models deserve the most serious attention. First, if competing models fit
the data equally well, the one that accounts for the greatest variation in predicted variables
should be preferred. Second, if two fitting models account for roughly the same proportions
of variance in predicted variables, the one that is simplest should be advanced.

Identification of the Model

Path analysis estimates of the structural model (not the measurement model) cannot be
completed for models that are not identified. A parameter that can be predicted or estimated
to have one unique (deliberate redundancy here) value is said to be identified. Hence,
models composed of identified equations also are considered to be identified. A parameter
that cannot be predicted or estimated to have one value is said to be unidentified or underi-
dentified. Naturally, the model with which it is associated also is considered unidentified or
underidentified. A problem of identification exists when there are more unknown elements
than can be estimated from the available (known) data. “In other words, it occurs when there
are too many unknowns in a causal model for a solution to be possible” (Vogt, 2005, p. 149).
Any sound path model must be identified such that the unknown parameters can be shown as
unique functions of the identified elements of the model. There are three types of models.

e An underidentified model is composed of one or more unidentified equations.
Underidentification exists when it is impossible to provide a unique identification for
all parameters. For instance, imagine that there is a correlation of .64 between source
attractiveness and perceived similarity. If the researcher suggests a reciprocal relation-
ship between these variables, the model is in good shape if the researcher has separate
correlations for each of the paths. If the researcher
does not have such information, there is a problem.
A correlation of .64 could be attributable to the
product of two correlations (one from source attrac-
tiveness and one from perceived similarity), each one
of which is .80 (.80 * .80 = .64). Or the correlation of
.64 could be the product of a correlation of .91 and another of .70. Or the correlation
of .64 could be the product of a correlation of .852 and another of.752. There is no
single best answer to identify the parameter. Thus, the model remains underidentified.
Structural equations for underidentified models cannot be estimated.

e A just identified (or “exactly identified”) model is one for which there are as many
known as unknown parameters. A model is just identified if the number of structural
equations in the model matches the number of correlations (or covariances). So, a solu-
tion may be found for each parameter. The possible number of correlations between

pairs of variables is equal to ? w > D where p is the number of variables in the model.

source
attractiveness

perceived
similarity
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As an example of a just identified model, consider Path Model 4 (Figure 17.4). Interestingly,

this just identified model has a path

Figure 17.4  Path Model 4 between every pair of variables. There

Interpersonal
Solidarity
X

r=-27

are direct effects for each variable

except for the one exogenous vari-

able. There is only one estimate of a

parameter available to the researcher.

Amount of Self- .25 Interpersonal- Because there are no indirect paths to

Disclosure ——— > Trust explore, the researcher might find this
Xg B=.20 X4 model of limited interest.

B=.30

p=.38
Interpersonal
Attraction e An overidentified model is
X2

one for which an unknown

parameter can be solved (or
predicted) inmore than one
way. Though different equations could be used to estimate parameters, as far back as
1960, Wright solved this challenge by recommending the use of multiple regression
methods that remain in use today. Researchers find that overidentified models are most
valuable because

over identifying restrictions also increase the efficiency of parameter estimation
(Goldberger, 1973). If there are two estimates of the same parameter, those estimates
can be pooled to obtain a new estimate whose variance is less than or equal to the
variance of either original parameter estimate. (Kenny, 1979, p. 45)

To assess identification, researchers compare two numbers. The first number is the
possible number of correlations between pairs of observed variables; the second is the
actual total of model parameters. This sum is produced by adding the number of
observed paths, the number of correlations between pairs of exogenous variables

(computed as

number of exogenous variables * (number of exogenous variables —1)
2

), and any correlations

between pairs of errors, excluding the paths to error terms.

If the actual total model parameters are greater than the possible number of correlations
between pairs of observed variables, the model is underidentified.

If the actual total model parameters are smaller than the possible number of correlations
between pairs of observed variables, the model is overidentified.

If the actual total model parameters are the same as the possible number of correla-
tions, the model may be just identified (provided that the pattern of underidentifica-
tion and overidentification of other variables does not lead to underidentification for
the model).

