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Visit edge.sagepub 
.com/harris1e to 
watch an R tutorial

1.1  Choosing and learning R

Leslie walked past her adviser’s office and stopped. She backed up to read a flyer hanging on the wall. 
The flyer announced a new local chapter of R-Ladies (see Box 1.1). Yes! she thought. She’d been wanting 
to learn R the entire year.

1.1  R-Ladies

R-Ladies is a global group with chapters in cities around the world. The mission of R-Ladies is to 
increase gender diversity in the R community. To learn more, visit the R-Ladies Global website at 
https://rladies.org/ and the R-Ladies Global Twitter feed, @RLadiesGlobal.

Leslie arrived at the R-Ladies event early. “Hi, I’m Leslie,” she told the first woman she met.

“Hey! Great to meet you. I’m Nancy,” answered the woman as they shook hands.

“And I’m Kiara, one of Nancy’s friends,” said another woman, half-hugging Nancy as she reached out to 
shake Leslie’s hand. “Can we guess you’re here to learn more about R?”

Leslie nodded.

“You’ve come to the right place,” said Nancy. “But let’s introduce ourselves first. I’m an experienced data 
scientist working for a biotech startup, and I love to code.”

“You might call me a data management guru,” Kiara said. “I just gave notice at my job with a large online 
retailer because I’m starting a job with the Federal Reserve next month.”

Leslie asked Kiara and Nancy about their experience with R. “What do you like about R compared to 
other traditional statistics software options I’ve been learning in my degree program?”

Nancy thought for a minute and answered, “Three main reasons: cost, contributors, and community.”

First, Nancy explained, “The cost of R can’t be beat. R is free, while licenses for other statistics software 
can cost hundreds of dollars for individuals and many thousands for businesses. While large, successful 
businesses and universities can often afford these licenses, the cost can be an insurmountable burden 
for small businesses, nonprofits, students, teachers, and researchers.”

Kiara added, “The cost of the tools used in data science can be a social justice issue [Krishnaswamy & 
Marinova, 2012; Sullivan, 2011]. With R, students, researchers, and professionals in settings with lim-
ited resources have just as much access as an executive in a fancy high-rise in the middle of downtown 
San Francisco.”

The second thing that Nancy loved about R was the contributors. She explained, “R is 
not only free but it is also open source. Anyone can contribute to it!”

Leslie looked confused. Nancy explained that anyone can write a package in the R language 
and contribute the package to a repository that is accessible online. Packages are small 
pieces of software that are often developed to do one specific thing or a set of related things.
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2  ■   Statistics With R

Kiara offered, “A package I use a lot is called tidyverse. The tidyverse package includes functions 
that are useful for common data management tasks like recoding variables. By using code that someone 
else has written and made available, I don’t have to write long programs from scratch to do the typical 
things I do on a regular basis.”

Leslie asked, “OK, but how is it possible for everyone to have access to software written by anyone in 
the world?”

Kiara explained that people write packages like tidyverse and submit them to the Comprehensive R 
Archive Network, also known as CRAN. After volunteers and resources from the nonprofit R Foundation 
(https://www.r-project.org/foundation/) review them, they decide whether to reject or accept new 
packages. New packages are added to the CRAN (CRAN Repository Policy, n.d.) for everyone to access.

Leslie nodded. Then Kiara pulled up the contributed packages website and showed Leslie the more than 
14,000 packages available on the CRAN (https://cran.r-project.org/submit.html). Leslie was still a little 
confused about the idea of a package.

Kiara said, “Think of a package as a computer program that you open when you want to do a specific 
thing. For example, if you wanted to create a slide show, you might open the Microsoft PowerPoint 
program. But if you wanted to do a data management or analysis task, you would use packages in R. 
Unlike PowerPoint, however, anyone in the world can write a package and contribute it to the CRAN 
for anyone in the world to use.”

Nancy had saved the best for last: the R community. She explained, “The R community is inclusive and 
active online, and R community groups like R-Ladies Global [Daish et al., 2019] specifically support 
voices that are underrepresented in the R community and in data science. Plus, R users love to share 
their new projects and help one another.”

Kiara agreed enthusiastically. “I look at (and post to) the #rstats hashtag often on Twitter and keep 
learning great new features of R and R packages.”

Kiara shared two more benefits of using R. The first was great graphics. She explained that R is extraor-
dinary for its ability to create high-quality visualizations of data. “The code is extremely flexible, allowing 
users to customize graphics in nearly any way they can imagine,” she said. The second benefit was that R is a 
great tool for conducting analyses that are reproducible by someone else. She noted that the R community 
is actively building and supporting new packages and other tools that support reproducible workflows.

Nancy mentioned that reproducibility has become an important part of science as the scientific com-
munity addressed the problem of poor and unethical scientific practices exposed in published research 
(Steen et al., 2013) (see Box 1.2).

“This all sounds great,” said Leslie. “What’s the catch?”

Nancy and Kiara looked at each other for a minute and smiled.

“OK,” Kiara said. “I admit there are a few things that are challenging about R, but they are related to the 
reasons that R is great.” The first challenge, she explained, is that the contributors to R can be anyone 
from anywhere. With such a broad range of people creating packages for R, the packages end up follow-
ing different formats or rules. This means that learning R can be tricky sometimes when a function or 
package does not work the way other, similar packages do.

Nancy agreed and said, “Also, since R is open source, there is no company behind the product that will 
provide technical support. But there is a very active community of R users, which means that solutions to 
problems can often be solved relatively quickly with a tweet, email, or question posted to a message board.”
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Chapter 1: Preparing Data for Analysis and Visualization in R  ■   3

Leslie was intrigued. She wanted to learn more about R. Kiara and Nancy had enjoyed the conversation, 
too.

“Why don’t we form our own small group to teach Leslie about R and learn collaboratively?” Kiara said.

“Let’s do it!” said Nancy. She had been watching a lot of 1980s TV lately, so she suggested that they call 
themselves the “R-Team.” “We’ll be like the 80s show, the A-Team.” Then she sang some of the theme 
song, “If you have a problem, if no one else can help . . .”

“I think we get the idea,” said Kiara, laughing.

“I don’t know that show,” Leslie said, smiling. “But I’m all for joining the R-Team!”

1.2  Kiara’s reproducibility resource:  
Reproducible research

The scientific standard for building evidence is replication, which is repeating 
scientific studies from the beginning and comparing results to see if you 
get the same thing. While replication is ideal, it can be very time-consuming 
and expensive. One alternative to replication is reproducibility. Reproducing 

a study is reanalyzing existing data to determine if you get the same results. Reproducibility 
requires, at a minimum, accessible data and clear instructions for data management and analysis  
(Harris et al., 2019).

Science is currently facing a reproducibility crisis. Recent research has found that

•	 20% to 80% of papers published in a sample of journals included an unclear or unknown 
sample size (Gosselin, n.d.),

•	 up to 40% of papers per journal in a sample of journals included unclear or unknown 
statistical tests (Gosselin, n.d.),

•	 approximately 6% of p-values were reported incorrectly in a sample of psychology papers 
(Nuijten, Hartgerink, Assen, Epskamp, & Wicherts, 2015),

•	 11% of p-values were incorrect in a sample of medical papers (García-Berthou & Alcaraz, 
2004),

•	 just 21% of 67 drug studies and 40% to 60% of 100 psychological studies were 
successfully replicated (Anderson et al., 2016; Open Science Collaboration, 2015; Prinz, 
Schlange, & Asadullah, 2011), and

•	 61% of economics papers were replicated (Camerer et al., 2016).

As you make your way through this text, you will find tips on how to format the code you write to 
manage and analyze your data. Writing, formatting, and annotating your code clearly can increase 
reproducibility.
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4  ■   Statistics With R

1.2  Learning R with publicly available data

Before the evening ended, Kiara recommended that they use publicly available data to learn strategies 
and tools that would be useful in the real world. Who wants to use fake data? Real data may be messier, 
but they are more fun and applicable. Nancy agreed. Since she was especially interested in data about 
current issues in the news, she suggested that they begin by working with data on marijuana policy. She 
pointed out that several states had legalized medicinal and recreational marijuana in the past few years 
and that she’d recently come across legalization questions in a large national publicly available data set 
called the General Social Survey (National Opinion Research Center, 2019) that is available online 
from the National Opinion Research Center (NORC) at the University of Chicago.

Nancy suggested that the first day of R should be focused on getting used to R and preparing data for 
analysis. The R-Team agreed that they would work on preparing data for analysis and would use mari-
juana legalization data to practice the skills. Kiara put together a list of things to achieve in their first 
meeting.

1.3  Achievements to unlock

•	 Achievement 1: Observations and variables

•	 Achievement 2: Using reproducible research practices

•	 Achievement 3: Understanding and changing data types

•	 Achievement 4: Entering or loading data into R

•	 Achievement 5: Identifying and treating missing values

•	 Achievement 6: Building a basic bar chart

1.4  The tricky weed problem

1.4.1 MARIJUANA LEGALIZATION

When Leslie showed up for the first meeting of the R-Team, Kiara offered her coffee and bagels. Leslie was 
enjoying learning R already! To start the meeting, Nancy shared some marijuana legalization research. 
She told them she had learned that California had become the first state to legalize medical marijuana 
in 1996 (“Timeline of Cannabis Laws,” n.d.). She had also learned that marijuana use remained illegal 
under federal law, but that 29 states and the District of Columbia had legalized marijuana at the state 
level for medical or recreational use or both by 2017. With new ballot measures at the state level being 
introduced and passed by voters on a regular basis, as of 2017 there appeared to be momentum for a 
nationwide shift toward legalization.

