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You’re falling asleep and you hear a sound. Should you 
get up or go to sleep? Chances are, you’ve had an expe-

rience like this. Whether you get up or go to sleep depends 
on what kind of sound you heard, right? You can probably 
sense the difference between the noises you expect to hear 
at night (floorboard creaking, wind rustling trees outside, 
a family member fixing a late-night snack) and sounds that 
demand your attention (breaking glass, a crying baby, or 
someone calling your name). Without too much conscious 
thought on your part, you make inferences about informa-
tion all the time. You tune out background noise but pay 
attention to people speaking to you and sounds that signal 
danger or distress.

Tuning out background noise may come naturally to 
you, but some inferences about sounds require concerted 
effort and specialized training. Picture a doctor listening 
to your heartbeat with a stethoscope. Does your heartbeat 
sound like a healthy person’s or does it sound unusual? If 
you don’t know what normal, healthy heartbeats sound like, 
it’s impossible to identify an irregular heartbeat, even if you 
listen to one with a stethoscope. The doctor has been trained 
to distinguish normal, expected heartbeats from unusual 
sounds that may signal health problems.

When we conduct research and analyze data, we face 
a similar challenge of distinguishing mere random noise 
from meaningful results. Suppose that in one of our analy-
ses of the American National Election Study we find that 
men give the Democratic Party an average feeling ther-
mometer rating of 49, compared with a mean rating of 54 
among women. Is this 5-point difference “big enough” to 
support the conclusion that females have higher regard for 
the Democratic Party than do males? Or should we instead 
decide that the difference is “too small” to warrant that con-
clusion? Suppose we are investigating the electoral mobi-
lization of military veterans. One of our cross-tabulation 
analyses shows that 86 percent of veterans reported voting 
in the presidential election, compared with 77 percent of 
nonveterans. Does a 9-percentage-point difference allow us 

CHAPTER SIX
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Learning Objectives

In this chapter you will learn:
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to say that veterans are more likely to vote than are nonveterans, or is the difference 
too fragile to support this conclusion?

As humans, we are prone to being fooled by randomness. We try to make 
sense of things by perceiving patterns and connections where none exist. 
Inferential statistics help us put analysis in perspective and properly interpret 
empirical results. Inferential statistics refers to a set of procedures for deciding 
how closely a relationship we observe in a sample corresponds to the unobserved 
relationship in the population from which the sample was drawn. Inferential 
statistics can help us decide whether the 5-point feeling thermometer difference 
between men and women represents a real gender difference in the popula-
tion or whether the difference occurred by happenstance when the sample was 
taken. Inferential statistics will tell us how often a random sample will produce a 
9-percentage-point difference in voting between veterans and nonveterans if, in 
fact, no difference exists in the population.

In this chapter we cover the essential foundations of inferential statistics. The 
techniques described in this chapter allow researchers to quantify how much noise 
can be expected when a statistic is estimated from a sample. A solid foundation in 
inferential statistics can help us avoid two potential pitfalls: paying too much atten-
tion to random noise and failing to perceive a reliable signal.

POPULATION PARAMETERS  
AND SAMPLE STATISTICS

In this section, we cover some specialized terminology that is essential to under-
standing inferential statistics. We’ve encountered some of these terms before. For 
example, we discussed different strategies for creating a sample of observations in 
Chapter 4.

Anyone who is interested in politics, society, or the economy wants to understand 
the attitudes, beliefs, or behavior of very large groups. These large aggregations of 
units are populations. A population may be defined generically as the universe of cases 
the researcher wants to describe. If we were studying the financial activity of political 
action committees (PACs) in the most recent congressional election, for example, our 
population would include all PAC contributions in the most recent election. Political 
scientists analyzing vote choice in the most recent congressional elections, by contrast, 
would define their population as all voting-eligible adults.

A characteristic of a population—the dollar amount of the average PAC con-
tribution or the percentage of voting-age adults who voted—is called a popula-
tion parameter. Figuring out a population’s characteristics, its parameters, is a main 
goal of the social science investigator. In some situations, the researcher’s goal is to 
describe the population, but the goal could also be to estimate causal effects—like 
the gender difference in party evaluation or the effect of being a military veteran on 
the likelihood of voting.

Researchers who enjoy complete access to their populations of interest—they 
can observe and measure every PAC, eligible voter, every member of Congress, 
Supreme Court decision, or whatever—are working with a census. A census allows 
the researcher to obtain measurements for all members of a population. Thus, the 
researcher does not need to infer or estimate any population parameters when 
describing the cases.1

More often, however, researchers are unable to examine a population directly 
and must rely, instead, on a sample. A sample is a set of cases or observations drawn 
from a population. Samples, like death and taxes, are fixtures of life in social research. 
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Because population characteristics are frequently hidden from direct view, we turn to 
samples, which yield observable sample statistics. A sample statistic is an estimate of 
a population parameter, based on a sample drawn from the population.

Public opinion polls, for example, never survey every person in the population 
of interest (for example, all voting-eligible adults). Instead, a pollster surveys a ran-
dom sample of likely voters, analyzes the survey results, and then infers or estimates 
a population characteristic from this sample statistic. A random sample is one where 
each and every member of the population has an equal chance of being studied. As 
you know from Chapter 4, researchers don’t always study randomly selected obser-
vations, but random sampling is essential for the researcher to make inferences about 
the population based on sample data. Sometimes random samples, which typically 
have 1,000 to 1,500 observations, seem too small to faithfully represent their popu-
lation parameters. Just how accurately does a sample statistic estimate a population 
parameter? The answer to this question lies at the heart of inferential statistics.

In common practice, the true value of a population parameter is unknown. 
We analyze sample statistics to estimate population parameters. When we analyze 
a random sample of the population instead of analyzing the entire population, the 
statistics we estimate will vary from the population parameters. In fact, in drawing a 
random sample, we are consciously introducing random sampling error. Random 
sampling error is defined as the extent to which a sample statistic differs, by chance, 
from a population parameter. Don’t let the word “error” mislead you. Random sam-
pling error isn’t a mistake or oversight by the researcher; it’s inherent in estimating a 
parameter from a sample. (Recall from Chapter 1 the difference between a random 
error and a systematic error.) If we are working with a random sample, the popula-
tion parameter will be equal to the statistic we obtain from the sample, plus any 
random error that was introduced by taking the sample:

Population parameter Sample statistic Random samplingerror= ±

Consider student researchers who want a sample statistic that provides an unbi-
ased estimate of a characteristic of all students at the university. The true value of the 
characteristic in the full student body is the population parameter. They eliminate 
selection bias by taking a random sample. But they know that random sampling 
error affects their estimate of the population parameter. Assume that the student 
researchers use a feeling thermometer scale to measure the sample’s attitudes toward 
the Democratic Party. Having collected this information on each member of the 
sample, they calculate the mean rating of the Democratic Party. Because they are 
working with a random sample, the student pollsters know that the sample’s mean 
Democratic rating is the same as the population’s mean Democratic rating, plus (or 
minus) the random error introduced by taking the sample. Similarly, if the student 
researchers ask whether those in the sample voted in the last presidential election, 
the proportion of voters in the sample will equal the proportion of voters in the full 
student body plus random sampling error.

Some estimates of a population parameter are closer to the true value than other 
estimates are. The heart of inferential statistics is understanding random sampling 
error. The standard error of a statistic tells us how much we can expect a sample 
statistic to vary from the population parameter. What makes random sampling error 
a “better” kind of error than systematic error is that we have the statistical tools for 
figuring out how much a sample statistic is affected by random sampling error. We 
know how random sampling error affects a sample statistic, and we fully understand 
how to estimate its magnitude. A statistic’s standard error tells us precisely how much 
noise to expect when we analyze a sample.
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In addition to calculating the standard error of a statistic, which is a single  
number, we can also plot a statistic’s sampling distribution, which shows how  
random sampling error shapes the expected values of sampling statistics. A sampling 
distribution is an abstract, statistical concept. It shows the expected distribution  
of sample statistics, like sample proportions or sample means. We don’t observe a 
sampling distribution directly like we do sample data, but we can derive it from sam-
ple statistics. With a firm understanding of the random sampling error you should 
expect when analyzing data, you’ll be able to confidently tell the difference between 
random error and meaningful statistics.

THE CENTRAL LIMIT THEOREM AND 
THE NORMAL DISTRIBUTION

When we estimate a population parameter with a sample statistic, we typically don’t 
know how much our estimate deviates from the true population parameter. After 
all, if we knew the true population parameter, we wouldn’t need to estimate it. How, 
then, do we know how much error is standard? To get a better sense of the effect of 
random sampling error on statistical estimates, we can conduct a thought experi-
ment and simulate the outcome of this thought experiment using a computer.2

Imagine we knew the truth about a population but had researchers try over 
and over to estimate population parameters by conducting random samples from 
the population. We already know how much sample means and sample proportions 
would tend to deviate from the population parameter, but let’s see how we got those 
numbers and what else we can learn about random sampling error.

Assume we knew the true proportion of students who voted in the last presi-
dential election. The true population proportion equals .75. If researchers tried to 
estimate the proportion of student voters by taking random samples of 100 students 
over and over, what sample proportions would they report? We can use a computer 
to simulate 100 randomly sampled observations from a population with .75 Y (vot-
ers) and .25 N (nonvoters). Let’s simulate a few samples and calculate the proportion 
of voters in each.