In the examples examined in this chapter, Path Model 3 has 7 paths, 1 correlation between
exogenous variables, and 0 correlations among error terms, for total model parameters
of 8. The total possible number of correlations is 15. Because the total possible correlations
are greater than the total model parameters, Path Model 3 is overidentified. Path Model 4 has
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6 paths, 0 correlations between exogenous variables, and 0 correlations among error terms,
for total model parameters of 6. The total possible number of correlations is 6. Because the
total possible correlations equals the total model parameters, Path Model 4 may be “just
identified.”

USING THE AMOS PROGRAM

Amos’ (Analysis of MOment Structures) was introduced in the last chapter as a method to
complete confirmatory factor analysis. Amos also permits creating and testing general struc-
tural equation models, which is the primary focus of attention here. The comprehensiveness
of AMOS combined with the convenience of its wide availability through SPSS (which has
now dropped LISREL) surely will contribute to the further popularity of AMOS and struc-
tural equation modeling.

The Approach of Amos

Amos allows researchers to use diagrams or programming in the Sax Basic Language,®
which is compatible with the language known as Visual Basic for Applications™.°
The graphical approach will be emphasized in this discussion because of its obvious
efficiency.

The details of using the drawing area and handling basic commands were explained in
Chapter 16 and will not be reviewed here. Amos also allows researchers to create diagrams
and prepare path models for analysis, testing, and even presentation. Once a diagram has been
drawn of the model, Amos develops simultaneous equations among variables by use of opti-
mizing methods such as maximum likelihood estimation. Structural relationships may be
between observed variables (manifest variables) or unobserved variables (latent variables). In
traditional path modeling, observed variables are explored and their measurement properties
are established separately. In contrast, Amos encourages exploring relationships among latent
variables or constructs whose measurement composition is verified as part of the model.
Because Amos involves confirmatory factor analysis methods, it is most properly considered
to be a theory-testing method, rather than a theory exploration tool.

As described in Chapter 16, structural equation models in general, and Amos in particular,
assume multivariate normal distributions. Although this assumption is not necessary when
considering exogenous variables that are measured without error, it applies to all latent vari-
ables, as well as to measurement errors for observed exogenous variables and to endogenous
variables. Though imperfect, Mardia’s coefficient of multivariate kurtosis (Mardia, 1970,
1974) is included in Amos output.

"Amos is a registered trademark of the Amos Development Corporation.
8Sax Basic Language is a registered trademark of Polar Engineering and Consulting.

%Visual Basic and Visual Basic for Applications are registered trademarks of the Microsoft Corporation.

o
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Phases of Model Development With Amos

Amos requires researchers to define the forms of the variables in the study. In particular,
they must specify whether a variable is

e an observed variable that is a measurement on a given item or scale,
e a latent variable or underlying factor that is not observed directly, or
e aterm to identify error terms.

After the researcher has identified such information, a model may be sketched out and con-
trasted with the data.

To illustrate how this process is completed, an example will be explored. In this case, a
researcher suspected that the credibility of the message and the perceptions of source character
would be good predictors of whether women would take some action to help lower their risks of
breast cancer. In the study, women participants rated the character of a well-known public figure
and then read a message attributed to that source. Afterward, participants completed scales to
assess message credibility. Finally, two 5-point Likert-type scales (“I intend to learn more about
breast cancer” [learnabo] and “I intend to complete a breast cancer self-examination” [selfexam])
were completed to measure individuals’ intentions to acquire additional medical information
about breast cancer. The message credibility scales were “the message was believable” (believe)
and “the message content was accurate” (acconten). Source credibility scales were “the source of
the message is trustworthy” (trust) and “the source of the message is virtuous” (virtue).'”

After starting the Amos Graphics program (the Amos Basic program could have been used
if the researcher wished to use Amos Basic programming language), the researcher began to
enter a path model on the drawing area. The researcher clicked the Select Data Files icon
to select a data file for active use, following the same steps as used in the confirmatory factor
analysis setup described in Chapter 16. In SPSS, input may be in the form of raw data or
matrices of covariances or correlations. If a correlation matrix is input, the types of variables
are identified in a column marked “rowtype,” and the variable names are listed in available
columns and in the “varname” column. Using this format also required including the sample
size, means, and standard deviations for the variables.