Nancy refilled her coffee and continued. She said that in 2017, Jeff Sessions was appointed as attorney 
general of the United States. Sessions did not support legalization and regularly expressed interest 
in prosecuting medical marijuana providers. Despite this difficult climate, in 2018, Michigan voters 
approved a ballot measure to legalize recreational cannabis, and voters in Missouri, Oklahoma, and 
Utah passed ballot measures legalizing medical marijuana. In 2018, Vermont became the first to legalize 
recreational marijuana via the state legislature (Wilson, 2018).
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Chapter 1: Preparing Data for Analysis and Visualization in R  ■   5

In 2019, Sessions was replaced as attorney general by William Barr, who testified that he would not 
pursue marijuana companies that complied with state laws and stated that he was supportive of expand-
ing marijuana manufacturing for scientific research (Angell, 2019). However, Barr did not indicate his 
support, or lack of support, for additional legalization. With the existing federal policy and the unstable 
legal environment, it is unclear what will happen next for marijuana policy.

Nancy explained that, with the exception of Vermont, policy changes had primarily happened through 
successful ballot initiatives. She suggested that learning more about support among voters for legaliza-
tion could help understand what is likely to happen next. Leslie and Kiara agreed.

Kiara looked up the General Social Survey, or GSS. She explained to Leslie that the GSS is a large survey 
of U.S. residents conducted each year since 1972, with all of the data available for public use. The GSS 
Data Explorer (https://gssdataexplorer.norc.org) allows people to create a free account and browse the 
data that have been collected in the surveys, which have changed over time. In several years, includ-
ing 2018, the GSS survey included a question asking the survey participants whether they support 
marijuana legalization. Kiara used the Data Explorer to select the marijuana legalization question and 
a question about age.

Leslie asked her why she selected age. Kiara explained that, since marijuana legalization had been pri-
marily up to voters so far, the success of ballot initiatives in the future will depend on the support of 
people of voting age. If younger people are more supportive, this suggests that over time, the electorate 
will become more supportive as the old electorate decreases. Leslie found that to be logical, although a 
little morbid.

Kiara was also interested in how the marijuana legalization and age questions were worded in the GSS 
and what the response options were. She saw that the GSS question was worded as follows:

Do you think the use of marijuana should be legal or not?

Below the question, the different response options were listed: legal, not legal, don’t know, no answer, 
not applicable.

Kiara found the age variable and noticed that the actual question was not shown and just listed as 
“RESPONDENT’S AGE.” The variable is recorded as whole numbers ranging from 18 to 88. At the bot-
tom of the web page about the age variable, the GSS Data Explorer showed that age was recorded as “89 
OR OLDER” for anyone 89 years old or older.

Nancy was eager to put her love of coding to work. She imported the GSS data and created a graph about 
marijuana legalization to get them started (Figure 1.1).

Leslie examined the graph. She saw that the x-axis across the bottom was labeled with the marijuana 
question and the two response categories. She noticed that the y-axis was the percentage who responded. 
The bar with the Yes label went up to just past 60 on the y-axis, indicating that just over 60% of people 
support legalization. The bar labeled No stopped just under 40, so just under 40% do not think mari-
juana should be legal.

Although marijuana legalization appeared to have a lot of support from this first graph, Leslie thought it 
might not be that simple. Policy change depended on who supports marijuana legalization. Are the sup-
porters voters? Do they live in states that have not yet passed legalization policy or in the states that have 
already legalized it? In addition to answering these important questions, one thing that might provide a 
little more information about the future is to examine support by the age of the supporter. If supporters 
tend to be older voters, then enthusiasm for legalization may weaken as the population ages. If support-
ers are younger voters, then enthusiasm for legalization may strengthen as the population ages. Nancy 
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6  ■   Statistics With R

was delighted at a second chance (already) to jump right in and write some additional code so that the 
graph included age groups as well (Figure 1.2).

The R-Team could see a pretty clear pattern in the graph. The x-axis now showed the age groups, while 
the y-axis showed the percentage of people. The bar colors represent Yes and No. Leslie saw that the 
percentage of people supporting legalization looked three times larger than the percentage who did not 

FIGURE 1.1  Support for marijuana legalization among participants in the 2016 General Social Survey

FIGURE 1.2  Support for marijuana legalization by age group among participants in the 2016 General 
Social Survey

Copyright ©2021 by SAGE Publications, Inc.  
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute



Chapter 1: Preparing Data for Analysis and Visualization in R  ■   7

support in the youngest age group. In the oldest age group, those who do not support legalization are 
a much larger group. Leslie noted that, as those in the younger categories age, it appeared that support 
would continue to rise and marijuana legalization ballot initiatives would continue to be supported in 
future elections.

Kiara explained to Leslie that visual representations of data like Figures 1.1 and 1.2 could be pow-
erful tools for understanding and communicating with data. Although the two graphs may look 
simple, there is a lot going on behind the scenes. For the remainder of the R-Team meeting, they 
would focus on how to prepare data for analysis and visualization in R. Preparing data for analysis is 
data management, so Kiara explained she would be the primary guide (with help from Nancy, who 
loves to code).

Kiara told Leslie that she would use R and RStudio for examples and that she highly recommended 
Leslie follow along with R and RStudio on her own computer. To make sure that Leslie could follow 
along, Kiara wrote instructions for installing R and RStudio on a computer (see Box 1.3).

1.3  Kiara’s reproducibility resource:  
Installing R and RStudio

To follow along with this text, install R and RStudio. R can be downloaded 
from The Comprehensive R Archive Network (https://cran.r-project.org). 
Once R has been installed, then install RStudio (https://www.rstudio.com). 
RStudio is an interactive development environment, which in this case makes 

R much easier to use.

Open RStudio (not R) and make sure that everything has installed correctly. There should be a 
window open on the left-hand side of the RStudio screen that says “Console” in small bold print in 
the top left corner. RStudio automatically finds R and runs it for you within this console window.

Check to see if R is working properly by typing in the following code (shown in shading) at the R > 
prompt in the console on the left. Press Enter after typing each line of code to get the results shown 
on the lines that begin with ##:

2+2

## [1] 4

(4+6)/2

## [1] 5

10^2

## [1] 100

a <- 3

a

## [1] 3
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8  ■   Statistics With R

1.5  Achievement 1: Observations and variables

1.5.1 DEFINING OBSERVATIONS AND VARIABLES

Before Kiara began data management tasks, she thought a few vocabulary terms would be useful to discuss. 
Kiara explained that data scientists were usually interested in the characteristics and behaviors of humans 
and organizations. To understand these things, scientists often measured and recorded information about 
people or organizations. For example, a data scientist working on political science might be interested in 
understanding whether income is related to voting. To get this information, she could ask a group of people 
whether they voted in the most recent election and what they earned in income in the most recent year. 
In this case, each person is an observation, and there are two variables, income and voting behavior.

Leslie thought she understood, so she summarized that people being measured are observations and the 
various pieces of information about each person are variables. Kiara nodded in agreement and empha-
sized that observations and variables were key concepts in data science, so it is worth taking a few more 
minutes to think about. Kiara thought a visual representation of observations and variables might be 
useful. She explained that, in a typical data set, observations are the rows and variables are the columns. 
For the example of voting and income, a data set might look like this:

  income voted

1  34000   yes

2 123000    no

3  21500    no

In this very small data set, there are three observations (the rows) and two variables (the columns). The 
first observation is a person with an income of $34,000 who answered “yes” for voted. The second observa-
tion is a person with an income of $123,000 who answered “no” for voted. The third observation is a per-
son with an income of $21,500 who responded “no” for voted. The two variables are income and voted.

1.5.2 ENTERING AND STORING VARIABLES IN R

Now that she had introduced the basic idea for observations and variables, Kiara transitioned into 
talking about R. She explained that R stores information as objects, and then data analysis and data 
management are performed on these stored objects. Before an object can be used in data management 
or analysis in R, it has to be stored in the R environment.

Information is stored as objects in R by assigning the information a name, which can be a single letter or 
some combination of letters and numbers that will serve as the name of the object. Assigning an object 
to a name is done by using an arrow like this: <-. The arrow separates the name of the object on the left 
from the object itself on the right, like this: name <- object. An object can be as simple as one letter 
or number, or as complex as several data sets combined.

Since this was their first task in R, Kiara had Leslie try storing the value of 29—for the number of states 
with legal medical marijuana—in an object called states by typing the following at the R prompt (>) 
in the Console pane of the RStudio window. Leslie had read about the panes in an email from Kiara 
earlier (see Box 1.4) and typed the following at the > prompt:

states <- 29
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Chapter 1: Preparing Data for Analysis and Visualization in R  ■   9

When Leslie tried typing the code and pressing Enter, she noticed that running the states <- 29 
code did not seem to result in anything actually happening in the Console window. Kiara explained 
that when she pressed Enter, the object was stored and there is no result to display. Specifically, R 
is storing the number 29 as an object called states for Leslie to use in her work. While nothing 
happened in the Console, something did happen. Kiara explained that the states object is now 
stored under the Environment tab in the top right pane of the RStudio window. Looking at the tab, 
Leslie noticed that the window shows states and its value of 29 under a heading titled Values 
(Figure 1.3).

Leslie saw that there was a History tab next to the Environment tab in the upper right pane. She clicked 
on the History tab and was surprised to see states <- 29. Kiara explained that this tab holds all of 
the code run since the History pane was last cleared. Nancy admitted this was one of her favorite parts 
of R; you can double-click on any of the code shown in the History pane and R will send the code to the 
Console, ready to run again. There was no need to type anything twice!

1.4  Kiara’s reproducibility resource: RStudio is a pane

When opening RStudio for the first time, you will notice it is divided into sections. 
Each of these sections is a pane in the RStudio window. The default panes are the 
Console (left), Environment & History (top right), and Files & Plots & Connections 
& Packages & Help & Viewer (bottom right). The panes you will use the most 
throughout this text are the Source pane, which opens when a new R script file is 
opened through the File menu, Console, Environment & History, Help, and Plots.