Sample 1

Y Y Y Y Y Y N Y Y N

Y Y Y Y Y Y Y Y Y N

N N Y Y Y Y Y N Y Y

Y N Y Y N Y Y N Y Y

Y Y Y Y Y N Y N Y Y

N Y N Y N N Y Y Y Y

Y Y Y N Y Y Y Y Y Y

Y N Y Y N Y Y Y N Y

N N Y N N Y Y Y N Y

Y Y Y Y N Y N N Y Y

“Yes” Proportion = .73

Sample 2

Y Y Y Y Y Y Y Y Y N

Y Y Y Y N N N N N Y

Y Y N Y N Y Y Y Y Y

Y Y Y N Y Y Y N N Y

N Y Y Y Y N Y N Y Y

Y Y Y Y N Y N Y N Y

Y Y Y Y N Y Y Y Y Y

N Y Y N Y Y Y Y Y Y

Y Y N N Y N Y Y Y N

Y Y Y Y Y Y Y Y Y Y

“Yes” Proportion = .76

Sample 3

Y Y Y Y Y N N N Y Y

Y Y Y N Y Y Y Y N N

Y Y Y Y Y Y Y N Y Y

Y N Y Y Y Y Y Y Y N

N N Y N Y Y Y N Y Y

Y N Y N Y Y Y Y Y Y

Y Y Y Y Y Y Y Y Y N

N Y Y Y Y Y N N Y Y

Y Y N Y Y Y Y Y Y Y

Y Y Y Y Y Y Y Y N Y

“Yes” Proportion = .79

None of these first three simulated samples exactly estimate the true population 
parameter (.75) but that’s not too surprising. Random sampling error adds noise to 
these estimates of the population parameter.
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Figure 6-1 � Distribution of Proportions from 5,000 Random 
Samples
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Keep the thought experiment going and imagine we had researchers randomly 
sample 100 students repeatedly and keep reporting the proportion of voters so we 
could plot the sample proportions. Since we’re simulating this research with a com-
puter (and don’t need to pay our imaginary researchers), let’s generate 5,000 sample 
proportions and create a histogram to view the distribution of sample statistics.

This figure shows a sampling distribution of the proportion of students who 
vote when p = .75 and n = 100. You can see that the sample proportion we’re most 
likely to glean from a random sample is the true population proportion, .75, but the 
sample proportions vary because of random sampling error. The shape of this sam-
pling distribution probably looks familiar to you—it’s often called a bell curve—but 
think for a moment about how we produced this shape. We saved the results of many 
random samples of our .75 voting population and found that the sampling distribu-
tion had this shape. We didn’t tell the computer to create a sampling distribution 
with this shape, it just works out that way.

Let’s continue our thought experiment but change it up slightly to analyze 
sample means. Assume we know the distribution of feeling thermometer scores in 
the population. Imagine drawing an extremely large number of random samples of 
n = 100 from a population with a mean of 58 and a standard deviation equal to 24.8.3 
Researchers draw a sample, report the mean thermometer rating, and return the 
cases to the population. Researchers draw another sample, report the sample mean, 
and return the cases to the population. They draw another sample, and another, 
and another—until hundreds of thousands of means from hundreds of thousands of 
samples of n = 100 are calculated and recorded. What would the distribution of all 
those sample means look like? Consider Figure 6-2, which shows the distribution of 
the means of 100,000 random samples drawn from the population.

The sampling distribution of these sample means should look familiar. Study 
Figure 6-2 for a moment. Notice some important aspects of this sampling distribu-
tion. It is centered on the true population mean of 58. In fact, if we were to calculate 
the overall mean of the 100,000 sample means represented in Figure 6-2, we would 
arrive at the population mean (within .001). The bulk of the sample means reside in 

Copyright ©2020 by SAGE Publications, Inc.  
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute



172      The Essentials of Political Analysis

Figure 6-2  Distribution of Means from 100,000 Random Samples
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Note: The figure shows means from 100,000 samples of n = 100. Population parameters: µ = 58 
and σ = 24.8.

the thick part of the distribution around 58, between about 56 and 60. Even so, a few 
samples serve as very poor representations of the population mean (µ = 58), return-
ing values of less than about 53 or greater than 63.4 Some sample means are higher 
than the true population mean and others are lower. Despite some random “notchi-
ness” here and there, the distribution has a symmetrical bell-like shape. This bell-like 
symmetry is the signature of the normal distribution. Again, we didn’t program the 
computer to create this shape, it just emerges when you repeatedly conduct random 
samples. Random sampling error produces a bell-shaped curve.

Figures 6-1 and 6-2 illustrate the central limit theorem. The central limit the-
orem is an established statistical rule that tells us that if we were to take an infinite 
number of samples of size n from a population of N members, the sample means will 
follow a normal distribution. This distribution of sample means, furthermore, would 
have a mean equal to the true population mean and have random sampling error 
equal to σ, the population standard deviation, divided by the square root of n. Thus, 
most random samples of n = 100 that are drawn from a population with a mean of 
58 and a standard deviation of 24.8 will yield means that are equal to 58, give or take 
2.5 or so. In fact, the normal distribution allows us to make precise inferences about 
the percentage of sample means that will fall within any given number of standard 
errors of the true population mean.

Here is what’s truly incredible about the central limit theorem: The expected 
sampling distribution will be a normal distribution regardless of the distribution of 
sample values. The distribution of variables in the sample can be split between two 
categories, right skewed, left skewed, multimodal, or uniform. The central limit theo-
rem applies to proportions, as seen in Figure 6-1 and the second row of Figure 6-3, 
because the number of “yes” responses or 1s can be considered a sum of random 
numbers. As long as the sample size is sufficiently large, the sampling distribution 
follows a well-defined normal distribution. There should be at least 30 observations 
and, when the sample statistic is a proportion, at least 10 cases with each value of the 
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Figure 6-3  Illustration of the Central Limit Theorem
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variable. When we visualize repeated sampling, as in Figures 6-1 and 6-2, we’ll see 
some minor deviations and asymmetries but the more we repeatedly sample, the more 
our simulated sampling distributions take the ideal form.

You can see the central limit theorem in action in Figure 6-3. Each row of the 
figure shows a different distribution of variable values in a population; the first row, 
far-left panel, shows a hypothetical discrete variable with values 1 to 5 and a mean 
of 2.7. The second row, far-left panel, shows a .4 population proportion. The third 
and fourth rows show distributions of interval-level variables in the population with 
means of 42.25 and 50, respectively. If we estimate a mean or proportion using a 
very small sample, such as five, ten, or fifteen observations, the sampling distribution 
of our sample statistic does not follow a normal distribution. This is evident in the 
second and third columns of Figure 6-3. But in the fourth column, we can see that 
sampling distributions become normally distributed with a relatively small sample, 
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such as 40 observations, regardless of how the underlying variable is distributed in 
the population. Notice how the sampling distributions consolidate around the popu-
lation means as the sample sizes increase from 5 to 15 and then to 40. The sampling 
distributions in the far-right column are all normal distributions, but you can see 
that their widths vary.

To this point, we’ve used the casual term “bell curve” to describe the sampling 
distributions of means and proportions to help to see the big picture without getting 
too caught up in technical details. We don’t observe sampling distributions directly, 
but we can use computers to carry out the thought experiment of repeatedly sam-
pling some population and see what sampling distributions would look like. We 
generally don’t know what the probability distribution that generates the observed 
data looks like, if there even is one, so the central limit theorem is very useful. The 
central limit theorem tells us that sample means and proportions will be normally 
distributed around population means and proportions.

Let’s take a closer look at what we mean when we say a statistic would have a 
normal distribution in repeated samples. The normal distribution is a probability 
distribution with a very specific shape. Normal distribution is defined by mean and 
standard deviation. Just like only some round shapes are perfect circles, many distri-
butions can be casually described as bell shaped, but very few of them will conform 
to a normal distribution. When we say something follows a normal distribution, 
we are saying something very specific. A normally distributed variable follows the 
empirical rule. We know exactly how often a normally distributed variable falls 
within one, two, and three standard errors of its mean: 68, 95, and 99 percent of the 
time, respectively. As we shall see, the empirical rule is an important and convenient 
rule of thumb in inferential statistics.

Examine Figure 6-4, which again displays the distribution of the 100,000 sam-
ple means. Figure 6-4 differs from Figure 6-2 in two respects. First, a line repre-
senting the normal curve has been drawn around the distribution, summarizing its 
shape. You can see how closely the normal curve fits the simulated sampling distribu-
tion. Second, the horizontal axis now shows standardized means, the Z scores of the 
reported means, and Figure 6-2’s units of measurement (points on the Democratic 
feeling thermometer) are replaced in Figure 6-4 with a scale of single-digit num-
bers. The mean, which appeared as the raw value “58” in Figure 6-2, is labeled “0” 
in Figure 6-4. Values below the mean are negative, and values above the mean are 
positive.