rowtype | varname | believe I acconten | learnabo | selfexam | trust I virtue |
in 280.00 280.00 280.00 280.00 280.00 280.00
_2|corr believe 1.00 .
_3fcorr acconten B0 1.00 .
_4]corr learnabo 52 37 1.00 :
_5|corr selfexam 40 32 59 1.00 .
_Bfcorr trust 15 12 A2 A0 1.00 ;
_7|corr virtue A7 .08 .28 33 B3 1.00
_B|stddev 1.59 1.35 1.23 1.43 1.70 1.86
_9mean 453 4.92 5.21 4.85 4.09 5.24

!9The number of observed variables is kept small for purposes of illustration. In reality, most researchers
would have more than two items to measure an underlying or latent dimension.
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Constructing the Diagram

Because there were three latent or unobserved variables, they would be placed on
the drawing by clicking on the oval Draw unobserved variables icon and drawing three
ovals in the middle of the page (two on one row and one

on another). Afterward, clicking the Draw unobserved
variables icon would deactivate it. To add the two mea- 1 1 1 1

sured variables for each of the latent variables, the Draw
indicator variable icon 3§ was used, similar to the way
it was described in the discussion of confirmatory factor 1 1
analysis. Each time the left mouse button is clicked,
a manifest (or observed) variable, along with a place
for its error term, is attached. Two indicator paths
were added to each latent variable. The diagrams may
be rotated using the Rotate the indicators of a latent
variable tool G (each click on a parent oval moves the
indicator variables by 90 degrees). Something resem-
bling the diagram on the top right was drawn.

Any movement of objects could be completed by using
the Move objects icon, ®8 which, not surprisingly, moves
a highlighted item. Numbers have been inserted into some
paths. To identify the regression model, the scale of the
unobserved or latent variable must be defined. This step
may be accomplished by setting the variance of the path
coefficient from a latent to an observed variable at some
positive value. In this case, the Draw indicator variable
tool automated this task by constraining a parameter at 1.

After clicking on the List variables in dataset icon, [&,
variable names were inserted into rectangles by clicking
and dragging the desired names to the rectangles.
For instance, the observed variable BELIEVE was
highlighted and dragged to the first box, as shown in the

3L X

mlddle on the rlght .2 Object Properties @ :
Latent Varlables were labeled by double_chcklng on Colors i| Parameters | Fomat | Visibiity | E Behavior Intentions g
the ovals and making insertions in the “Variable names” | Eertsze Font sle

. . . . [18 = [Reguar <]
field of the Object Properties dialog box. In this case, the | vtk name

“behavior intentions” latent variable was identified as | <=
composed of LEARNABO and SELFEXAM. The other | Vaibelb Sebeat
two latent variables were labeled “message credibility”

(composed of BELIEF and ACCONTEN scales) and

“source credibility” (composed of TRUST and VIRTUE scales).

The error terms were labeled as well. Some researchers prefer to use labels that are famil-
iar to LISREL users (delta [8] for the error terms associated with the exogenous indicators,
epsilon [g] for error terms associated with latent endogenous variables, and zeta [{] terms for
structural disturbances). In this example, however, the researcher simply numbered error
terms from “err_1" through “err_8.”
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Special Discussion 17.3

LISREL* is a clever program that combines confirmatory factor analysis and path modeling using
the language of structural equation modeling. In the past, because of its support by SPSS, it was
the tool of choice by structural equation modelers in academic life. Other programs, particularly
Amos, have begun to eclipse its popularity.

There are two fundamental equations in LISREL (Joreskog & S6rbom, 1986, p. 1.6). The first is the
structural equation model, and the second is the measurement model. Each will be considered in turn.

Structural Equation Model: n = Bn + T +
where

1 (eta) is “the names of all the endogenous concepts in a column vector” (Hayduk, 1987,
pp. 90-91) of m x 1 dimension, where m is the number of endogenous concepts;

B is an (m x m) matrix containing the structural coefficients (8) multiplied by the n (m x 1) matrix;

I' (uppercase gamma) is an (m x n) matrix containing the structural coefficients (y [lowercase
gammal), which is multiplied by the & (xi, pronounced “ksi” and rhymes with “sigh”) (n x 1)
vector of exogenous concepts; and

€ (zeta) is an m x 1 vector of exogenous concepts.
In addition,

the covariances among exogenous concepts are an n x n matrix @ (phi);

the covariances among the residual errors (¢) in the conceptual model are an m x m vector y
(psi, pronounced “sigh”);

y is “a vector of observed endogenous indicators” (Hayduk, 1987, p. 91) of p x 1 dimension,
where p is the number of endogenous indicators;

A, (lambda) is a (p x m) matrix containing the structural coefficients of y multiplied by the
n (m x 1) vector of endogenous concepts; and

€ (epsilon) is a p x 1 vector of errors in the measurement model for y.