•	 Source: Allows you to write R code

•	 Console: Shows the results of running code

•	 Environment: Shows what objects you currently have open and available in R

•	 History: Keeps a running list of the code you have used so far

•	 Help: Provides information on functions and packages you are using

•	 Plots: Shows graphs you create

If you would like to choose and organize your visible panes, click on the View menu and choose 
Panes to see all of the available options.

FIGURE 1.3  Environment window in RStudio showing the newly created states variable and its value
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10  ■   Statistics With R

Leslie had clearly missed some things in Kiara’s email and wanted to review it again to learn more about 
the panes, but for now she was excited to try double-clicking on the states <- 29 code in the History 
pane. As soon as she did, the code was sent to the Console. Leslie was delighted! This seemed like a great 
feature. To see the value of the states object created in the Console pane, Kiara had Leslie type the 
name of the object, states, at the R > prompt and press Enter. In shaded sections throughout this text, 
the rows starting “##” show the output that will appear after running the R code just above it.

states

## [1] 29

Now the value of states appears!

To demonstrate using the states object in a mathematical expression, Kiara told Leslie to type the 
expression 2 + states at the R > prompt and press Enter.

2 + states

## [1] 31

Leslie noted that 31 is printed in the Console. This is the value of 2 + 29. Before they continued, Kiara 
wanted to explain a few vocabulary terms to Leslie. When Leslie entered code and then hit Enter, the result 
displayed on the screen is the output. For example, the 31 printed after running the code above is output.

1.5.3 ACHIEVEMENT 1: CHECK YOUR UNDERSTANDING

Assign your age in years to an object with your name. Add 5 to the object and press Enter to see how 
old you will be in 5 years.

1.6  Achievement 2: Using reproducible research practices

Before getting too far into coding, Kiara wanted Leslie to be thinking about how to choose things like 
object names so that they are useful not only right now but in the future for anyone (including the origi-
nal author) who relies on the R code. Kiara had learned this lesson well in her many years of coding.

1.6.1 USING COMMENTS TO ORGANIZE AND EXPLAIN CODE

For example, the meaning of the code above—states <- 29, states, and 2 + states—may seem 
obvious right now while they are new, but in a few weeks, it might be less clear why states has a value 
of 29 and what this object means. One way to keep track of the purpose of code is to write short explana-
tions in the code while coding. For this to work, the code needs to be written in the Source pane, which is 
opened by creating a new Script file. To create a new Script file, Kiara told Leslie to go to the File menu in 
the upper left corner of RStudio and choose “New File” from the choices. Then, from the New File menu, 
choose “R Script.” Nancy suggested using the shortcut command of Control-Shift-n. Leslie tried the short-
cut, and a fourth pane opened in the upper left side of the RStudio window with a new blank file that said 
“Untitled1” in a tab at the top. This is a Script file in the Source pane that can be used for writing code.

Kiara paused here to give Leslie more information about the difference between writing R code in the 
Console versus writing R code in a Script file. She explained that the difference is mostly about being able 
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Chapter 1: Preparing Data for Analysis and Visualization in R  ■   11

to edit and save code; code written in the Console at the > prompt is executed immediately and cannot 
be edited or saved (e.g., like an instant message). Leslie suggested that the History pane saves the code. 
Kiara confirmed that this is true and that the history can even be saved as a file using the save icon in the 
history tab. However, she explained that code saved from the history tab is not usually well formatted and 
cannot be edited or formatted before saving, so this code will usually be pretty messy and not too useful.

A Script file, however, is a text file similar to something written in the Notepad text editor on a 
Windows computer or the TextEdit text editor on a Mac computer. A Script file can be edited, saved, 
and shared just like any text file. When Script files of R code are saved, they have the .R file extension.

Kiara opened a new Script file and showed Leslie how to include information about the code by typing 
comments that explain what the code is for, like this:

# create an object with the number of states with

# legal medical marijuana in 2017

states <- 29

# print the value of the states object

states

# determine how many states there would be if 2

# more passed this policy

2 + states

Each line of code is preceded by a short statement of its purpose. These statements are called comments, 
and the practice of adding comments to code is called commenting or annotation. The practice of com-
menting or annotating is one of the most important habits to develop in R or in any programming language.

In R, comments are denoted by a hashtag #, which notifies R that the text following the # on the same 
line is a comment and not something to be computed or stored. Comments are not necessary for code 
to run, but are important for describing and remembering what the code does. Annotation is a best 
practice of coding. When writing and annotating code, keep two goals in mind.

•	 Write clear code that does not need a lot of comments.

•	 Include useful comments where needed so that anyone (including yourself in the future) can 
run and understand your code.

Kiara explained that clear R code with useful annotation will help Leslie’s work be reproducible, which 
is one of the most important characteristics of good data science. Kiara had collected some information 
about reproducible research for Leslie (see Box 1.2).

Before moving on, Leslie tried writing the code and comments above in the Script file she had open in 
the Source pane (see Box 1.4). She finished writing the code but then was not sure how to run the code 
to check her work. Kiara explained that the code can be run in several ways. One way is to highlight all 
the code at once and click on Run at the top right corner of the Source pane. To run one line of code at 
a time, highlighting the line of code or putting the cursor anywhere in the line of code and clicking Run 
also works. The keyboard shortcut for Run is Control-Enter (or Command-Enter on a Mac), so put-
ting the cursor on a line of code and pressing Control-Enter will run the code on that line (Figure 1.4).

Leslie highlighted all of the code and clicked on Run at the top of the Source pane. In the Console 
window, she saw the code and the output from the code shown in Figure 1.5.
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12  ■   Statistics With R

1.6.2 INCLUDING A PROLOG TO INTRODUCE A SCRIPT FILE

Before moving on to more statistics and R code, Kiara wanted Leslie to add one more thing to her code, 
a prolog. She explained that a prolog is a set of comments at the top of a code file that provides informa-
tion about what is in the file. Including a prolog is another best practice for coding. A prolog can have 
many features, including the following:

•	 Project name
•	 Project purpose
•	 Name(s) of data set(s) used in the project
•	 Location(s) of data set(s) used in the project
•	 Code author name (you!)
•	 Date code created
•	 Date last time code was edited

Kiara gave Leslie two examples, one formal and one informal. The formal prolog might be set apart 
from the code by a barrier of hashtags, like this:

# PROLOG   ################################################################

# PROJECT:	NAME OF PROJECT HERE #

# PURPOSE:	MAJOR POINT(S) OF WHAT I AM DOING WITH THE DATA HERE #

# DIR:	 list directory(-ies) for files here #

# DATA:	 list data set file names/availability here, e.g., #

# 	 filename.correctextension #

# 	 somewebaddress.com #

# AUTHOR:	 AUTHOR NAME(S) #

FIGURE 1.4  Source pane in RStudio showing R code and comments

FIGURE 1.5  Console pane in RStudio showing R code, comments, and results
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# CREATED:	MONTH dd, YEAR #

# LATEST:	 MONTH dd, YEAR ################################################

# NOTES:	 indent all additional lines under each heading, #

# 	 & use the hashmark bookends that appear #

# 	 KEEP PURPOSE, AUTHOR, CREATED & LATEST ENTRIES IN UPPER CASE, #

# 	 with appropriate case for DIR & DATA, lower case for notes #

# 	 If multiple lines become too much, #

# 	 simplify and write code book and readme. #

# 	 HINT #1: Decide what a long prolog is. #

# 	 HINT #2: copy & paste this into new script & replace text. #

# PROLOG 		    ######################################################

An informal prolog might just include the following elements:

####################################

# Project name

# Project purpose

# Code author name

# Date last edited

# Location of data used

####################################

Kiara had Leslie write a prolog at the top of her code file in the Source pane. Leslie’s code in the Source 
pane now looked like this:

###########################################

# Project: R-Team meeting one

# Purpose: Code examples for meeting one

# Author: Leslie

# Edit date: April 19, 2019

# No external data files used

###########################################

# create an object with the number of states with

# legal medical marijuana in 2017

states <- 29

# print the value of the states object

states

# determine how many states there would be if 2

# more passed this policy

2 + states
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14  ■   Statistics With R

Before continuing, Kiara suggested Leslie save her Script using the Save icon at the top left side of the 
Source pane or through the File menu.

Leslie saved it as analysis.R on her desktop and looked up just in time to see Kiara cringe. When saving a 
file, Kiara explained, include information in the file name that is a reminder of what is contained in the file. 
For example, a file name with date_project_author will make identifying the most recent file created for a 
project easier. In this case, Leslie might save the file as 171130_chap1_leslie.R for the date of November 30, 
2017. Kiara mentioned that putting the year first and then the month and the day is a good idea to avoid 
problems with reading the date since not all countries use the same order in common practice.

Leslie resaved her file with a better name.

1.6.3 NAMING OBJECTS

In addition to annotating code, using a prolog, and including useful information in a file name, Kiara 
suggested to Leslie that she name objects so they are easy to understand. It is much easier to guess what 
might be in an object called states than what might be in an object called var123. Kiara remembered 
when she used to use generic names for her variables and was asked to revise a table for an important 
report that she had finished a few months earlier. It took her hours to figure out what she meant in the 
code when all the variables were named things like x1 and x2.

Kiara mentioned that, in addition to choosing meaningful names, some letters and words are already 
used by R and will cause some confusion if used as object names. For example, the uppercase letters T 
and F are used in the code as shorthand for TRUE and FALSE, so they are not useful as object names. 
When possible, use words and abbreviations that are not common mathematical terms.