The horizontal axis in Figure 6-4 is a standardized transformation of the axis 
in Figure 6-2. Standardization occurs when the numbers in a distribution are con-
verted into standard units of deviation from the mean of the distribution. A value 
that is expressed in original form—points on a thermometer scale, years of age, dol-
lars of income—is called a raw score or unstandardized score. A standardized value 
is called a Z value or Z score. To transform an unstandardized score into a Z score, 
you would divide the score’s deviation from the expected value (i.e., the population 
mean) by the standard error of the sample statistic:

Z score
Deviation from expected value

Standard error
=

The standard error, as its name suggests, is also a standard unit of deviation 
from the mean. Consider three sample means: 54, 58, and 60. Given a standard 
error equal to 2.5, a sample mean of 54 has a Z score equal to (54 − 58)/2.5 = −1.6, or 
1.6 standard errors below the true population mean of 58. So, a sample mean of 54  
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Figure 6-4  Raw Values Converted to Z Scores

Standardized Means (“Z Scores”)

Fr
eq

ue
nc

y

−4 −3 −2 −1 0 1 2 3 4

0

1,000

2,000

3,000

4,000

in Figure 6-2 appears as a Z score of −1.6 in Figure 6-4. A sample mean of 58 in  
Figure 6-2 hits the population mean right on the money, so in Figure 6-4 it has a  
Z score equal to 0: (58 − 58)/2.5 = 0. The sample mean of 60 converts into a Z score 
of (60 − 58)/2.5 = 2.8, very close to a Z score of 1 in Figure 6-4.

When we convert sample statistics to Z scores, we standardize the expected 
sampling distribution. Why go through the ritualistic procedure of converting an 
untransformed score into a Z score? Because Z scores are the key to the inferential 
leverage of the normal distribution. Figure 6-5 again presents the bell-shaped curve, 
this time displaying percentages inside the curve. The arrow stretching between  
Z = −1 and Z = +1 bears the label “68%.” What does this mean? It means this: If a 
variable is normally distributed, then 68 percent of the cases in the distribution will 
have Z scores between −1 (one standard unit below the mean) and +1 (one standard 
unit above the mean). Moreover, since the curve is perfectly symmetrical, half of 
that 68 percent—34 percent of the cases—will fall between the mean (Z equal to 0)  
and a Z score of +1, and the other 34 percent will fall between the mean and a  
Z score of −1. So the range between Z = −1 and Z = +1 is the fattest and tallest part 
of the curve, containing over two-thirds of the cases. Notice the arrow labeled 
“95%,” the one stretching between Z = −1.96 and Z = +1.96. These numbers tell 
us that, in a normal distribution, 95 percent of the cases will have Z scores in the 
long interval between 1.96 standard units below the mean and 1.96 standard units 
above the mean. This long interval, in other words, will contain just about all the 
cases. But, of course, 5 percent of the cases—those with Z scores of less than −1.96 
or greater than +1.96—will lie outside this interval, in the sparsely populated tails  
of the distribution. Again, since the curve is symmetrical, half of this 5 percent, or 
2.5 percent, will fall in the region below Z = −1.96, and the other 2.5 percent will fall 
in the region above Z = +1.96. As you can see, the density (height) of the standard 
normal distribution is very close to 0 for Z scores less than −3 and scores greater 
than 3. Technically, the left and right tails approach, yet never reach 0, but the  
density outside the range of Figure 6-5 is microscopic.
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Figure 6-5  Areas under the Standard Normal Curve
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The standard normal distribution has a mean equal to 0 and a standard devia-
tion of 1. There are many normal distributions, but there is only one standard nor-
mal distribution. It’s a beauty to behold, for sure, and our appreciation only grows 
when we think about how we came upon it and what it represents. When we con-
ducted our thought experiment of repeatedly sampling some statistic, we didn’t tell 
the computer we wanted the statistic to be normally distributed; it just happens natu-
rally, and it happens no matter how the values are distributed in the population (see 
Figure 6-3). The normal distribution represents noise and unpredictable variation in 
measurement; its well-defined shape shows us, quite remarkably, that there is order 
in randomness. It’s quite a sight to see. Table 6-1 points out some of the standard 
normal distribution’s critical features.

To make sure you understand what the critical values listed in Table 6-1 tell 
us, put one finger on Z = −1.64 on the x-axis of Figure 6-5 and another finger on  
Z = +1.64. Ninety percent of the area of the standard normal distribution lies 
between your fingers and 10 percent of the probability distribution lies outside your 
fingers in the right and left tails of the Figure 6-5. Move your fingers to Z = −1.96 
and Z = +1.96. Now, 95 percent of the area is between your fingers and 5 percent is 
more than that, in the right and left tails. (The empirical rule that 95 percent of a nor-
mal distribution lies within 2 standard deviations of the mean marked on Figure 6-5  
is a rule of thumb; 1.96 is close to 2.) The ±1.96 interval is enormously important, as 
you’ll soon discover. If you slide your fingers out to Z = −2.58 and Z = +2.58, you’ve 
now got 99 percent of the standard normal distribution’s area between your fingers; 
only 1 percent of the distribution is more extreme than ±2.58. Stretch your fingers 
out to Z = −3.29 and Z = +3.29 and the extreme tails are now microscopic; only one-
tenth of 1 percent (.1 percent) of the distribution is outside your fingers. For further 
detail, see Box 7-1 in Chapter 7.

Sometimes, researchers will refer to the cumulative density of a probability 
distribution. The cumulative density of a standard normal distribution equals the 
proportion (or percentage) of the area under the curve less than a given Z score. 
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For example, the cumulative density at −2 is about .05; 5 percent of the area of the 
standard normal distribution lies in the left tail from negative infinity to −2. The 
cumulative density at 0 is .50 because .50 (or 50 percent) of the area is less than 0. 
What’s the cumulative density at 1? It’s .84 (the 68 percent of the area between −1 
and 1 plus the 16 percent between minus infinity and −1). Sometimes researchers 
and statistical software will report cumulative densities, so it’s essential to get familiar 
with the standard normal distribution.

QUANTIFYING STANDARD ERRORS

In this section, we closely examine the expected sampling distributions of two of the 
most common statistics we estimate from samples: means and proportions. When we 
calculate the mean of an interval-level variable in a sample to estimate a population 
mean, how much random sampling error should we expect? When we find the pro-
portion of observations with a certain value of a nominal- or ordinal-level variable in 
a sample, how well does this statistic reflect the population parameter?

Three factors determine how well a sample statistic reflects a population param-
eter: sample selection method, variation in population, and sample size. We’ll discuss 
these three factors generally to help you see the big picture and then we’ll apply the 
second and third factors to means and proportions.

The first factor that determines how well a statistic estimates a parameter, selec-
tion method, was discussed in Chapter 4 when we discussed selecting observations 
to test hypotheses. When a researcher analyzes a random sample of the population, 
sample statistics will be unbiased estimates of population parameters. If observations 
are not selected randomly, sample statistics will systematically vary from population 
parameters no matter how large the sample is. Researchers have some statistical 
methods that correct for nonrandom sampling and mitigate the potential for bias, 
such as weighting observations, but these remedial measures require fairly exten-
sive information about the sample observations. An online poll conducted on Fox 
News.com or CNN.com won’t generate an accurate estimate of the general public’s  
political views no matter how many of those website visitors respond to the poll.

Variation in the population characteristic has a direct relationship with  
random sampling error: As variation goes up, random sampling error goes up. Recall 
from Chapter 2 that variables have more or less dispersion. When a variable is  
measured at the interval level, we can calculate its standard deviation, which tells 
us how much its observed values deviate from its mean value. When a variable is 
measured at the nominal or ordinal level, we don’t calculate its dispersion but we 
say dispersion is maximized when observations are evenly divided among possible 

Table 6-1  Critical Z Scores for Making Inferences

Value of Z
Percentage of Standard  

Normal Beyond

±1.64  10%

±1.96    5%

±2.58    1%

±3.29   .1%
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values. For example, if the possible responses to a survey question are “yes” and 
“no,” the greatest possible variation is an evenly split response: 50 percent yes and 
50 percent no. The variance component of standard error reflects how homoge-
neous the sample is with respect to the characteristic being measured. If people 
share the same opinion, you don’t need to sample many people to obtain an accurate 
estimate of the population’s opinion. If everyone gave the same response to a yes or 
no survey question, you’d only need to survey one person to estimate the popula-
tion parameter.

Finally, sample size has an inverse relationship with random sampling error. As 
the sample size goes up, random sampling error goes down. With a larger sample, we 
can be more confident in our estimates of population parameters. As we’ll see, how-
ever, the relationship between sample size and random sampling error is curvilinear; 
the marginal benefit of increasing sample size diminishes, so it takes larger and larger 
sample sizes to reduce random sampling error.

Adopting a conventional notation in which sample size is denoted by a low-
ercase n, we would have to say that a sample of n = 400 is preferable to a sample of  
n = 100, since the larger sample would provide a more accurate picture of what we 
are after.5 However, the inverse relationship between sample size and sampling error 
is nonlinear. Even though the larger sample is four times the size of the smaller one, 
going from n = 100 to n = 400 delivers only a twofold reduction in random sampling 
error. In ordinary language, if you wish to cut random error in half, you must qua-
druple the sample size. In mathematical language, the sample size component of 
random sampling error is equal to the square root of the sample size, n .

Let’s pause and review the statistical components discussed thus far.

Sample size component: As the sample size goes up, random sampling error 
declines as a function of the square root of the sample size.

Variation component: As variation goes up, random sampling error 
increases in direct relation to the population’s standard deviation.