In addition, 6, (theta sub epsilon) is a (p x p) vector of the covariances among the errors of
exogenous concepts.

Measurement Model for x = A & + 8

Measurement Model fory =A n+e

where
X is “a vector of observed exogenous indicators” (Hayduk, 1987, p. 91) of g x 1 dimension,
where q is the number of exogenous indicators;

A (lambda) is a (g x n) matrix containing the structural coefficients of x multiplied by the §
(n x 1) vector of exogenous concepts; and

0 (delta) is a g x 1 vector of errors in the measurement model for x.

In addition, 6; (theta sub delta) is a (g x g) vector of the covariances among the errors of
exogenous concepts.

*LISREL is a registered trademark of Scientific Software Inc.
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Thus, to use LISREL, the researcher must identify the variables that are manifest (observed) and
those that are latent. Then, the program is used to identify parameters and examine evidence of the fit
of the model to the data. LISREL is best suited for the analysis of covariance structures yielding latent
variables or factors, but it can be used for examining correlation structures. It also may be used to
examine relations among manifest variables by substituting observable variables for the values of vari-
ables otherwise presumed to be latent. Furthermore, LISREL is strong when linking a set of latent X and
Y variables. When a string of mediated paths is involved, the model is strained and routinely produces
rejection of sound models. An example of such a model may be found in the figure shown below.
One might imagine that LISREL requires data at the interval or ratio level, but LISREL also supports a
module called PRELIS, which is a set of alternative procedures for non-normal ordinal measures.

Measurement Observed Factor Latent Relations Latent Factor Observed Measurement
Errors Variables Loadings Variables Variables Loadings Variables Errors

A,
8, — -)(2 21
A,

11

Clicking the arrow toolbar permitted the researcher to draw the arrows between any two
endogenous latent variables. The researcher was interested in a direct path (an arrow with a
single point) from source credibility to message

credibility and another path to behavior intentions.
Furthermore, a direct path is predicted from mes-

sage credibility to behavior intentions.
BELIEVE ACCONTEN TRUST VIRTUE

believability” and “behavior intentions.” To add such
error terms, the researcher clicked on the Add a unique

Each endogenous variable predicted by another
endogenous variable must have an error term. In this
variable to an existing variable icon & While this Behavi . 1
. L9 B . ehavior Intentions
button was active, clicking on the “message credibil-

example, there were two endogenous variables
predicted by other endogenous variables, “message
ity” oval added another latent variable for the error 1
term. Unfortunately, it was placed next to the other

manifest variables associated with this variable. LEARNABO I | SELFEXAM
Hence, the researcher may have needed to move it

using the Move objects icon ¥F#8. When completed, 6 ‘
the model looks similar to the figure on the right.
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Examining Model Characteristics and Parameters

v Minimization history

[V Standardized estimates

|~ Sample moments

| Implied moments

I~ Allimplied moments

v Residual moments

[V Modification indices

Bootstrap [ Permutations I Random # | Title |

el e Output Specific output was requested for the example we are

v Sguared multiple correlations [ Covariances of estimates

describing. Clicking on the Analysis properties icon
produced a dialog box to control output. On the Estimation
tab, the researcher found several options to minimize dis-
I Eactor score weights crepancies in the model’s estimates. Maximum likelihood
estimation is the default for computing model parameters.
This approach has the advantages of consistency, efficiency,
and normality as sample size increases (Keeping, 1995, p. 123).
I~ Ciica ratos for dierences Furthermore, likelihood ratio chi-square tests of model fit
usually are presented, and the use of a maximum likelihood
solution is most often recommended.

[V Indirect, direct & total effects

[~ Carelations of estimates

™ Observed infomation malix On the Output tab, the researcher found another series of
choices. In addition to the ones selected for confirmatory

[ Threshold for . .
modiication indices factor analysis in the last chapter, several other output

options usually are considered. Some of the boxes include

g

the following categories of options.