1.6.3.1 NAMING CONSTANTS

Kiara explained that there are recommended methods for naming objects in R that depend on the type 
of object (“Google’s R Style Guide,” n.d.). There are several types of objects in R. The states object is a 
constant because it is a single numeric value. The recommended format for constants is starting with a 
“k” and then using camel case. Camel case is capitalizing the first letter of each word in the object name, 
with the exception of the first word (the capital letters kind of look like camel humps 🐫). Leslie thought 
she understood and wanted to correct the naming of the states object. Kiara said she could make an 
entirely new object from scratch, like this:

# make a new object with well-formatted name

kStates <- 29

Or, she could assign the existing states object to a new name, like this:

# assign the existing states object a new name

kStates <- states

Leslie noticed that this uses the same format with the <- as assigning the value of 29 to states. Kiara 
explained that this arrow assigns whatever is on the right side of the arrow to the object name on the left. 
In this case, the states object is assigned to the kStates object name. Leslie noticed that states and 
kStates are now both listed in the environment. This was unnecessary since they both hold the same 
information. Kiara showed her how to remove an object using the rm() function.
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# remove the states object

rm(states)

This looked different from what they had been doing so far since it included a function, rm(), and the 
name of an object (states). Kiara said that this format is common in R, having some instruction or 
function for R and a set of parentheses like function(). Then, inside the parentheses is typically the 
name of one or more objects to apply the function to, so function(object) is a common thing to see 
when using R. The information inside the parentheses is called an argument, so the states object is the 
argument entered into the rm() function. Sometimes, R functions will need one argument to work, and 
sometimes they will require multiple arguments. Arguments do not all have to be objects; some are just 
additional instructions for R about how the functions should work. Leslie was a little confused by this, but 
Kiara said it would become more clear as they learned more functions. Kiara wanted to mention one last 
thing before the next topic. She explained that it is common for R users to call rm() and other functions 
“commands” instead of “functions,” and these two words tend to be used interchangeably by many R users.

1.6.3.2 NAMING VARIABLES

Another type of object is a variable. Variables are measures of some characteristic for each observation 
in a data set. For example, income and voted are both variables. Variable objects are named using dot 
case or camel case. Dot case puts a dot between words in a variable name while camel case capitalizes 
each word in the variable name (except the first word 🐫). For example, if Leslie measured the number 
of medical marijuana prescriptions filled by each cancer patient in a data set during a year, she could use 
dot case and call the variable filled.script.month or use camel case and call it filledScriptMonth. 
Kiara mentioned that dot case and camel case are frequently used, and there are other variable naming 
conventions used by some R users (see Box 1.5).

1.6.3.3 NAMING FUNCTIONS

Functions are objects that perform a series of R commands to do something in particular. They are usu-
ally written when someone has to do the same thing multiple times and wants to make the process more 

1.5  Kiara’s reproducibility resource: Naming variables

Using useful names for variables in code will improve clarity. For example, a 
variable named bloodPressure probably contains blood pressure information, 
while a variable named var123 could be anything. A couple of widely used 
practices for naming variables are as follows:

•	 Use nouns for variable names like age, income, or religion.

•	 Use dot case or camel case to separate words in multiple-word variable names.

{	 blood.pressure uses dot case with a period separating words

{	 bloodPressure is camel case with capital letters starting each word, except for the 
first word
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16  ■   Statistics With R

efficient. Kiara explained that writing functions is a more advanced skill that they would cover later. For 
now, she just wanted to give the naming format for a function, which is camel case with the first letter 
capitalized (this is also called “upper camel case” or “Pascal case”). For example, a function that multi-
plies everything in a data set by 2 might be called MultiplyByTwo or something similar.

Kiara explained to Leslie that when she first starts to code, she should develop a coding style and begin 
using a consistent way of annotating code and one of the recommended ways of naming things. Kiara 
preferred dot case for variable names and using underscores for file names. Leslie agreed. Nancy thought 
one more thing was worth mentioning while they were talking about writing clear code. Lines of code can 
get far too long to read without annoying side scrolling, especially on small laptop screens. The recom-
mended limit for the length of a line of code is 80 characters, but shorter is even better. Leslie wrote this 
down to make sure she remembered this new detail later when she was writing more complicated code.

1.6.4 ACHIEVEMENT 2: CHECK YOUR UNDERSTANDING

Open a new Script file (or modify the existing file if you have been following along) and create a prolog. 
Make a constant named kIllegalNum and assign it the value of 21. Subtract 2 from the kIllegalNum 
object and check the output to find the value.

1.7  Achievement 3: Understanding and changing data types

Kiara explained to Leslie that objects like kStates are interpreted by R as one of several data types. To 
see what data type kStates is, Kiara demonstrated the class() function, like this:

# identify data type for states object

class(x = kStates)

## [1] "numeric"

1.7.1 NUMERIC DATA TYPE

In the case of the kStates object, R prints the data type numeric from the class() function. The numeric 
data type is the default that R assigns to constants and variables that contain only numbers. The numeric data 
type can hold whole numbers and numbers with decimal places, so it is the most appropriate data type for 
variables measured along a continuum, or continuous variables. For example, both height and temperature 
can be measured along a continuum and would usually be a numeric data type in R.

To practice, Leslie created a constant that contains the ounces of medical marijuana legally available to 
purchase per person in Rhode Island, then used class() to identify the data type. As she wrote, she 
annotated the code.

# assign Rhode Island limit for medical marijuana

# in ounces per person

kOuncesRhode <- 2.5

# identify the data type for kOuncesRhode

class(x = kOuncesRhode)

## [1] "numeric"
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1.7.2 INTEGER DATA TYPE

The integer data type is similar to numeric but contains only whole numbers. There are true integers that 
can only be measured in whole numbers, like the number of cars parked in a lot. There are also things 
that could be numeric but are measured as integers, like measuring age as age in years. When a whole 
number is assigned to a variable name in R, the default type is numeric. To change the variable type to 
integer, use the R function as.integer(). The as.integer() function can also be used to truncate 
numbers with decimal places. Note that truncation is not the same as rounding! Truncation cuts off 
everything after the decimal place. For example, truncating the value 8.9 would leave 8. Rounding goes 
up or down to the nearest whole number, so 8.9 would round to 9.

Kiara explained to Leslie that the default integer type is not always the best type for the data and had her 
explore the integer data type.

# assign the value of 4 to a constant called kTestInteger

# make sure it is an integer

kTestInteger <- as.integer(x = 4)

# use class() to determine the data type of kTestInteger

class(x = kTestInteger)

## [1] "integer"

# use as.integer() to truncate the constant kOuncesRhode

as.integer(x = kOuncesRhode)

## [1] 2

# multiply the kTestInteger and kOuncesRhode constants

kTestInteger * kOuncesRhode

## [1] 10

# multiply kTestInteger and integer kOuncesRhode constants

kTestInteger * as.integer(x = kOuncesRhode)

## [1] 8

# type the object name to see what is currently saved

# in the object

kOuncesRhode

## [1] 2.5

1.7.3 LOGICAL DATA TYPE

The logical data type contains the values of TRUE and FALSE. The values of TRUE and FALSE can be 
assigned to a logical constant, like this:

# create the constant

kTestLogical <- TRUE
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18  ■   Statistics With R

# print the value of the constant

kTestLogical

## [1] TRUE

# check the constant data type

class(x = kTestLogical)

## [1] "logical"

Logical constants can also be created as the result of some expression, such as the following:

# store the result of 6 > 8 in a constant called kSixEight

kSixEight <- 6 > 8

# print kSixEight

kSixEight

## [1] FALSE

# determine the data type of kSixEight

class(x = kSixEight)

## [1] "logical"

Because 6 is not greater than 8, the expression 6 > 8 is FALSE, which is assigned to the kSixEight 
constant.

1.7.4 CHARACTER DATA TYPE

The character data type contains letters, words, or numbers that cannot logically be included in cal-
culations (e.g., a zip code). They are always wrapped in either single or double quotation marks (e.g., 
'hello' or "world"). Kiara had Leslie try creating a few character constants.

# make constants

kFirstName <- "Corina"

kLastName <- "Hughes"

# check the data type

class(x = kFirstName)

## [1] "character"

# create a zip code constant

# check the data type

kZipCode <- "97405"

class(x = kZipCode)

## [1] "character"

Leslie was confused as to why the zip code class was character when it is clearly an integer. Kiara 
reminded her that putting things in quote marks signifies to R that it is a character data type.
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1.7.5 FACTOR DATA TYPE

In addition to the data types above, the factor data type is used for constants and variables that are made 
up of data elements that fall into categories. Variables measured in categories are categorical.

Examples of categorical variables can include variables like religion, marital status, age group, and so 
on. There are two types of categorical variables: ordinal and nominal. Ordinal variables contain cat-
egories that have some logical order. For example, categories of age can logically be put in order from 
younger to older: 18–25, 26–39, 40–59, 60+. Nominal variables have categories that have no logical 
order. Religious affiliation and marital status are examples of nominal variable types because there is 
no logical order to these characteristics (e.g., Methodist is not inherently greater or less than Catholic).

1.7.6 ACHIEVEMENT 3: CHECK YOUR UNDERSTANDING

Check the data type for the kIllegalNum constant created in the Check Your Understanding exercise 
for Achievement 1.

1.8  Achievement 4: Entering or loading data into R

Usually, when social scientists collect information to answer a question, they collect more than one 
number or word since collecting only one would be extremely inefficient. As a result, there are groups 
of data elements to be stored together. There are many ways to enter and store information like this. 
One commonly used object type is a vector. A vector is a set of data elements saved as the same type 
(numeric, logical, etc.). Each entry in a vector is called a member or component of the vector. Vectors are 
commonly used to store variables.