These factors—the variation component and the sample size component—are 
not separate and independent. Rather, they work together, in a partnership of sorts, 
in determining the size of random sampling error. This partnership can be defined 
by using ideas and terminology that we have already discussed:

Random sampling error
Variation component

Sample size component
=

Before exploring the exact properties of this general formula for random sam-
pling error, consider its intuitive appeal. Notice that “Variation component” is the 
numerator. This reflects its direct relationship with random sampling error. “Sample 
size component” is the denominator, depicting its inverse relationship with random 
sampling error. Both components, the variation component and the sample size 
component, have known properties that give the researcher a good idea of just how 
much random sampling error is contained in a sample statistic.

Standard Error of a Sample Mean

Let’s apply these general principles of random sampling error to sample means. The 
variation component of the random sampling error of a mean is defined statistically 
by a measure you may have encountered before: standard deviation (symbolized as σ).  

Copyright ©2020 by SAGE Publications, Inc.  
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute



Chapter Six  •  Foundations of Statistical Inference      179

As discussed in Chapter 2 (see “Interval Variables” on p. 46), a variable’s standard 
deviation tells you how much the variable’s values vary from its mean value. When 
you calculate a sample mean to estimate the population mean, how much random 
sampling error can you expect? The standard error of a sample mean is directly 
related to the variable’s variation (signified by σ, the population standard deviation) 
and inversely related to the square root of the sample size (n):

Standard error of sample mean =
σ
n

In this chapter we have been using the generic term random sampling error to 
describe the error introduced when a random sample is drawn. The size of this error, 
as we have just seen, is determined by dividing the variation component by the sam-
ple size component. However, when researchers are describing the random sampling 
error associated with a sample statistic, they do not ordinarily use the term random 
sampling error. Rather, they refer to the standard error of the mean. Computer analy-
sis programs routinely calculate standard errors for mean estimates, and political 
researchers always report the standard errors for the sample estimates they publish 
in quantitative research articles. Let’s be clear. The terms standard error of a sample 
mean and random sampling error of a sample mean are synonymous. Both terms refer to 
the bedrock foundation of inferential statistics. But because you will often encounter 
the term standard error, this book will use the term, too.

How can we use the standard error of mean formula to figure out how closely a 
sample mean matches the population mean? Assume we record values of an interval-
level feeling thermometer measurement from a random sample of n = 100 and find 
that the sample mean equals 58 and the sample standard deviation equals 24.8. Our 
best estimate of the population mean is 58, but we can expect our sample mean to 
vary from the population parameter due to random sampling error. According to the 
formula for the standard error of a sample mean, the magnitude of the standard error 
of this sample mean is equal to:

Standard error of mean = = =
24 8
100

24 8
10

2 48
. .

.

Based on the random sample, we’d estimate the mean value of the feeling ther-
mometer in the population as 58 (this is sometimes called the point estimate to help 
visualize the result) but we could be pretty sure the random “noise” of this estimate 
is plus or minus 2.48 degrees.

Take another look at Figure 6-2 that shows a simulated distribution of sample 
means. How much deviation from the population mean of 58 looks typical? It might 
help to imagine folding the left side of the distribution onto the right side. Can you 
see how much noise there is in this estimate? The standard error of the sample means 
equals the standard deviation of the feeling thermometer divided by the square root 
of the sample size, σ/ n , which equals 2.48 in this example (σ = 24.8 and n = 100). 
We could have approximated the answer from our simulated sampling distribution, 
but the standard error of mean formula gives us an exact answer.

Consider how the two components of the random sampling error formula, 
the variance component and the sample size component, work together. Figure 6-6 
depicts two possible ways that student ratings of the Democrats might be distrib-
uted within the student population. First, suppose that in the general population of 
students there is a great deal of variation in ratings of the Democratic Party, as in 
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panel A of Figure 6-6. There are appreciable numbers of students in every range of 
the rating scale, from lower to higher, with only a slight amount of clustering around 
the center of the distribution. Large numbers of students dislike the Democrats and 
give them ratings between 0 and 40. Many students like the Democrats and give 
them ratings between 60 and 100. In this scenario, the population parameter the 
student researchers wish to estimate, Democratic Party thermometer ratings, would 
have a large variation component. Since variation in the population characteristic is 
high, the variation component of random sampling error is high. A random sample 
taken from the population would produce a sample mean that may or may not be 

Figure 6-6  High Variation and Low Variation in a Population

A. High Variation in Democratic Thermometer Ratings in the Student Population

B. Low Variation in Democratic Thermometer Ratings in the Student Population

Democratic Thermometer Rating

Democratic Thermometer Rating
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close to the population mean—it all depends on which cases were randomly selected. 
Because each student has an equal chance of being chosen for the sample, one  
sample might pick up a few more students who reside in the upper range of the  
distribution. Another sample from the same population might randomly choose a 
few more students from the lower range.

In contrast, visualize a general student population like the one depicted in panel B  
of Figure 6-6. Notice that the ratings are clustered around a well-defined center, 
with fewer cases at the extremes of the scale. Since variation in the population char-
acteristic is low, the variation component of random sampling error is low. A random 
sample taken from the population would produce a sample mean that is close to the 
population mean. What is more, repeated sampling from the same population would 
produce sample mean after sample mean that are close to the population mean—and 
close to each other.

The population means are the same in both scenarios, a mean rating of 58. 
However, student ratings are more spread out in population A—the distribution has 
a higher standard deviation—than in population B. The distribution of Democratic 
Party feeling thermometer ratings in population A has a mean equal to 58 and a 
standard deviation equal to 24.8. The distribution of Democratic Party feeling ther-
mometer ratings in population B has a mean equal to 58 and a standard deviation 
equal to 17.8. Having artificially created these realistic populations, we can ask the 
computer to draw random samples of different sizes from each population.6 We can 
then calculate and record the mean Democratic rating obtained from each sample. 
As we will demonstrate, a statistic computed on a random sample from population A 
will have a higher amount of random sampling error than will a statistic computed 
on a random sample drawn from population B.

The results of this simulation are presented in Figure 6-7. All the sample means 
displayed in panel A are based on the same student population—a population in 
which µ = 58 and σ = 24.8. All the sample means displayed in panel B were drawn 
from a student population in which µ = 58 and σ = 17.8. The dashed horizontal line 
in each panel shows the location of the true population mean, the parameter being 
estimated by the sample means. For each population, the computer drew ten ran-
dom samples of n = 25, ten random samples of n = 100, and ten random samples of 
n = 400. So, by scanning from left to right within each panel, you can see the effect 
of sample size on random sampling error. By moving between panel A and panel B, 
you can see the effect of the standard deviation on random sampling error. (So that 
we don’t lose track of the initial sample mean of 59, it appears as a solid dot in the  
n = 100 group in panel A.)

Consider the set of sample means with the largest error component, the samples 
of n = 25 in panel A. Even though three or four of these sample means come fairly 
close to the population mean of 58, most are wide off the mark, ranging in value 
from the chilly (a mean Democratic rating of 50) to the balmy (a mean rating of 
65). A small sample size, combined with a dispersed population parameter, equals a 
lot of random error. As we move across panel A to the ten sample means based on  
n = 100, we get a tighter grouping and less wildness, but even here the means range 
from about 53 to 62. The samples of n = 400 return much better precision. Four of 
the ten sample means hit the population mean almost exactly. Plainly enough, as 
sample size increases, error declines. By comparing panel A with panel B, we can 
see the effect of the population standard deviation on random sampling error. For 
example, notice that the ten samples of n = 25 in panel B generate sample statistics 
that are about as accurate as those produced by the samples of n = 100 in panel A. 
When less dispersion exists in the population parameter, a smaller sample can some-
times yield relatively accurate statistics. Naturally, just as in panel A, increases in 
sample size bring the true population mean into clearer focus. At n = 400 in panel B, 
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Figure 6-7 � Sample Means from High Variation and Low Variation 
Populations

0
0 25 100 200

Sample Size

Sample Mean
Panel A

300 400

45

50

55

60

65

70

0
0 25 100 200

Sample Size

Sample Mean
Panel B

300 400

45

50

55

60

65

70

Note: Hypothetical data. The hypothetical sample mean of 59 is represented by the solid dot  
in the n = 100 group in panel A. The dashed horizontal line shows the location of the true  
population mean (µ = 58).
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six of the ten sample means are within a few tenths of a point of the true population 
mean. A larger sample, combined with lower dispersion, equals less random error 
and greater confidence in a sample statistic.

Standard Error of a Sample Proportion

The general principles of random sampling error also apply to sample proportions. 
Many of the variables of interest to political researchers are not measured at the 
interval level. Rather, they are measured at the nominal or ordinal level. When you 
analyze a variable measured at the nominal or interval level, you can describe its 
distribution of values with a frequency distribution table. You can calculate the pro-
portion of observations that have each value of the variable, but you cannot calculate 
the variable’s mean or standard deviation.7 The variation component of the standard 
error of proportion formula reflects the lower level of measurement. The propor-
tion of a sample falling into one category of a nominal or ordinal variable is denoted 
by the ordinary letter p. Given a proportion p, the variation component equals the 
square root of the product of p and 1 − p. The standard error of a sample proportion 
is directly related to this variance component and inversely related to the square root 
of the sample size (n):

Standard error of sample proportion =
× −( )p p

n

1

Consider a random sample of whether college students (n = 100) voted in the 
last presidential election. Suppose that 72 of those surveyed answered, “Yes, I voted 
in the last presidential election,” and the remaining 28 answered, “No, I did not vote 
in the last presidential election.” What is the sample proportion of voters?