Squared multiple correlations: multiple correlations (when multiple predictors are
involved) and correlations (when multiple predictors are involved) among endogenous
variables and their predictor variables.

Residual moments: differences between the sample and implied covariance matrices
or the differences between sample and implied means (if means and intercepts are
included in the model).

Indirect, direct & total effects: all effects divided into categories (when the
Standardized estimates box also is checked, the standardized as well as the unstan-
dardized direct, indirect, and total effects are included).

% ? ’ Afterward, the researcher clicked the Calculate
o estimates icon [[lf]. Examining the output model by

BELIEVE I |ACC°NTENI | TRUST I | VIRTUE I clicking on the View the output path diagram involved

Message CTedlbllSource Credibility
44

clicking the right button at the top center of the page
1 1. The diagram appeared with a complete set of coef-
ficients. Depending on whether the researcher clicked
the standardized estimate statement in the middle
column of the Amos control field, these parameter
estimates may be unstandardized or standardized, as
is shown in the diagram to the left.

The paths shown on the diagram revealed stan-

59
64

BehaV|or Intentions @

. 50 dardized regression coefficients (beta weights). In

|Learnago| [ seLrexam | addition, because standardizing the output sets the

intercept at zero, error terms are uncorrelated, and

@ @ exogenous variables have measurement errors
of 0.
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Clicking the View fext icon revealed the output divided into sections, though the Text
Output subprogram must be operating to display it. After an Analysis Summary listing the type
of model and the sample size, a Variable Summary report lists all the variables in the model and
classifies them as observed or unobserved (latent) and endogenous or exogenous. Error terms
are listed under the category of “unobserved, exogenous variables.” A Parameter Summary
includes the number of parameters that are fixed, labeled, or unlabeled. A table also reports
whether the parameters involve covariances, variances, means, or intercepts.

The next section includes Notes for Model (Default model), which reports critical information
about model composition and identification. The section for this model is found in Table 17.4.
In this case, the estimated parameters were

fewer than the number of “distinct sample Table 17.4

481

moments.” Hence, the model was overidenti-

fied and was suitable for structural equation Computation of Degrees of Freedom (Default model)

modeling. In short, the model could be tested.
In contrast, a “just identified” model would

Number of distinct sample moments: 21
Number of distinct parameters to be estimated: 15

always show perfect fit as an artifact. If the Degrees of freedom (21 - 15): 6

model were underidentified or unidentified,
a warning would appear and the researcher
would receive information about the sort .

. R Chi-square = 9.016
of parameter estimation problems that are pre- Degrees of freedom = 6
sent. The output also states that the estimation Probability level = .173

Result (Default model)

Minimum was achieved

method successfully achieved a local mini-
mum value. The likelihood ratio chi-square test was not statistically significant. In this case,
with alpha risk of .05, the critical value of likelihood ratio chi-square was 12.59. The observed
test statistic (9.016) was not greater than this value. Thus, the null hypothesis that the model
does not differ from the data set could not be rejected. Unlike most statistical significance test-
ing, path modelers do not want to find significant differences between the paths and the data.
Hence the model may be accepted. Of course, model fit actually means that the model permits
reproducing the correlation or covariance matrix. In this case, that assumption continues to hold.
Other measures of fit also were used, and, as will be seen, they revealed the same patterns.
The Estimates output provided tables of the unstandardized and the standardized
parameter estimations for the model. The unstandardized values (except for those whose
values are constrained) were

. . Table 17.

tested to see if their diffences able 17.5

from zero were statistically

significant. In this case, all Regression Weights (Group number 1—Default model)

of them were, as indicated Estimat oE CR b Label

t .E. ‘R.
by p values below .05. When samate e
the exact robabilit is Message Credibility <--- Source Credibility 162 .063 2.582  .010
P y Behavior Intentions < Message Credibility 418 063  6.664

¥OWGI’ than '009’ three aster- Behavior Intentions ~ <---  Source Credibility 271 052 5.339 ok

isks are placed in the column | TRUST <~ Source Credibility ~ 1.000

for p values. The standard- VIRTUE <---  Source Credibility 757 .108  6.978 okt

ized regression Weights are BELIEVE <---  Message Credibility 1.000

amoneg the most important ACCONTEN <--- Message Credibility .625 .077 8.164 HokE
g ! P LEARNABO <~ Behavior Intentions ~ 1.005 096 10.512 %+

to examln?' These paths are SELFEXAM <--- Behavior Intentions  1.000

most typically placed on

o




17-Reinard.agxd

482

3/2/2006 3:46 PM Page 482

—p—

ADVANCED STATISTICAL APPLICATIONS

published path models. The standardized regression weights for this model are found
in Table 17.6.