1.8.1 CREATING VECTORS FOR DIFFERENT DATA TYPES

The format for creating a vector uses the c() function for concatenate. The parentheses are filled with 
the member of the vector separated by commas. If the members of the vector are meant to be saved as 
character-type variables, use single or double quotes around each member. Kiara demonstrated creating 
and printing character, numeric, and logical vectors:

# creates character vector char.vector

char.vector <- c('Oregon', 'Vermont', 'Maine')

# prints vector char.vector

char.vector

## [1] "Oregon" "Vermont" "Maine"

# creates numeric vector nums.1.to.4

nums.1.to.4 <- c(1, 2, 3, 4)

# prints vector nums.1.to.4

nums.1.to.4

## [1] 1 2 3 4

# creates logical vector logic.vector

logic.vector <- c(TRUE, FALSE, FALSE, TRUE)
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20  ■   Statistics With R

# prints vector logic.vector

logic.vector

## [1] TRUE FALSE FALSE TRUE

Kiara mentioned that she had added a space after each comma when creating the vectors, and that this 
was one of the good coding practices Leslie should use. While the space is not necessary for the code to 
work, it does make it easier to read. Leslie wondered why some of the code is a different color. Specifically, 
she saw the code after a hashtag is a different color from other code. Nancy explained that these are the 
comments. They can appear alone on a line, or they can be at the end of a line of regular code.

Nancy chimed in with her favorite thing, a coding trick. This one is for creating new objects and printing 
them at the same time by adding parentheses around the code that creates the object.

# create and print vectors

( char.vector <- c('Oregon', 'Vermont', 'Maine') )

## [1] "Oregon" "Vermont" "Maine"

( nums.1.to.4 <- c(1, 2, 3, 4) )

## [1] 1 2 3 4

( logic.vector <- c(TRUE, FALSE, FALSE, TRUE) )

## [1]  TRUE FALSE FALSE TRUE

The next thing Kiara covered is how vectors can be combined, added to, subtracted from, subsetted, and 
other operations. She used the nums.1.to.4 vector to show examples of each of these with comments 
that explain what is happening with each line of code.

# add 3 to each element in the nums.1.to.4 vector

nums.1.to.4 + 3

## [1] 4 5 6 7

# add 1 to the 1st element of nums.1.to.4, 2 to the 2nd element, etc

nums.1.to.4 + c(1, 2, 3, 4)

## [1] 2 4 6 8

# multiply each element of nums.1.to.4 by 5

nums.1.to.4 * 5

## [1] 5 10 15 20

# subtract 1 from each element and then divide by 5

(nums.1.to.4 - 1) / 5

## [1] 0.0 0.2 0.4 0.6

# make a subset of the vector including numbers > 2

nums.1.to.4[nums.1.to.4 > 2]

## [1] 3 4
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As she read the code, Leslie kept reminding herself that the dots in the middle of the variable names are 
not decimal points, but are there to separate parts of the variable names, which use dot case.

So far, the results of these operations are just printed in the Console; they are nowhere to be found in 
the Environment pane. Leslie asked how to keep the results. Kiara explained that the results could be 
assigned to a new vector object using the assignment arrow, like this:

# add 3 to number vector and save

# as new vector

( nums.1.to.4.plus.3 <- nums.1.to.4 + 3 )

## [1] 4 5 6 7

# divide vector by 10 and save

# as new vector

( nums.1.to.4.div.10 <- nums.1.to.4 / 10 )

## [1] 0.1 0.2 0.3 0.4

The results show the original vector with 3 added to each value and the result of that addition divided 
by 10. The results print in the Console and also are saved and can be found in the Environment pane.

Kiara explained that it is possible to do multiple computations on a single vector.

# add 3 and divide by 10 for each vector member

( nums.1.to.4.new <- (nums.1.to.4 + 3) / 10 )

## [1] 0.4 0.5 0.6 0.7

1.8.2 CREATING A MATRIX TO STORE DATA IN ROWS AND COLUMNS

In addition to the vector format, Kiara explained that R also uses the matrix format to store informa-
tion. A matrix is information, or data elements, stored in a rectangular format with rows and columns. 
Coders can perform operations on matrices, or more than one matrix, as with vectors.

The R function for producing a matrix is, surprisingly, matrix(). This function takes arguments to 
enter the data, data =, and to specify the number of rows, nrow =, and columns, ncol =. Kiara 
explained that the most confusing part of matrix() is the byrow = argument, which tells R whether 
to fill the data into the matrix by filling across first (fill row 1, then fill row 2, etc.) or by filling down 
first (fill column 1 first, then fill column 2, etc.). In this case, Kiara chose byrow = TRUE so the data fill 
across first. For the columns to fill first, she would have to use byrow = FALSE instead.

# create and print a matrix

( policies <- matrix(data = c(1, 2, 3, 4, 5, 6),    #data in the matrix

			      nrow = 2,                          # number of rows

			      ncol = 3,                          # number of columns

			      byrow = TRUE) )                   # fill the matrix by rows

##     [,1] [,2] [,3]

## [1,]   1    2     3

## [2,]   4    5     6
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Say the matrix includes the number of states with policies legalizing medical, recreational, and both 
types of marijuana that were in effect in 2013 and 2014. Leslie asked about naming the rows and col-
umns so she can remember what they are. Kiara started to explain when Nancy jumped in to demon-
strate by writing the code, which uses dimnames() to assign names to rows and columns. As Nancy 
typed the code, Kiara explained that the names are entered in vectors inside a list, with the first vector 
being the row names and the second vector being the column names. In this case, the row names 
were c("2013", "2014") for the two years of data and the column names were c("medical", 
"recreational", "both") for the three types of policy.

# add names to the rows and columns of the matrix

dimnames(x = policies) <- list(

c("2013", "2014"),                                       # row names

c("medical", "recreational", "both")                 # column names

)

# print the policies matrix

policies

##       medical recreational both

## 2013        1              2     3

## 2014        4              5     6

Now Leslie could find specific data elements in her matrix, such as the number of states with legal 
medical marijuana policies in 2014.

Leslie was still trying to remember all the data types and asked what would happen if she had a vector of the 
types of policies that had passed instead of the number of policies per year. Would this be a factor data type?

# vector of policy types

policy.2013.and.2014 <- c('medical', 'medical', 'both', 'recreational',

                        'medical', 'both', 'both')

# data type

class(x = policy.2013.and.2014)

## [1] "character"

Leslie thought this would be a factor data type since the policy type is a categorical variable, but R 
assigned the character type to her vector. Kiara explained that she could use the as.factor() function 
to change the variable type to factor instead.

# change the data type to factor

policy.2013.and.2014 <- as.factor(x = policy.2013.and.2014)

# check the data type

class(x = policy.2013.and.2014)

## [1] "factor"
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1.8.3 CREATING A DATA FRAME

Similar to a matrix format, the data frame format has rows and columns of data. In the data frame 
format, rows are observations and columns are variables. Data frames are often entered outside of R 
into a spreadsheet or other type of file and then imported into R for analysis. However, R users can also 
make their own data frame using vectors or matrices. For example, if Kiara looked up five states, the 
year they made medical marijuana legal, and the limit per person in ounces for possession of medical 
marijuana, she could enter these data into three vectors and combine them into a data frame using the 
data.frame() function, like this:

# state, year enacted, personal oz limit medical marijuana

# create vectors

state <- c('Alaska', 'Arizona', 'Arkansas', 'California', 'Colorado')

year.legal <- c('1998', '2010', '2016', '1996', '2000')

ounce.lim <- c(1, 2.5, 3, 8, 2)

# combine vectors into a data frame

# name the data frame pot.legal

pot.legal <- data.frame(state, year.legal, ounce.lim)

Just like in the matrix() function, the data.frame() function reads in multiple arguments. The 
data.frame() function has three arguments: state, year.legal, and ounce.lim. This time, all of 
the arguments are objects, but that will not always be the case. In fact, arguments can even be functions 
with their own arguments!

After entering and running these code lines, Kiara suggested that Leslie check the Environment pane, 
where she should now see a new entry called pot.legal. To the right of the label pot.legal, Leslie 
saw “5 obs. of 3 variables” indicating she had entered five observations and three variables. The blue and 
white circle with a triangle in it to the left of pot.legal allowed Leslie to expand this entry to see more 
information about what is contained in the pot.legal object, like Figure 1.6.

Leslie noticed in the Environment window that the state variable in the pot.legal data frame was 
assigned the variable type of factor, which is incorrect. Names of states are unique and not categories in 
this data set. Leslie wanted to change the name variable to a character variable using the as.character() 
function.

Because the state variable is now part of a data frame object, Kiara explained to Leslie that she would 
have to identify both the data frame and the variable in order to change it. To demonstrate, Kiara 

FIGURE 1.6  Environment window in RStudio showing the newly created data frame
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24  ■   Statistics With R

entered the name of the data frame first, a $ to separate the data frame name, and the variable name, 
like this:

# change state variable from pot.legal data frame

# to a character variable

pot.legal$state <- as.character(x = pot.legal$state)

# check the variable type

class(x = pot.legal$state)

## [1] "character"

Now that Leslie had a data frame, there were many options open for data management and analysis. For 
example, she could examine basic information about the variables in her data by using the summary() 
function. The summary() function requires at least one argument that identifies the object that should 
be summarized, like this:

# summarize the data frame

summary(object = pot.legal)

##       state             year.legal    ounce.lim

##   Length:5             1996:1       Min.    :1.0

##   Class :character   1998:1       1st Qu.:2.0

##   Mode  :character   2000:1       Median :2.5

##                         2010:1       Mean    :3.3

##                         2016:1       3rd Qu.:3.0

##                                       Max.    :8.0

This output looked a little confusing to Leslie, so Kiara explained what she was seeing. The top row con-
tains the names of the three variables in the pot.legal data frame. Below each variable is some infor-
mation about that variable. What is shown there depends on the data type of the variable. The state 
variable is a character variable, so the information below state shows how many observations there 
were for this variable in the Length:5 row. The next row shows the class of the state variable with 
Class :character and the mode or most common value of the variable. Leslie was curious about 
this use of mode since she had learned it before as a measure of central tendency; Kiara explained that 
mode is one of the descriptive statistics they would talk about next time they met.