Sample proportion of voters
Number answering

Sample size
= =

“yes” 72
1100

72= .

The sample proportion of voters, p, is .72. This is a descriptive sample statistic. 
Based on this sample, our best estimate of voting in the general student population 
is .72, but we know sample statistics have random sampling error. If the propor-
tion of voters is .72, the proportion of nonvoters must be .28 (the answer choices 
were simply yes and no). How closely does the sample proportion, .72, estimate the 
proportion of voters in the student population? What is the standard error of the 
observed sample statistic, .72?

In this example, the proportion of students falling into the “Yes, I voted in the 
last presidential election” category is .72, so p = .72. The proportion of a sample fall-
ing into all other categories of the variable (in this case, the “No” responses) would 
be equal to 1 − .72, or .28. Sometimes, the value of 1 − p is denoted by the letter q. 
This proportion, q, is equal to one minus p, or q = 1 − p. This information—the value 
of p, the value of q, and the sample size—permits us to estimate the standard error of 
the sample proportion, p.

Standard error of proportion =
× −( )

=
×

= =
p p

n

1 72 28
100

45
100

045
. . .

.

Based on this sample, we’d estimate the proportion of voters in the student 
population to be .72, but we would recognize the standard error of this estimate  
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is .045. This is equivalent to estimating that 72 percent of students vote with a  
standard error of 4.5 percent. The standard error of proportion formula tells  
how much noise there is in our estimate of the population proportion.

Based on the sample described in this section, we found a .72 sample proportion 
with a .045 standard error. What if we instead estimated the proportion of students 
who don’t vote? We’ve already seen that the proportion of nonvoters must be .28. 
How much random sampling error can we expect in our estimate of student non-
voters? If the sample proportion, p, we’re interested in is .28, then 1 − p equals .72. 
The numerator of the standard error of proportion formula is . .28 72× , which 
is equal to . .72 28× . So the standard error of the proportion of nonvoters is also 
.045. Whenever there are two values of the variable, like yes and no, the proportion  
estimated in each category will have the same standard error.

There is a final statistical caveat. We have just demonstrated how the central 
limit theorem and normal distribution can be applied in determining the standard 
error of a sample proportion. Under most circumstances, this method works quite 
well. However, we know that normal estimation works best for sample propor-
tions closer to .50, and it begins to lose its applicability as p approaches .00 or 1.00. 
How can one know if normal estimation may be used? Here is a general procedure. 
Multiply p by the sample size, and multiply q by the sample size. If both numbers  
are 10 or higher, then normal estimation will work fine. (Actually, if both numbers 
are 5 or more, normal estimation will still work.) The researchers in this example are 
on solid inferential ground, since 100 × .72 = 72 and 100 × .28 = 28. Trouble could 
begin to brew, however, if the researchers were to subset their sample into smaller 
groups—subdividing, say, on the basis of gender or class rank—and were then to 
make inferences from these smaller subsamples.

CONFIDENCE INTERVALS

When a researcher uses a sample statistic to estimate a population parameter, the 
researcher should expect the statistic to deviate from the parameter by an amount 
known as standard error. Because of the random probability of obtaining a sample 
statistic that departs dramatically from the population parameter, statisticians never 
talk about certainty. They talk, instead, about confidence and probability. The nor-
mal distribution and standard errors play an essential role in making probabilistic 
inferences. A probability is defined as the likelihood of the occurrence of an event 
or set of events.

The researcher’s most common tool for expressing how much confidence 
he or she has that a sample statistic reflects the true population parameter is the 
95 percent confidence interval (95% CI). To understand it, recall the thought 
experiment where you know the population parameter and have researchers 
repeatedly try to estimate the parameter from random samples. The 95% CI is 
defined as the interval around a sample statistic that would contain the true popu-
lation parameter in 95 percent of repeated samples. Less frequently, researchers 
use 90% and 99% CIs, which would be the intervals around sample statistics that 
would contain the true population parameters in 90 and 99 percent of repeated 
samples, respectively.

A 95% CI consists of two numbers: the interval’s lower boundary and the inter-
val’s upper boundary. Thanks to the central limit theorem, we know that the bound-
aries of the 95% CI are defined by the sample statistic minus 1.96 standard errors 
at the lower end and the sample statistic plus 1.96 standard errors at the upper end. 
Therefore, the sample statistic is always exactly the midpoint of the 95% CI.
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95%CI lower boundary Sample statistic Standard error= − ×( )1 96.

95%CI boundary Sample statistic 1.96 Standard errorupper = ×+ ( )

These formulas for finding the lower and upper boundaries of a 95% CI work 
for sample proportions, regardless of sample size. They work for sample means 
too, provided the sample size is large. When we estimate sample means from small 
samples, some adjustments that we discuss in the last section in this chapter are 
necessary.

Let’s assume again that researchers estimate the proportion of students who 
voted in the last presidential election from a random sample of n = 100 and get a 
sample proportion of .80. We already know how to calculate the standard error of 
this estimate: . .8 2 100× ÷  = .0016  = .03. Let’s use this information to find the 
95% CI for the sample proportion.

95 80 1 96 04

80 08
72

%CI lower boundary = − ×( )
= −
=

. . .

. .

.

95 80 1 96 04

80 08
88

%CI upper boundary = + ×( )
= +
=

. . .

. .

.

The 95% CI in this example is [.72, .88]. We can report the CI’s upper and 
lower boundaries as a pair of values in square brackets, separated by a comma. Square 
brackets signify that the interval includes the boundaries, whereas rounded paren-
theses signify that the boundaries are just outside the CI.

The 95 percent standard of confidence is widely applied, but its precise bound-
aries can be a bit tedious to calculate quickly. Therefore, it is customary to round off 
1.96 to 2.0, resulting in a useful shortcut. To find the 95% CI for a sample statistic, 
multiply the standard error by 2. Subtract this number from the sample statistic to 
find the lower confidence boundary. Add this number to the sample statistic to find 
the upper confidence boundary. Applying this shortcut, the 95% CI for the propor-
tion of student voters is .80 plus/minus 0.08 (which is 2 times .04). This yields the 
same confidence interval as before, rounding to two decimal places.8

We would use the same approach to find the 90% CI or the 99% CI of the 
proportion of student voters in this n = 100 sample. The only difference is rather 
than marking boundaries at 1.96 standard errors around the sample statistic (2 stan-
dard errors if we’re using the rule of thumb), the 90% CI is the sample mean ± 1.64 
standard errors and the 99% CI is the sample mean ± 2.58 standard errors. With 
a sample proportion of .80 and a standard error equal to .04, the 90% CI would 
be [.73, .87] and the 99% CI would be [.70, .90]. The 90% CI is narrower than its  
95 percent counterpart because it demands less confidence that the interval contains 
the population parameter; the 99 percent CI is wider than the 95% CI because it 
demands more confidence. To summarize:

90 1 64% .CI Sample statistic Standard error= ± ×( )

95 1 96% .CI Sample statistic Standard error= ± ×( )

99 2 48% .CI Sample statistic Standard error= ± ×( )
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What exactly do confidence intervals tell us? This has been a source of phil-
osophical debate among political methodologists. As a general proposition, there 
is a 95 percent probability that a 95% CI contains the true population parameter. 
However, when you estimate a sample statistic and find the lower and upper bound-
aries of its 95% CI, that specific interval either contains that true population param-
eter or it does not. Imagine being blindfolded and randomly picking a mean from 
Figure 6-1’s distribution of sample proportions. There’s a 95 percent probability 
that a 95% CI around the proportion you pick will contain the true population 
proportion (which we said is .75), but once you make your selection, the probability 
that proportion’s 95% CI contains the true population parameter is either 0 or 1. To 
see this distinction more clearly, consider a series of twenty hypothetical 95% CIs 
(Figure 6-8) produced from a population proportion of .75 and sample size n = 100.

Each horizontal line segment in Figure 6-8 shows a sample proportion and its cor-
responding 95% CI. As you can see, over repeated samples, 95 percent of these confidence 
intervals contain the true population parameter—in this case, the population propor-
tion .75 represented by the vertical gray line. The fifteenth sample’s CI misses the true 
value completely, however; the probability that this fifteenth sample’s CI contains the 
population parameter is 0. When you conduct analysis using sample data, you don’t know 
whether the CI for your sample statistic contains the population parameter, but you can 
state that 95% CIs have a .95 probability of containing the population parameter.

Figure 6-8  95 Percent Confidence Intervals from Twenty Samples
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SAMPLE SIZE AND THE  
MARGIN OF ERROR OF A POLL

As consumers of popular media, we are more likely to encounter percentages or 
proportions than arithmetic means. Sometimes, of course, the sampling proce-
dures used by media-based organizations are questionable, and their reported 
results should be consumed with a grain (or more) of salt. Reputable pollsters 
always report some measure of random sampling error (normally following the 
form “margin of error ± . . .”). The margin of error of a poll is an alternative way of 
communicating the boundaries of the 95% CI. You are now well equipped to inter-
pret such percentages when you encounter them in news stories. Understanding 
the relationship between a poll’s sample size and its margin of error is also useful 
for planning survey research.