Table 17.6
Standardized Regression Weights (Group number 1—Default model)

Estimate
Message Credibility <--- Source Credibility 183
Behavior Intentions <--- Message Credibility 591
Behavior Intentions <--- Source Credibility 442
TRUST <--- Source Credibility 955
VIRTUE <--- Source Credibility .660
BELIEVE <--- Message Credibility .903
ACCONTEN <--- Message Credibility .664
LEARNABO <--- Behavior Intentions .830
SELFEXAM <--- Behavior Intentions 711

Table 17.7 reports the variances, standard errors, and critical ratios of parameters, and the
probability of differences of observed variances being explicable by random sampling error.

The R* for the prediction of (other than exogenous) variables also was reported. As a
measure of behavioral intentions about breast cancer health care, this model predicted 64%
of the shared variance (see Table 17.8).

Table 17.7 Table 17.8
Variances (Group number 1—Default model) Squared Multiple Correlations
(Group number 1—Default model)
Estimate S.E. C.R. P Label
Source Estimate
Credibility 2.624 411 6381  #k* Message Credibility 033
err_7 1985 293  6.772 kx* -
err_8 370 088  4.185  kxx Behavior Intentions @
err_1 465 216 2.153 .031 LEARNABO 689
err_2 1.014 119 8499  *** SELFEXAM 505
err_3 256 333 770 441 VIRTUE 136
GIT_4 1.946 251 7.739 Fakk TRUST 911
err_6 1.009 115 8.808  H®* ACCONTEN 441
err_5 468 087 5399 kxx BELIEVE 815
Examining Model Fit

The standardized residual covariances also were reported because the researcher checked the
Request residual moments option. These residuals appear in Table 17.9. Ideally, these standard-
ized residuals should reflect a standard normal distribution. As a rule, the values should be below
1.96 in a tenable model. A difference greater than 1.96 indicates that the residuals are beyond a
chance expectation at a decision rule of .05. The modification indices were not computed because
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Table 17.9

Standardized Residual Covariances (Group number 1—Default model)

LEARNABO  SELFEXAM  VIRTUE TRUST ACCONTEN BELIEVE

LEARNABO .000

SELFEXAM .000 .000

VIRTUE -.346 1.163 .000

TRUST —-.248 418 .000 .000

ACCONTEN -.009 .046 -.003 .067 .000

BELIEVE 244 -475 1.013 -.126 .000 .000

there was no significant deviation from acceptable fit and because any changes would not reduce
the chi-square value by the minimum of 4.0. If a model fails to fit the data, the modification indices
indicate which paths, if altered

by relaxing initial assumptions, Table 17.10

would lead to greatest changes in

the value of the likelihood ratio

. Model NPAR CMIN DF P CMIN/DF
chi-square test.

This section ended with min- Default model 15 9.016 6 173 1.503
imization history followed by Isa(;urateg model el Zé 559'28(3) 12 00 37307
indices of model fit. The Amos ndependence mode ’ ’ '
program produces more than 20 Model RMR GFI AGFI  PGFI
model fit indices, though the | Default model 063 990 965 283
development of such tests is Saturated model .000 1.000
active and there may be as many Independence model 177 559 382 399
as 100 different tes.ts avaqable. Model RMSEA  LO 90 HI90 PCLOSE
Only a handful will be inter- Defanlt model 042 000 096 524

crault mode . . . .
preted here to explore the health -\ o4 odel 361 335 387 .000
model. Many of these tests were

described in Chapter 16 and will
not be reviewed again here. The fit of the model to the data is revealed in Table 17.10.

e CMIN is the minimum discrepancy C and is an application of the chi-square test.
Because no statistically significant difference was noted, the breast cancer health model
seemed to fit the data.

e CMIN/DF adjusts CMIN for model complexity. A value below 2 indicates acceptable
fit. This model clearly fit the data, as indicated by a value of 1.503.