The next column of information is for the year.legal variable, which is a factor variable. This entry 
shows each of the categories of the factor and how many observations are in that category. For example, 
1996 is one of the categories of the factor, and there is one observation for 1996. Likewise, 2016 is one 
of the categories of the factor, and there is one observation in this category. Kiara mentioned that this 
output shows up to six rows of information for each variable in a data frame, and many variables will 
have more than six categories. When this is the case, the six categories with the most observations in 
them will be shown in the output of summary().

Finally, the ounce.lim column, based on the ounce.lim numeric variable, shows Min. :1.0, which 
indicates that the minimum value of this variable is 1. This column also shows Max. :8.0 for the 
maximum value of 8 and a few other descriptive statistics that Kiara assured Leslie the R-Team would 
discuss more the next time they meet.
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1.8.4 IMPORTING DATA FRAMES FROM OUTSIDE SOURCES

Kiara mentioned that, while typing data directly into R is possible and sometimes necessary, most of the 
time analysts like Leslie will open data from an outside source. R is unique among statistical software 
packages because it has the capability of importing and opening data files saved in most formats. Some 
formats open directly in the base version of R. Other data formats require the use of an R package, 
which Kiara reminded Leslie is a special program written to do something specific in R.

To know what format a data file is saved in, examine the file extension. Common file extensions for data 
files are as follows:

•	 .csv: comma separated values

•	 .txt: text file

•	 .xls or .xlsx: Excel file

•	 .sav: SPSS file

•	 .sasb7dat: SAS file

•	 .xpt: SAS transfer file

•	 .dta: Stata file

1.8.5 IMPORTING A COMMA SEPARATED VALUES (CSV) FILE

Kiara added that, in addition to knowing which kind of file a data file is, Leslie would need to know 
the location of the file. R can open files saved locally on a computer, in an accessible shared location, 
or directly from the Internet. The file Nancy analyzed at the beginning of the day was saved in csv 
format online. There are several possible ways to read in this type of file; the most straightforward way 
is with the read.csv() function; however, Kiara warned that this function may sometimes result in 
misreading of variable names or row names and to look out for that.

While the GSS data can be read into R directly from the GSS website, Kiara had experienced this and 
knew that it could be frustrating. Since this was Leslie’s first time importing data into R from an external 
source, Kiara decided they should try a more straightforward example. She saved two of the variables 
from the GSS data Nancy imported for Figure 1.1 and made the data file available at edge.sagepub 
.com/harris1e with the file name legal_weed_age_GSS2016_ch1.csv.

Kiara explained to Leslie that it might work best to make a data folder inside the folder where she is 
keeping her code and save the downloaded data there. Once Leslie created the folder and saved the 
data, Kiara explained that the read.csv() function could be used to import the data from that folder 
location, like this:

# read the GSS 2016 data

gss.2016 <- read.csv(file = "[data folder location]/data/legal_weed_age_
GSS2016_ch1.csv")

# examine the contents of the file

summary(object = gss.2016)

##       ï..grass       age

##  DK       : 110   57     :  70

##  IAP      : 911   58     :  67
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##  LEGAL    :1126   52     :  65

##  NOT LEGAL: 717   53     :  60

##  NA's     :   3   27     :  58

##                   (Other):2537

##                   NA's   :  10

The summary() function output shows two column headings, ï..grass and age. Kiara pointed out 
the strange ï..grass heading should probably just be grass, and this is an example of what can hap-
pen with read.csv(). These two column headings are the two variables in the data set. Under each of 
these headings are two more columns separated by colons. The column before the colon lists the values 
that are present in the variable. The column after the colon lists the number of times the value is pres-
ent in the variable. The information under the ï..grass column heading shows that DK is one of the 
values of the ï..grass variable, and this value occurs 110 times.

Kiara advised Leslie that the fread() function in the data.table package or the read_csv() 
function in the tidyverse package might be more useful for opening csv files saved from online 
sources. To install a package, go to the Tools menu in RStudio and select Install Packages. . . . Type 
“data.table” or the name of whichever package should be installed in the dialog box that opens. For 
other ways to install packages, see Box 1.6.

1.6  Nancy’s fancy code: Working with R packages

The basic R functions included with R can do a lot, but not everything. 
Additional functions are included in packages developed by researchers and 
others around the world and contributed to the R open-source platform. We 
will use many of these packages throughout this text. One that was used to 
create the plots above was ggplot2, which is available as a standalone 
package or as part of the tidyverse package. To use a package, it first 

has to be installed. There are at least two ways to install an R package. One is to use the Tools menu and 
select Install Packages . . . and choose or type the exact name of the package you want to install.

The second way is to use the R install.packages() function, like this:

install.packages(pkgs = "tidyverse")

Using Install Packages . . . from the Tools menu may work best because installing a package is a 
one-time task, so writing code is not very efficient.

To use ggplot2 after tidyverse is installed, it has to be opened. Unlike installing, every time a 
package is used, it must be opened first. This is similar to other software programs. For example, 
Microsoft Word is installed once but opened every time it is used. Use the library() function to 
open an R package.
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library(package = "tidyverse")

Once a package is open, all of its functions are available. Run the code below to make 
Figure 1.7 from one of the data sets built into R. The USArrests data set includes information 
on assaults, murder, rape, and percentage of the population living in urban areas for all 
50 states. Note that the code may seem confusing now since the ggplot2 functions are 
complicated, but code to make great graphs will be explored and repeated throughout the 
upcoming meetings.

# pipe the data set into ggplot (Figure 1.7)

# in the aesthetics provide the variable names for the x and y axes

# choose a geom for graph type

# add axis labels with labs

# choose a theme for the overall graph look

USArrests %>%

ggplot(aes(x = UrbanPop, y = Assault)) +

geom_point() +

labs(x = "Percent of state population living in urban areas",

      y = "Number of reported assaults per 100,000 annually") +

theme_minimal()

FIGURE 1.7  Urban population and assaults at the state level from USArrests built-in R data source
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Once a package is installed, Kiara explained, there are two ways Leslie could use it. If she wanted to use 
more than one or two functions from the package, she could open it with the library() function. In 
this case, library(package = "data.table") opens the data.table package for use. Once the 
package is open, Leslie could use the functions defined in the package. Also useful, explained Kiara, is 
the documentation for each package that shows all the functions available (“Available CRAN Packages,” 
n.d.; Dowle & Srinivasan, 2019).

Using library(package = ) is the common practice for opening and using packages most of the 
time in R. Once the package is opened using library(package = ), it stays open until R is closed. 
When using a function from a package one time, it is not necessary to open the package and leave it 
open. Instead, there is another way to open a package temporarily just to use a particular function. To 
temporarily open a package in order to use a function from the package, add the package name before 
the function name and separate with two colons, like this: package.name::function().

At Kiara’s suggestion, Leslie installed data.table and used the temporary way with the :: to open 
the data.table package and used the fast and friendly file finagler fread() function from the pack-
age to open the GSS data file. She then used the summary function to see what was in the file.

# bring in GSS 2016 data

gss.2016 <- data.table::fread(input = "[data folder location]/data/legal_
weed_age_GSS2016_ch1.csv")

# examine the contents of the file

summary(object = gss.2016)

##      grass                age

## Length:2867       Length:2867

## Class :character Class :character

## Mode   :character Mode   :character

Leslie noticed that the variable names now look better, but both the variables now seem to be character 
variables, so they might have to use as.factor() and as.numeric() to fix the data types before 
using these variables.

Before they continued, Kiara wanted to mention another important benefit of the :: way of opening a 
package for use. Occasionally, two different packages can have a function with the same name. If two 
packages containing function names that are the same are opened at the same time in an R file, there will 
be a namespace conflict where R cannot decide which function to use. One example is the function sum-
marize(), which is included as part of the dplyr package and the Hmisc package. When both packages 
are open, using the summarize() function results in an error. Kiara explained that the dplyr package is 
loaded with the tidyverse. To demonstrate the error, she installed and opened tidyverse and Hmisc.

# load Hmisc and tidyverse

library(package = "tidyverse")

library(package = "Hmisc")

Kiara typed the summarize() function to try to get the length of the age variable from the gss.2016 
data frame. Kiara noted that this code is more complicated than what they had looked at so far, and they 
will go through the formatting soon, but for now, this is just to demonstrate how the use of the summa-
rize() function results in a conflict when both dplyr and Hmisc are open.
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# use the summarize function

gss.2016 %>%

summarize(length.age = length(x = age))

The result of running her code is the error message in Figure 1.8.

FIGURE 1.8  Namespace error with summarize() function

Kiara mentioned that this was relatively rare, but it was a good thing to keep in mind when a function 
does not run. Leslie asked what could be done at this point. Kiara said there are a couple of ways to 
check to see if a namespace conflict is occurring. The first is to use the conflicts() function.