Because of the nonlinear relationship between sample size and random sam-
pling error, samples that seem rather small nonetheless carry an acceptable amount 
of random error. Consider three samples: n = 400, n = 1,600, and n = 2,500. The 
sample size component of the smallest sample size is the square root of 400, which 
is equal to 20. So, for a sample of this size, we would calculate random sampling 
error by dividing the variation component by 20. Random sampling error for the 
next sample would be the variation component divided by the square root of 1,600, 
which is equal to 40. So, by going from a sample size of 400 to a sample size of 1,600, 
we can cut random sampling in half, from pq /20 to pq /40. Thus, if resources 
permit, obtaining a sample of n = 1,600 would be a smart move. Random sampling 
error for the largest sample would be equal to the variation component divided by 
the square root of 2,500, which is equal to pq /50. Boosting the sample size by  
900 cases—from 1,600 to 2,500—occasions a modest increase in the sample size 
component, from 40 to 50. The benefits of increasing sample size are subject to 
diminishing returns; each person added to the sample reduces random sampling 
error less than the last person did.

In order to use the standard error of proportion formula to determine how large 
a sample must be to achieve a desired margin of error, the researcher must make an 
educated guess about the expected sample proportion. The sample proportion (p) 
and its complement (q) appear in the numerator of the standard error of proportion 
formula, pq n/ . To be on the safe side, one can assume that public opinion on the 
poll question will be as varied as can be, with p = .5 and q = .5. Recall from Chapter 2 
that a nominal or ordinal-level variable has high dispersion when each value has the 
same number of cases. (The value of pq  is also greatest when p and q equal .5.) If 
one makes this assumption for survey planning purposes, the margin of error of the 
poll (in proportion form) will be ± ×. .1 96 25 / n . This equation can be simplified 
to find the required sample size for a desired margin of error:

Sample size needed
Margin of error

=
( )

.98
2

This equation is sometimes further simplified as n = 1/ME2, where ME is the 
desired margin of error expressed as a proportion. If the researcher wants to ensure a 
poll will yield no worse than a margin of error of ±2%, the researcher needs a sample 
with 2,450 respondents (n = .98/.022). Figure 6-9 provides a graphic representation 
of the relationship between sample size and the margin of error of a poll. Note that 
the x-axis values are displayed on a log base-10 scale (for a definition and discussion 
of logarithms see Chapter 9).
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188      The Essentials of Political Analysis

Sophisticated sampling is an expensive undertaking, and survey designers must 
balance the cost of drawing larger samples against the payoff in precision. For this 
reason, most of the surveys you see and read about have sample sizes in the 1,500 
to 2,000 range, an acceptable comfort range for estimating a population parameter. 
Samples this size strike a reasonable balance between precision and cost. Samples 
this large can estimate population parameters with a 3 percent margin of error with a 
reasonable expenditure of time and money. At the same time, there is no rule setting 
minimum and maximum sample sizes. Internet services have dramatically decreased 
the cost of conducting polls, so we might expect to see larger samples with lower 
margins of error become the new standard.

INFERENCES WITH SMALL BATCHES: 
THE STUDENT’S t-DISTRIBUTION

In this section, we discuss an important qualification to our preceding discussion 
of statistical inferences about sample means. As we noted above, to determine the 
standard error of the sample mean—the degree to which the sample mean varies, 
by chance, from the population mean—the researcher needs to know the popu-
lation standard deviation (signified by σ, the numerator of the standard error of 
mean formula). If that population parameter is unavailable, as it usually is, then the 
researcher at least needs an estimate of the population standard deviation. In most 
realistic research situations, the analyst has a random sample—and that’s it. Just 
as the researcher can use the sample mean to estimate the population mean, the 
researcher can use the sample standard deviation to estimate the population standard 
deviation in calculating the standard error of the mean. So, in practice, the standard 
error of the sample mean is calculated as follows:

Standard error of sample mean
Sample standard deviation

=
n

Figure 6-9  Sample Size and Percentage Margin of Error
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Chapter Six  •  Foundations of Statistical Inference      189

For fair-sized samples, substituting the sample standard deviation for σ works 
fine and the researcher can expect sample means to follow a normal distribution on 
repeated samples.9 Remember, though, that the central limit theorem only applies 
when the sample size is “large enough” and doesn’t apply when the sample size is too 
small. Take another look at the second and third columns of Figure 6-2. If the sample 
sizes are large enough, the expected sampling distributions take the signature bell-
curve shape, but when n = 5 or n = 15, the expected sampling distributions are not 
smooth and symmetrical. When you are analyzing smaller samples, or if you have 
divided up a large sample into smaller subsamples for separate analyses, the exact 
properties of the normal distribution may no longer be applied in making infer-
ences about means. This small sample problem requires us to adjust how we make  
inferences a bit to avoid overconfidence.

When the sample size is “too small” for the central limit theorem and the  
normal distribution, we instead use a similar distribution, the Student’s t-distribution 
(see Box 6-1). The Student’s t-distribution is a probability distribution that can 
be used for making inferences about a population mean when the sample size is 
relatively small. This special qualification does not apply to making inferences about 
proportions.10

When we estimate the mean value of a variable in a small sample, we use the standard 
error of mean formula above, using the sample standard deviation as our best estimate of 
the population standard deviation. In other words, we calculate the standard error of the 
mean the same way, no matter what size sample we’re analyzing. But we take a differ-
ent approach when we use the standard error of the mean to make inferences about the 
expected sampling distribution and to calculate confidence intervals. We expect the mean 
of a sample to follow the Student’s t-distribution, not a normal distribution.

Normal distributions always have the signature “bell-curve” shape; the 
Student’s t-distribution is more varied in appearance. It might help to think of the 
t-distribution as a normal distribution that’s learned to relax (it may have had a beer 
or two). All t-distributions have lower peaks and thicker tails than the normal dis-
tribution (see Figure 6-11). The shape of the Student’s t-distribution depends on its 
degrees of freedom. Degrees of freedom are a statistical property of a large family 
of distributions, including the Student’s t-distribution. The number of degrees of 
freedom is equal to the sample size, n, minus the number of parameters being esti-
mated by the sample. If we are using n = 15 observations to estimate a population 
mean, we would have n − 1 degrees of freedom: 15 − 1 = 14 degrees of freedom. The 
smaller the sample size, the lower the degrees of freedom and the more relaxed the 
t-distribution. As sample size and degrees of freedom increase, t-distributions look 
more and more like the normal distribution, so much so that they are quickly indis-
tinguishable. As you can see in Figure 6-11, the t-distribution with four degrees of 
freedom (df = 4) has a noticeably lower peak than the standard normal distribution 
and greater area in the tails of the distribution (compare the height of the lines 
below −2 standard errors and above +2 standard errors). As degrees of freedom 
increase, so too does the t-distribution’s peak, lowering its right and left tails. With 
just 39 degrees of freedom, the difference between a t-distribution and the normal 
distribution is barely noticeable.

When we make inferences assuming a normal-shaped sampling distribution, we 
do not have to worry about the size of the sample, so we calculate a value of Z and 
then find the area of the curve above that value. In estimation using the Student’s 
t-distribution, however, the sample size determines the shape of the distribution. 
Because the specific shape of the Student’s t-distribution depends on the sample size, 
the critical values listed in Table 6-2 look different from those listed in Table 6-1, 
which showed the area in the tails of the normal distribution for different values of Z.
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190      The Essentials of Political Analysis

As a brewer in the Arthur Guinness & Son 
Brewery in Dublin, Ireland in the early 1900s, 
William Gosset experimented with different 
methods of brewing what was the most popu-
lar beer in the world at that time. How could he 
know whether manipulating some variable in 
the brewing process significantly affected the 
results? Gosset began to realize that the funda-
mental difference between the experiments he 
conducted and those he studied in school was 
sample size. Producing just one batch of a new 
recipe meant making a lot of beer, so thousands 
of independent observations of an experimen-
tal manipulation were not practical. However, 
this also meant that Gosset’s experiments did 
not satisfy the minimum assumptions for mak-
ing statistical inferences using the central limit 
theorem and the normal distribution.

Gosset discovered a new probability dis-
tribution that helped him make proper infer-
ences about means based on small sample 
sizes. It was a profound discovery with impli-
cations far beyond beer making, but there 
was a problem with publishing it. To pro-
tect its trade secrets, the Guinness brewery 
didn’t allow its employees to publish papers 
about their research. Fortunately, Gosset 
persisted and reached a compromise with 
his employer: rather than publish the paper 
under his own name, he would publish it 
anonymously as “Student” (see Figure 6-10). 
The probability distribution we use to make 
inferences about means based on small sam-
ple sizes became known as Student’s t-distri-
bution. Gosset worked for Guinness until his 
death at age 61.

BOX 6-1
Why Is It Called Student’s t-Distribution?

Figure 6-10  Student and His Famous Paper

     

As you know, the shape of a t-distribution depends on degrees of freedom. Varying 
degrees of freedom are listed in the first column of Table 6-2, including several seen 
in Figure 6-11. Now examine the columns of Table 6-2, under the heading “Critical 
Value for Significance Level (Two-Tailed).” The columns are labeled with different 
percentages: 10%, 5%, 1%, and .1%. The entries in each column are values of t 
(the t-distribution’s standardized counterpart to the normal distribution’s Z-values).  