¢ RMR is the root mean square residual, described in this chapter’s section on “Checking Fit
of the Model to the Data.” Ideal fit is indicated by RMR values approaching zero. Though
it is a judgment call, a value below .08 (which was found in this example) is considered
acceptable fit. This measure is not available for models with manifest variables only.

e GFI is the Goodness of Fit Index, which is computed as Grr=1- g, where F is the

b
minimum value of the discrepancy function and F, is the discrepancy function for
the null model where all parameters except for the variances have values set at 0. The
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highest GFI is 1.0, indicating a perfect fit of the model to the data. The GFI for the
health model was .99, a value that suggested strong fit. GFI is not available to assess
models with manifest variables only.

AGFI is the Adjusted Goodness of Fit Index, which adjusts the GFI for the degrees of

d
freedom for the hypothesized model. It is computed as AGFI =1—(1 — GFI);", where

G
dy, =" p*®. The most positive value indicating perfect fit is 1.0, but values may go
below zero. The breast cancer health model had a very high AGFI (.965) and, hence, the
evidence of fit seemed consistent with other measures. The AGFI is not available to
assess models with manifest variables only.

It might be mentioned that the measures just identified have been criticized for being biased
upward with increasing sample sizes. Hence, other measures have been recommended.

e PGFI is the Parsimony Goodness of Fit Index, which adjusts the GFI for the degrees of

freedom for the null model. The PGFI is computed as pGrr = GFldi, where d is degrees

of freedom for the hypothesized model and 4, =) p*® is the degrees of freedom for
the null model, called the baseline model. The PGFI differs from the AGFI in whether
the null or hypothesized degrees of freedom are used to standardize comparison values.
In this case, the value of .283 suggested reasonable fit to the data. The PGFI is not avail-
able for assessing models with manifest variables only.

RMSEA, as previously described in this chapter, is the Root Mean Square Error of
Approximation. As previously described, values below .05 are taken as support for
claims of fit of the model to the data. In this case, the RMSEA was .042, which was
within acceptable limits.

PCLOSE is a statistical significance test of the RMSEA. Rejecting the null hypothesis
asserts that the population RMSEA is greater than .05. In this case, the probability value
of .524 indicated no statistically significant difference between the observed RMSEA
and an RMSEA < .05. Thus, the model was supported.

As explained in Chapter 16, these measures of fit often are based on the same statistical
approach. Hence, when the health communication model “passes” 20 tests, it does not mean
we have 10 times as much proof as for a model that “passes” 2 tests. Thus, the tests of fit
should be taken as imperfect indicators of model fit to the data, especially because many seem
to report variations of the same basic information.

Using Amos for Models With Observed Variables Only

Amos is a versatile program that also analyzes models with observed variables only, with-
out much difficulty. As an example, the path model dealing with source character and life stress
may be analyzed using this program. After inputting the diagram from the previously described
model, the result was as is shown on page 485. As the model indicated, all key variables were
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placed in rectangles to indicate that they were observed variables. Only error terms for each of
the endogenous variables were placed in ovals. The two exogenous variables were assumed to

be unrelated. Thus, the curved line
between the exogenous variables
indicated this lack of association.
After clicking on the Analysis
properties icon |IH, the researchers
selected options for output. Some
output is provided for models
composed of latent variables
only. Some other measures of
model fit are omitted because they
apply to covariance matrices for
unobserved variables. Clicking
the Calculate estimates icon [l
produced the formal analysis. To
secure a diagram with parameters
included, the researcher clicked
the View the output path diagram
button, which is located on the
right side of the pair of buttons at
the top of the page |3
on the right, clicking on the Stan-
dardized estimated bar on the
parameter format field produces

0 MESSBELI

CHAR

N

485

—>

SALIENCE

"

ATTITUDE

—> BEHAVIOR

a diagram with standardized parameters included. Within the limits of rounding error, the
results mirrored the analysis of these data using traditional path modeling methods. The

numbers above the rectangles
were the r* or R? coefficients for
each endogenous variable. These
elements also were reported in the
text version of the output, as
shown in Table 17.11. In addition
to the description of the model, the
results showed a statistically sig-
nificant chi-square likelihood ratio
test (as indicated by a probability
level below .05). Thus, the model
did not seem to fit the data.