# check for conflicts

conflicts()

##  [1] "%>%"            "%>%"             "src"             "summarize"

##  [5] "%>%"            "discard"        "col_factor"      "%>%"

##  [9] "add_row"       "as_data_frame" "as_tibble"       "data_frame"

## [13] "data_frame_"  "frame_data"    "glimpse"         "lst"

## [17] "lst_"          "tbl_sum"        "tibble"          "tribble"

## [21] "trunc_mat"    "type_sum"      "alpha"           "enexpr"

## [25] "enexprs"      "enquo"         "enquos"             "ensym"

## [29] "ensyms"        "expr"            "quo"             "quo_name"

## [33] "quos"         "sym"           "syms"            "vars"

## [37] "between"      "first"            "last"            "transpose"

## [41] "filter"        "lag"           "body<-"          "format.pval"

## [45] "intersect"    "kronecker"     "Position"        "setdiff"

## [49] "setequal"     "union"         "units"

Among the conflicts, Leslie saw the summarize() function. Kiara said the easiest thing to do to address 
the conflict is to use the :: and specify which package to get the summarize() function from. To use 
the summarize() function from dplyr, the code would look like this:

# use summarize from dplyr

gss.2016 %>%

  dplyr::summarize(length.age = length(x = age))

##   length.age

## 1       2867

The function now works to find the length of the age variable. Another way to check and see if a function 
is in conflict after an error message is to use the environment() function and check which package is 
the source for the summarize() function. Kiara wrote the code to do this:
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# check source package for summarize

environment(fun = summarize)

## <environment: namespace:Hmisc>

The output shows that the namespace for summarize() is the Hmisc package instead of the dplyr 
package. Use of the :: works to fix this, but another strategy would be to detach the Hmisc package 
before running summarize(), like this:

# detach Hmisc

detach(name = package:Hmisc)

# try summarize

gss.2016 %>%

  summarize(length.age = length(x = age))

##   length.age

## 1       2867

This works too! If the package is not needed again, this method of addressing the namespace conflict 
will avoid additional conflicts in the document.

1.8.6 CLEANING DATA TYPES IN AN IMPORTED FILE

After that long detour, Kiara went back to the task at hand. She noted for Leslie that, while the variable 
names look good after loading with fread(), both of the variables were the character data type. Leslie 
knew that most data sets have a codebook that lists all the variables and how they were measured. This 
information would help her to identify what data types are appropriate for variables and other informa-
tion about the data. She checked the codebook for the GSS (National Opinion Research Center, 2019) 
that was saved as gss_codebook.pdf at edge.sagepub.com/harris1e to determine what data types these 
variables are. On page 304 of the codebook, it shows the measurement of the variable grass, which has 
five possible responses:

•	 Do you think the use of marijuana should be made legal or not?

{{ Should

{{ Should not

{{ Don’t know

{{ No answer

{{ Not applicable

Leslie remembered that variables with categories are categorical and should be factor type variables in R.

Leslie tried to find the age variable in the codebook, but the codebook is difficult to use because it is 
too long. Kiara suggested Leslie look on the GSS Data Explorer website for more information about the 
age variable and how it is measured. Leslie found and reviewed the age variable in the Data Explorer, 
and it appears to be measured in years up to age 88, and then “89 OR OLDER” represents people who 
are 89 years old or older.

Copyright ©2021 by SAGE Publications, Inc.  
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute



Chapter 1: Preparing Data for Analysis and Visualization in R  ■   31

Kiara suggested Leslie use the head() function to get a sense of the data. This function shows the first 
six observations.

# first six observations in the gss.2016 data frame

head(x = gss.2016)

##       grass age

## 1:       IAP 47

## 2:     LEGAL 61

## 3: NOT LEGAL 72

## 4:       IAP 43

## 5:     LEGAL 55

## 6:     LEGAL 53

After she viewed the six observations, Leslie determined grass should be a factor and age should be 
numeric. Kiara agreed, but before Leslie wrote the code, Nancy added that since “89 OR OLDER” is 
not saved as just a number, trying to force the age variable with “89 OR OLDER” in it into a numeric 
variable would result in an error. She suggested that before converting age into a numeric variable, they 
should first recode anyone who has a value of “89 OR OLDER” to instead have a value of “89.” Nancy 
explained that this will ensure that age can be treated as a numeric variable. Kiara warned that they will 
need to be careful in how they use and report this recoded age variable since it would be inaccurate to 
say that every person with the original “89 OR OLDER” label was actually 89 years old. However, Nancy 
reminded Kiara that they were going to look at age categories like she did for Figure 1.2 and that chang-
ing the “89 OR OLDER” people to have an age of 89 would be OK for making a categorical age variable. 
Their plan was to change the grass variable to a factor and recode the age variable before changing it 
to either numeric or integer. When it is unclear whether to choose between numeric and integer data 
types, numeric is more flexible.

Leslie started with converting grass into a factor. Because she was not changing the contents of the 
variables, she kept the same variable names. To do this, she used the arrow to keep the same name for 
the variable with the new assigned type . Kiara pointed out the data frame name and variable name 
on the left of the assignment arrow <- are exactly the same as on the right. When new information is 
assigned to an existing variable, it overwrites whatever was saved in that variable.

# change grass variable to a factor

gss.2016$grass <- as.factor(x = gss.2016$grass)

For the trickier bit of recoding age, Nancy took over.

# recode the 89 OR OLDER category to 89

gss.2016$age[gss.2016$age == "89 OR OLDER"] <- "89"

Nancy explained that this line of code can be read as follows: “In the age variable of the gss.2016 data 
frame, find any observation that is equal to ‘89 OR OLDER’ and assign those particular observations 
to be the character ‘89.’” Kiara reassured Leslie that even though this particular line of code is tricky, it 
would be covered in more detail later and Leslie would surely get the hang of it.
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Leslie went back and tried to integrate what she had learned.

# bring in GSS 2016 data

gss.2016 <- data.table::fread(input = "[data folder location]/data/legal_
weed_age_GSS2016_ch1.csv")

# change the variable type for the grass variable

gss.2016$grass <- as.factor(x = gss.2016$grass)

# recode "89 OR OLDER" into just "89"

gss.2016$age[gss.2016$age == "89 OR OLDER"] <- "89"

# change the variable type for the age variable

gss.2016$age <- as.numeric(x = gss.2016$age)

# examine the variable types and summary to

# check the work

class(x = gss.2016$grass)

## [1] "factor"

class(x = gss.2016$age)

## [1] "numeric"

summary(object = gss.2016)

##        grass           age

## DK       : 110   Min.   :18.00

## IAP      : 911   1st Qu.:34.00

## LEGAL    :1126   Median :49.00

## NOT LEGAL: 717   Mean   :49.16

## NA's     :   3   3rd Qu.:62.00

##                  Max.   :89.00

##                  NA's   :10

Leslie used class() and summary() to check and confirm that the variables were now the correct type.

1.8.7 ACHIEVEMENT 4: CHECK YOUR UNDERSTANDING

Use fread() to open the GSS 2016 data set. Look in the Environment pane to find the number of 
observations and the number and types of variables in the data frame.

1.9  Achievement 5: Identifying and treating missing values

In addition to making sure the variables used are an appropriate type, Kiara explained that it was also 
important to make sure that missing values were treated appropriately by R. In R, missing values are 
recorded as NA, which stands for not available. Researchers code missing values in many different 
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ways when collecting and storing data. Some of the more common ways to denote missing values are 
the following:

•	 blank

•	 777, -777, 888, -888, 999, -999, or something similar

•	 a single period

•	 -1

•	 NULL

Other responses, such as “Don’t know” or “Inapplicable,” may sometimes be treated as missing or as 
response categories depending on what is most appropriate given the characteristics of the data and the 
analysis goals.

1.9.1 RECODING MISSING VALUES TO NA

In the summary of the GSS data, the grass variable has five possible values: DK (don’t know), IAP 
(inapplicable), LEGAL, NOT LEGAL, and NA (not available). The DK, IAP, and NA could all be con-
sidered missing values. However, R treats only NA as missing. Before conducting any analyses, the DK 
and IAP values could be converted to NA to be treated as missing in any analyses. That is, the grass 
variable could be recoded so that these values are all NA. Note that NA is a reserved “word” in R. In 
order to use NA, both letters must be uppercase (Na or na does not work), and there can be no quota-
tion marks (R will treat “NA” as a character rather than a true missing value).

There are many ways to recode variables in R. Leslie already saw one way, using Nancy’s bit of code for 
the age variable. Kiara’s favorite way uses the data management package tidyverse (https://www 
.rdocumentation.org/packages/tidyverse/). Kiara closed her laptop to show Leslie one of her laptop 
stickers. It shows the tidyverse logo in a hexagon. Kiara explained that R users advertise the packages 
they use and like with hexagonal laptop stickers. It is not unusual, she said, to see a laptop covered in 
stickers like the one in Figure 1.9.

FIGURE 1.9  tidyverse hex laptop sticker

Source: RStudio.

Copyright ©2021 by SAGE Publications, Inc.  
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute



34  ■   Statistics With R

Since Leslie had installed and opened tidyverse, they could start on data management. Kiara men-
tioned that if a package is not installed before using library() to open it, the library function will 
show an error.

Kiara showed Leslie the pipe feature, %>%, that is available in the tidyverse package and useful for 
data management and other tasks. The %>% works to send or pipe information through a function or 
set of functions. In this case, Kiara said, they would pipe the gss.2016 data set into a mutate() 
function that can be used to recode values. The mutate() function takes the name of the variable to 
recode and then information on how to recode it. Kiara thought it might just be best to show Leslie the 
code and walk through it.

# start over by bringing in the data again

gss.2016 <- data.table::fread(input = "[data folder location]/data/legal_
weed_age_GSS2016_ch1.csv")

# use tidyverse pipe to change DK to NA

gss.2016.cleaned <- gss.2016 %>%

  mutate(grass = as.factor(x = grass)) %>%

  mutate(grass = na_if(x = grass, y = "DK"))

# check the summary, there should be 110 + 3 in the NA category

summary(object = gss.2016.cleaned)

##        grass          age

##  DK       :   0   Length:2867

##  IAP      : 911   Class :character

##  LEGAL    :1126   Mode  :character

##  NOT LEGAL: 717

##  NA's     : 113

Kiara walked Leslie through the data management code. First is the gss.2016.cleaned <-, 
which indicates that whatever happens on the right-hand side of the <- will be assigned to the 
gss.2016.cleaned object name. The first thing after the arrow is gss.2016 %>%, which indi-
cates that the gss.2016 data are being piped into whatever comes on the next line; in this case, 
it is being piped into the mutate() function. The mutate() function on the next line uses the 
na_if() function to make the grass variable equal to NA if the grass variable is currently coded 
as DK.