William Gosset (“Student”)

Source: Gosset: User Wujaszek on pl.wikipedia [Public domain].
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Figure 6-11 � t-Distributions Compared to a Standard Normal 
Distribution
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Table 6-2  Critical Values of Student’s t-Distribution

Degrees of 
Freedom (df)

Critical Value for Significance Level (Two-Tailed)

10% 5% 1% .1%

       4† 2.13 2.78 4.60 8.61

       5 2.02 2.57 4.03 6.87

       6 1.94 2.45 3.71 5.96

       7 1.90 2.37 3.50 5.41

       8 1.86 2.31 3.36 5.04

       9† 1.83 2.26 3.25 4.78

     10 1.81 2.23 3.17 4.59

     11 1.80 2.20 3.11 4.44

     12 1.78 2.18 3.05 4.32

     13 1.77 2.16 3.01 4.22

     14† 1.76 2.15 2.98 4.14

     15 1.75 2.13 2.95 4.07

(Continued)
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192      The Essentials of Political Analysis

Degrees of 
Freedom (df)

Critical Value for Significance Level (Two-Tailed)

10% 5% 1% .1%

     16 1.75 2.12 2.92 4.01

     17 1.74 2.11 2.90 3.97

     18 1.73 2.10 2.88 3.92

     19 1.73 2.09 2.86 3.88

     20 1.73 2.09 2.85 3.85

     21 1.72 2.08 2.83 3.82

     22 1.72 2.07 2.82 3.79

     23 1.71 2.07 2.81 3.77

     24 1.71 2.06 2.80 3.75

     25 1.71 2.06 2.79 3.73

     26 1.71 2.06 2.78 3.71

     27 1.70 2.05 2.77 3.69

     28 1.70 2.05 2.76 3.67

     29 1.70 2.05 2.76 3.66

     30 1.70 2.04 2.75 3.65

     40 1.68 2.02 2.70 3.55

     60 1.67 2.00 2.66 3.46

     90 1.66 1.99 2.63 3.40

   100 1.66 1.98 2.63 3.39

   120 1.66 1.98 2.62 3.37

1,000 1.65 1.96 2.58 3.30

Normal (Z) 1.64 1.96 2.58 3.29

†These Student’s t-distributions are plotted in Figure 6-11.

Table 6-2  (Continued)

Each cell tells you the absolute value of t beyond which lies 10, 5, 1 and .1 percent of a 
t-distribution. For example, the top-most cell in the 10% column says that, with four 
degrees of freedom, 10 percent of a t-distribution lies beyond t-values of ±2.13. Reading 
across the row, you can see that 5 percent of the same t-distribution lies beyond ±2.78, 1 
percent of the distribution falls past ±4.60, and the interval needed to capture 99.9 percent 
of the distribution’s area stretches way out to ±8.61. That sets a very wide boundary for 
random sampling error.
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Chapter Six  •  Foundations of Statistical Inference      193

When we make inferences about means with small samples, the boundaries of our 
95% CIs are not fixed at ±1.96 standard errors. When the population standard devia-
tion is unknown and the sample size is small, the t-distribution sets wider boundaries 
than ±1.96 standard errors and, therefore, permits less confidence in the accuracy of a 
sample statistic. How much wider the 95% CI is than ±1.96 standard errors depends 
on how large a sample is being used for making inferences. As sample sizes increase, the 
t-distribution adjusts these boundaries accordingly, narrowing the limits of random sam-
pling error and allowing more confidence in the measurements made from the sample.

Although the terminology used to describe the t-distribution is different from 
that used to describe the normal distribution, the procedures for drawing inferences 
about a population parameter are essentially the same. To illustrate, let’s assume 
again that researchers record feeling thermometer values from a random sample 
with n = 15, get a sample mean of 58, and a sample standard deviation of 24.8. We 
already know how to calculate the standard error of this estimate: 24 8 100 2 48. ./ = .  
With only fifteen observations in the sample, we don’t want to be overly confident 
in our estimate of the population mean. In a repeated sample, we would expect this 
sample mean to follow a t-distribution with 14 degrees of freedom (see the df = 14 
distribution in Figure 6-11). How much wider do we set the boundaries of a 95% CI 
when we expect this sampling distribution instead of a normal distribution? Refer 
to Table 6-2 and locate 14 degrees of freedom and the 5% significance level; 2.15 is 
the critical value to use. With a small sample like this, we use 2.15 as the critical value 
(rather than 1.96). Let’s use this information to find the 95% CI for a sample mean.

95 58 2 15 2 48

58 5 33
52 67

%CI lower boundary = − ×( )
= −
=

. .

.
.

95 58 2 15 2 48

58 5 33
63 33

%CI upper boundary = + ×( )
= +
=

. .

.
.

The 95% CI in this example is [52.67, 63.33]. It is wider than the 95% CI we 
would get if we had used a large sample and the normal distribution.11 To calculate the 
90% or 99% CI, we would take the same approach, adjusting the critical value to cor-
respond to 10 percent and 1 percent significance for a t-distribution with 14 degrees 
of freedom (referring again to Table 6-2, those critical values are 1.76 and 2.98).

The signature of the Student’s t-distribution is that it adjusts the confidence 
interval, depending on the size of the sample. Indeed, notice what happens to the 
t-values in the 5% column as the sample size (and thus degrees of freedom) increases. 
As sample size increases, the critical value of t that marks the 5 percent boundary 
begins to decrease. More degrees of freedom mean less random sampling error and, 
thus, more confidence in the sample statistic. For comparison purposes, the value of 
Z that is associated with the 5 percent benchmark, Z = 1.96, appears in the bottom cell 
of the 5% column of Table 6-2. Notice that the critical value of t for a large sample 
(degrees of freedom = 1,000) rounds to ±1.96. So, for samples with many degrees of 
freedom, the Student’s t-distribution closely approximates the normal distribution.

With samples as small as 40 observations, the t-distribution so closely resembles 
the normal distribution that the empirical rule’s convenient benchmarks for 1, 2, and 
3 standard errors are useful. Recall that the 95% CI can be determined quickly by 
multiplying the standard error by 2, then subtracting this number from the sample 
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194      The Essentials of Political Analysis

mean to find the lower confidence boundary and adding this number to the sample 
mean to find the upper confidence boundary. This is a good rule, because it works 
well in most situations. As you can see from Table 6-2, even for fairly small samples—
those having 40 or more degrees of freedom—the shortcut will provide an adequate 
estimate of the 95% CI.

SUMMARY

Just how accurately does a sample statistic estimate a 
population parameter? You now know that the answer 
is a resounding “It depends on three factors.” First, it 
depends on whether the sample was randomly selected 
from the population. As discussed in Chapter 4,  
by ensuring that each member of the population has 
an equal chance of being included in the sample, the 
researcher eliminates “bad” error, systematic error, 
from the sample statistic. A random sample permits 
the researcher to estimate the amount of “good” 
error, random error, contained in the sample statistic. 
Second, it depends on the size of the random sample. 
Larger samples yield better estimates than smaller 
samples. But you now understand why samples that 
seem small can nonetheless provide a solid basis for 
inference. Third, it depends on the amount of varia-
tion in the population. You are now familiar with a key 
measure of variation for interval-level variables, the 
standard deviation. And you know how the standard 
deviation works together with sample size in bracket-
ing the confidence interval for a sample mean.

Many symbols and terms were discussed in this 
chapter. Table 6-3 provides a list, arranged in 
roughly the order in which these terms and sym-
bols were introduced. Let’s review them. The 
population mean (µ) is the parameter of chief 
concern—the measure of central tendency that 
the researcher is most interested in estimating. 
Variation around the population mean is deter-
mined by the standard deviation (σ), the measure 
of dispersion that summarizes how much cluster-
ing or spread exists in the population. The relative 
position of any number in a list can be expressed 
as a Z score, the number of standard units that the 
number falls above or below the mean. The stan-
dard deviation and the standard error are standard 
units of deviation from the mean that can be used 
to convert raw values into Z scores. By knowing 
Z and applying the inferential properties of the  
normal distribution, we can decide how closely  
the sample mean, symbolized by x , approximates 
the population mean.

Table 6-3  Terms and Symbols and the Roles They Play in Inference

Term or Symbol 
(Pronunciation)

What It Is or  
What It Does What Role It Plays in Sampling and Inference

μ (“mew”) Population mean Usually μ is unknown and is estimated by x

N Population size Usually N is unknown and assumed to be  
very large

σ (“sigma”) Population standard 
deviation

Measures variation in a population 
characteristic. The variation component of 
random sampling error

Z score Converts raw 
deviations from μ into 
standard units

Defines the tick marks of the normal distribution; 
68 percent of the distribution lies between  
Z = −1 and Z = +1; 95 percent of the distribution lies 
between Z = −1.96 and Z = +1.96

x  (“x bar”) Sample mean Sample statistic that estimates μ
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Term or Symbol 
(Pronunciation)

What It Is or  
What It Does What Role It Plays in Sampling and Inference

n Sample size The sample size component of random sampling 
error is n

s Sample standard 
deviation

Substitutes for σ as the variation component of 
random sampling error when σ is unknown

Standard error of the 
sample mean

Measures how much 
x departs, by chance, 
from μ

Random sampling error

Equal to σ / n, if σ is known

Equal to s/ n, if σ is unknown

95 percent confidence 
interval (95% CI)

The interval in which 
95 percent of all 
possible values of x  
will fall by chance