The modification indices
examine the parameters that are
constrained to equal a constant
value and estimate the amount by

Table 17.11

01 01 01
STRESS
m_err
CHAR
28
15 .08 32 1 37
00 33 61
. MESSBELI [-—>| SALIENCE f-—-» ATTITUDE [-—> BEHAVIOR
—24
STRESS

Notes for Model (Default model)

Computation of Degrees of Freedom (Default model)

Number of distinct sample moments: 27
Number of distinct parameters to be estimated: 19
Degrees of freedom (27 — 19): 8

Result (Default model)
Minimum was achieved
Chi-square = 35.674

Degrees of freedom = 8
Probability level = .000

which the chi-square test of model discrepancy would be reduced if the constraints on the
parameter were removed. Additional modification indices are computed for paths that are not
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part of the model, except for paths that would require making an exogenous variable into an
endogenous variable or that would make an indirect path from a variable back to itself (creating

Table 17.12

m_err <--- beh_err
STRESS <--- beh_err
CHAR <--- beh_err
STRESS <--- beh_err
CHAR <--- beh_err
MESSBELI < beh_err
BEHAVIOR <--- m_err

M.I

13.589
9.355
4.355

M.I

9.355
4.355
13.589
13.589

Par Change

-221
-1.521
485

Par Change

-1.521
485
-1.370
—-.061

a nonrecursive model). As Table 17.12
shows, the modification indices revealed
some interesting results. The first box
reports on the effects of relaxing assump-
tions about the parameters constrained to
be zero (including the assumption of
uncorrelated error terms). The second box
reports on the impact of other nonexistent
paths. In particular, examining the modifi-
cation indices reported for parameters
constrained to be zero, the largest modifi-
cation index was 13.589, indicating that the
chi-square test statistic would decrease by
at least this amount if the covariance
between the error terms for behavior and

message believability were allowed to take a nonzero value. The column marked “Par
Change” indicates the estimated amount by which the parameter value would drop (-.221) if
this path were permitted (because the original value was constrained to equal zero, the
reported ‘“Par Change” also is the actual estimated covariance). Even if this change were
made, however, the chi-square test statistic still would have been statistically significant. So,
the changes would have made little difference. Examining the unpredicted paths, some
changes might produce changes in chi-square values, but none of them would make sense
given the theoretic foundation of the model. Hence, the examination of the modification
indices revealed little evidence that the model could be saved by relaxing assumptions or

adding paths.

The indices of fit showed the model’s inadequacy (see Table 17.13). Not only was

Table 17.13

the CMIN (the chi-square
likelihood ratio) test statisti-

Model NPAR CMIN
Default model 19 35.674
Saturated model 27 .000
Independence model 12 323.724
Model RMSEA LO 90
Default model 111 .076
Independence model 272 .246
Model HOELTER .05

Default model 122

Independence model 22

cally significant, but the

DF P CMIN/DF CMIN/DF measure was far
above 2. The RMSEA was

8 .000 4.459 greater than .05, and the
1(5) 000 o PCLOSE test revealed that the
‘ ' RMSEA was beyond the .05

HI 90 PCLOSE threshold for acceptable mod-
150 003 els. In general, when an appar-
298 .000 ently unacceptable model is
HOELTER .01 found, t.he Hoe.lter’s c.ritical.N
can be instructive. This statis-

123 tic reveals the sample size at

which the model would have

been accepted (at the .05 or

.01 level). Because most measures of fit are sensitive to sample size, this statistic reveals how
large the sample would be just below the point at which the model would have been rejected
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by statistics based on comparisons with random sampling error. The stronger the model, the
larger this number is. In this case, the model would have been rejected with any sample
above 122. Given the recommendation by Hoelter (1983) that a critical N of at least 200 is
expected of acceptable models, the researcher must reject the model.

As can be seen, employing Amos for models with all observed variables can be quite
useful. In this case, an unacceptable model was identified both with traditional path analysis
and with Amos’s use of structural equation modeling. As a revision of the model, the
researcher might add paths or delete troublesome variables. In this case, if the behavioral
intentions measure were removed, the model’s fit to the data would improve substantially. In
fact, when this step was taken, the CMIN chi-square likelihood ratio dropped to a statistically
insignificant 5.173 with 4 degrees of freedom. Furthermore, all tests of fit were supportive of
the revised model.
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