Defined by x ± 1 96.  standard errors in normal 
estimation. Can usually be determined by 
the shortcut rule: x ± 2  standard errors in all 
estimation

p Proportion of a sample 
falling into one value 
of a nominal or ordinal 
variable

Sample estimate of a population proportion

q Proportion of a sample 
falling into all other 
values of a nominal or 
ordinal variable

Equal to 1 − p

Standard error of a 
sample proportion

Measures how much 
p departs, by chance, 
from a population 
proportion

Defined by pq n/ . Ordinarily can be applied 
in finding the 95 percent confidence interval of p, 
using normal estimation

We know that the sample mean will be equal to 
the population mean, plus any random sampling 
error that was introduced in drawing the sample. 
The size of this error, termed the standard error 
of the sample mean, is determined by σ and the 
sample size (n). Again applying the normal distribu-
tion, the researcher can estimate the 95% CI for 
x , the boundaries within which 95 percent of all 
possible sample means will fall by chance. Z scores 
are directly applied here. By multiplying the stand-
ard error by Z = 1.96—or rounding up to 2 by the 

simplifying shortcut—the researcher can figure the 
probable boundaries of the true population mean. 
In practice, the population standard deviation is 
rarely known, so the researcher uses the sample 
standard deviation, denoted by s, as a stand-in for 
σ, and then applies the Student’s t-distribution. As 
you know, much political research, especially survey 
research, involves nominal and ordinal variables. In 
this chapter we also discussed how normal estima-
tion may be usefully applied in estimating the 95% 
CI for a sample proportion.

Take a closer look. edge.sagepub.com/pollock

KEY TERMS

95 percent confidence 
interval  (p. 184)

census  (p. 168)
central limit theorem  (p. 172)

cumulative density  (p. 176)
degrees of freedom  (p. 189)
empirical rule  (p. 174)
inferential statistics  (p. 168)

normal distribution  (p. 174)
population  (p. 168)
population parameter  (p. 168)
probability  (p. 184)
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EXERCISES

1.	 Each of the following proportions is based on 
survey responses. For each proportion, use the 
±2 shortcut to determine the 95% CI.

A.	 When asked if they are a government 
employee, .20 said “yes” (n = 121).

B.	 When asked if marijuana should be legal 
or illegal, .47 said “legal” (n = 100).

C.	 Of the individuals in a survey, .40 still live 
in the same city they lived in when they 
were 16 years of age (n = 225).

2.	 In response to a GSS question in 2006 about 
the number of hours spent per day watching 
television, the responses by the fifteen subjects 
who identified themselves as Buddhist were  
0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 2, 3, 4, 4, and 5. For  
these fifteen subjects, the mean number of 
hours spent per day watching television is  
1.93 hours.

A.	 What is the standard error of this mean 
estimate?

B.	 Using the ±2 shortcut, calculate the  
95% CI.

3.	 A recent survey asked college freshmen to 
correctly identify as many U.S. Supreme 
Court justices as possible. Of the 816 students 
who responded to this survey, the mean 
number of justices correctly identified was 
1.81 with a standard deviation of 1.98.

A.	 What is the standard error of this mean 
estimate?

B.	 Using the ±2 shortcut, calculate the  
95% CI.

4.	 Professor Kingsfield’s class follows very strict 
grading guidelines. Assume that student 
averages in Kingfield’s class are normally 

distributed with a mean of 62 points and a 
standard deviation of 12 points. Professor 
Kingsfield wants letter grades in his class to 
have a very specific distribution: 68 percent 
of students get Cs, 13.5 percent get Ds, 13.5 
percent get Bs, 2.5 percent receive Fs, and the 
top 2.5 percent get As. What should be the 
numeric range for each letter grade? Refer to 
Figure 6-5 for help answering this question.

A.	 Students with ____ or above get As.

B.	 Students with averages between ____ and 
____ get Bs.

C.	 Students with averages between ____ and 
____ get Cs.

D.	 Students with averages between ____ and 
____ get Ds.

E.	 Students with ____ or below get Fs.

5.	 Some states allow voters to pass laws through 
ballot initiatives. In most states that allow 
ballot initiatives, a simple majority is all that’s 
needed. Before backing a ballot initiative, a 
political organization wants to know whether 
the majority of a state’s voters would be in 
favor of it. The organization wants to know 
what size random sample is required to 
estimate the percentage of voters who favor 
the initiative with different margins of error. 
Find the sample size needed to estimate 
support for the initiative with 5, 3, 1, and 
0 percent margins of error. If any of these 
sample sizes can’t be calculated, explain why.

6.	 Sociologists have conducted much interesting 
research on gender stereotypes in American 
society. A curious aspect of stereotypes is that 
people tend to perceive differences between 
groups to be greater than they actually are. 

random sample  (p. 169)
random sampling error  (p. 169)
sample  (p. 168)
sample statistic  (p. 169)

sampling distribution  (p. 170)
standard error  (p. 169)
standard normal  

distribution  (p. 176)

standardization  (p. 174)
Student’s t-distribution  (p. 189)
Z score  (p. 174)

Screencasts

Chapter 6, Pt. 1 Chapter 6, Pt. 2 Chapter 6, Pt. 3 Chapter 6, Pt. 4
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This suggests, for example, that when asked 
about the heights of men and women, survey 
respondents would tend to perceive men to 
be taller than women. Suppose you wanted 
to test this notion that individuals perceive a 
greater height difference between men and 
women than exists in the population. In the 
population, men, on average, are 5 inches taller 
than women. So the true population difference 
between men and women is 5 inches.

You obtain a random sample of 400 individuals. 
For each respondent, you record his or her 
perceptions of the difference between male and 
female heights. In your sample, you find that 
the mean difference in perceived heights is  
6 inches. So respondents perceive that men are 
6 inches taller than women. The sample stand-
ard deviation is 4 inches.

A.	 Calculate the standard error of the sample 
mean.

B.	 Using the ±2 shortcut, calculate the 95% 
CI.

C.	 If the true gender difference is 5 inches, 
can you infer from your sample that 

individuals perceive a greater difference 
than actually exists? Explain.

7.	 The sheriff is concerned about speeders on a 
certain stretch of county road. The sheriff, a 
retired statistician, sets up a radar device and, 
over a long period of time, obtains data on the 
entire population of vehicles using the road. 
The mean vehicle speed: 50 miles per hour.

A.	 The sheriff cracks down on speeders. 
Following the crackdown, the sheriff takes 
a random sample (n = 100) of vehicle 
speeds on the roadway. The sample data: 
sample mean, 47 mph; sample standard 
deviation, 8 mph. (i) Using the sample 
standard deviation as a substitute for the 
population standard deviation, what is the 
standard error of the sample mean?  
(ii) Using the ±2 shortcut, what is the  
95% CI of the sample mean?

B.	 A skeptical county commissioner claims 
that the crackdown had no effect and that 
average speed on the roadway is still 50 
mph. (i) Is the skeptic on solid statistical 
ground? (ii) Explain how you know.

NOTES

  1.	 The terms population characteristic and population 
parameter are synonymous and are used interchange-
ably in this chapter.

  2.	 Computational methods that simulate data to 
approximate solutions are sometimes called Monte 
Carlo simulations (a reference to the origins of meth-
ods to study games of chance played in Monte Carlo’s 
famous casinos). For example, rather than analyti-
cally deriving the probability of winning a game of 
Solitaire, you could have a computer play many 
hands of Solitaire and estimate the probability of 
winning.

  3.	 Any number of distributions of thermometer scores 
in the population could produce these parameters. 
We don’t need to assume thermometer scores have a 
defined distribution in the population.

  4.	 Unlike sample statistics, which are represented by 
ordinary letters, population parameters are always 
symbolized by Greek letters. A population mean is 
symbolized by the Greek letter µ (pronounced 
“mew”).

  5.	 The sample size is denoted by a lowercase n. By con-
trast, a population size is denoted by an uppercase N.

  6.	 The simulations presented in Figure 6-6 and  
Figure 6-7 were created using the Stata program, 
bxmodel (version 1.2, January 31, 2006), written by 
Philip B. Ender, Statist ical Computing and 
Consulting UCLA, Academic Technology Services.

  7.	 If you transform a nominal- or ordinal-level variable 
into a dummy variable with values coded as 0 and 1, 
the dummy variable’s mean equal the proportion of 
1s (p) and the dummy variable’s standard deviation is 
nearly the same as the square root of the product of p 
and 1 − p (the latter value is slightly smaller).

  8.	 Statisticians typically detest imprecision, but this 
shortcut rule is acceptable because it is conservative; 
that is, it widens slightly the bandwidth of the ran-
dom error associated with the 95% CI.

  9.	 Normal estimation may be used for samples of  
n = 100 or more. See David Knoke, George W. 
Bohrnstedt, and Alisa Potter Mee, Statistics for Social 

Copyright ©2020 by SAGE Publications, Inc.  
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute



198      The Essentials of Political Analysis

Data Analysis, 4th ed. (Belmont, Calif.: Wadsworth/
Thomson, 2002), 128.

10.	 The small sample issue doesn’t come up when we 
make inferences about proportions because we know, 
based on how the variable is defined, that the only 
possible variable values in the population are 0 and 1. 

The standard error of proportion formula does not 
systematically underestimate standard error when 
the sample sizes are small the way the standard error 
of mean formula does.

11.	 With a large sample, the same sample mean and 
standard deviation, the 95% CI is [53.14, 62.86].
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