Leslie was a little confused but tried to summarize what the code did. First she asked Kiara why they 
now have a new name for the data with gss.2016.cleaned. Kiara explained that it is good practice 
to keep the original data unchanged in case you need to go back to it later. Then Leslie said she believed 
the function was changing the DK values in the grass variable to NA, which is R shorthand for missing. 
Kiara said that was correct and it was completely fine to be confused. She admitted it just took a while 
to get used to the way R works and the way different structures like the %>% work. Kiara thought maybe 
adding the IAP recoding to the code might be useful for reinforcing the ideas. She added to her code to 
replace IAP with NA.
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# use tidyverse pipe to change DK and IAP to NA

gss.2016.cleaned <- gss.2016 %>%

  mutate(grass = as.factor(x = grass)) %>%

  mutate(grass = na_if(x = grass, y = "DK")) %>%

  mutate(grass = na_if(x = grass, y = "IAP"))

# check the summary, there should now be 110 + 911 + 3 in the NA category

summary(object = gss.2016.cleaned)

##        grass          age

##  DK       :   0   Length:2867

##  IAP      :   0   Class :character

##  LEGAL    :1126   Mode  :character

##  NOT LEGAL: 717

##  NA's     :1024

That worked!

Leslie found the summary information accurate, with zero observations coded as DK or IAP. 
However, the DK and IAP category labels were still listed even though there are no observations 
with these coded values. Kiara explained that R will keep all the different levels of a factor dur-
ing a recode, so Leslie would need to remove unused categories with a droplevels() function 
if she no longer needed them. Leslie wanted to try this herself and added a line of code to Kiara’s  
code.

# use tidyverse pipe to change DK and IAP to NA

gss.2016.cleaned <- gss.2016 %>%

  mutate(grass = as.factor(x = grass)) %>%

  mutate(grass = na_if(x = grass, y = "DK")) %>%

  mutate(grass = na_if(x = grass, y = "IAP")) %>%

  mutate(grass = droplevels(x = grass))

# check the summary

summary(object = gss.2016.cleaned)

##        grass          age

## LEGAL    :1126    Length:2867

## NOT LEGAL: 717    Class :character

## NA's     :1024    Mode  :character

Leslie was pretty excited that she had figured it out! She asked Kiara if she could do the change of data 
type for the grass and age variables in the same set of functions as the recoding of NA values. Kiara 
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thought this was a great idea and suggested that they do one more recoding task and combine the recod-
ing of age and grass functions so they would have everything all together. Nancy explained that this 
means a slightly different way of recoding the “89 OR OLDER” observations using mutate(). Leslie 
was excited to see this! It worked well to have all the data management together in one place.

In addition to adding the age and grass recoding, the final function to add was to create the age cat-
egories shown in Figure 1.2. The age variable currently holds the age in years rather than age categories. 
The graph Kiara made at the beginning showed age in four categories:

•	 18–29

•	 30–59

•	 60–74

•	 75+

Kiara suggested naming the categorical age variable age.cat. She clarified that this is not referring to 
the age of actual cats, but instead is for the categories of ages. Nancy rolled her eyes at this joke attempt. 
Kiara was unfazed and showed Leslie the function cut(), which can be used to divide a continu-
ous variable into categories by cutting it into pieces and adding a label to each piece. Leslie added as 
.numeric() and as.factor() to the mutate() functions in the set of data management tasks and 
then asked Kiara for help with the cut() function. Kiara explained that cut takes a variable like age 
as the first argument, so it would look like cut(x = age,.

The second thing to add after the variable name is a vector made up of the breaks. Breaks specify the 
lower and upper limit of each category of values. The first entry is the lowest value of the first category, 
the second entry is the highest value of the first category, the third entry is the highest value of the sec-
ond category, and so on. The function now looks like cut(x = age, breaks = c(-Inf, 29, 59, 
74, Inf),. Leslie noticed that the first and last values in the vector are -Inf and Inf. She guessed 
that these are negative infinity and positive infinity. Kiara confirmed that this was correct and let Leslie 
know that this was for convenience rather than looking up the smallest and largest values. It also makes 
the code more flexible in case there is a new data point with a smaller or larger value.

The final thing to add is a vector made up of the labels for the categories, with each label inside quote 
marks, like this: labels = c("< 30", "30 - 59", "60 - 74", "75+" ). The final cut() 
function would include these three things. Leslie gave it a try.

# use tidyverse to change data types and recode

gss.2016.cleaned <- gss.2016 %>%

  mutate(age = recode(.x = age, "89 OR OLDER" = "89")) %>%

  mutate(age = as.numeric(x = age)) %>%

  mutate(grass = as.factor(x = grass)) %>%

  mutate(grass = na_if(x = grass, y = "DK")) %>%

  mutate(grass = na_if(x = grass, y = "IAP")) %>%

  mutate(grass = droplevels(x = grass)) %>%

  mutate(age.cat = cut(x = age,

                       breaks = c(-Inf, 29, 59, 74, Inf),

                       labels = c("< 30", "30 - 59", "60 - 74", "75+" )))

summary(object = gss.2016.cleaned)
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##        grass            age           age.cat

##  LEGAL    :1126   Min.   :18.00   < 30   : 481

##  NOT LEGAL: 717   1st Qu.:34.00   30 - 59:1517

##  NA's     :1024   Median :49.00   60 - 74: 598

##                   Mean   :49.16   75+    : 261

##                   3rd Qu.:62.00   NA's   :  10

##                   Max.   :89.00

##                   NA's   :10

Kiara thought they were ready to try the last task for the day, making a bar chart. First, though, she asked 
Leslie to practice putting all her code together and adding a prolog. She suggested Leslie make one change, 
which is to rename the data gss.2106.cleaned after all the data management and cleaning. This way 
she would have both the original gss.2016 and the cleaned version of the data if she needed both.

##########################################################

# Project: First R-team meeting

# Purpose: Clean GSS 2016 data

# Author: Leslie

# Edit date: April 20, 2019

# Data: GSS 2016 subset of age and marijuana use variables

##########################################################

# bring in GSS 2016 data from the web and examine it

library(package = "data.table")

gss.2016 <- fread(file = "[data folder location]/data/legal_weed_age_
GSS2016_ch1.csv")

# use tidyverse to clean the data

library(package = "tidyverse")

gss.2016.cleaned <- gss.2016 %>%

  mutate(age = recode(.x = age, "89 OR OLDER" = "89")) %>%

  mutate(age = as.numeric(x = age)) %>%

  mutate(grass = as.factor(x = grass)) %>%

  mutate(grass = na_if(x = grass, y = "DK")) %>%

  mutate(grass = na_if(x = grass, y = "IAP")) %>%

  mutate(grass = droplevels(x = grass)) %>%

  mutate(age.cat = cut(x = age,

                       breaks = c(-Inf, 29, 59, 74, Inf),

                       labels = c("< 30", "30 - 59", "60 - 74", "75+" )))
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# check the summary

summary(object = gss.2016.cleaned)

##        grass           age           age.cat

##  LEGAL    :1126 Min.   :18.00   < 30   : 481

##  NOT LEGAL: 717 1st Qu.:34.00   30 - 59:1517

##  NA's     :1024 Median :49.00   60 - 74: 598

##                 Mean   :49.16   75+    : 261

##                 3rd Qu.:62.00   NA's   : 10

##                 Max.   :89.00

##                 NA's   :10

1.9.2 ACHIEVEMENT 5: CHECK YOUR UNDERSTANDING

Describe what mutate(), na_if(), and %>% did in the final code Leslie wrote.

1.10  Achievement 6: Building a basic bar chart

Leslie was now ready to finish up a very long first day of R by creating the graph from the begin-
ning of their meeting. Kiara introduced her to an R package called ggplot2 to create this graph. 
The “gg” in ggplot2 stands for the “grammar of graphics.” The ggplot2 package (https://www 
.rdocumentation.org/packages/ggplot2/) is part of the tidyverse, so it did not need to be installed 
or opened separately, and creating the graph would use some of the tidyverse skills from the data 
management. Before Kiara showed Leslie how to make the first graph, she examined it one more 
time (Figure 1.10).

FIGURE 1.10  Support for marijuana legalization among participants in the 2016 General Social Survey
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Kiara pointed out some of the important features of the graph:

•	 Both axes have titles.

•	 The y-axis is a percentage.

•	 The x-axis is labeled as Yes and No.

•	 It includes an overall title.

•	 The background for the graph is white with a light gray grid.

•	 The Yes bar is green, and the No bar is purple.

With Kiara’s help, Leslie started with a basic plot using the ggplot() function. Kiara advised her to 
store the graph in a new object with a new name. Leslie chose legalize.bar. Kiara said to follow a 
similar structure to the data management from earlier. She started by piping the gss.2016.cleaned 
data frame. Kiara said the data would be piped into the ggplot() function this time. The ggplot() 
function needs to know which variable(s) from gss.2016.cleaned will be placed on the axes. In the 
grammar of graphics, this information is considered aesthetics and is included in the aes() function 
within the ggplot() function. There is only one variable for this graph, the grass variable, which 
is on the x-axis. Kiara helped Leslie write the code. After the basics of the graph were included in the 
ggplot() function, the graph type was added in a new layer.

Kiara explained that graphs built with ggplot() are built in layers. The first layer starts with ggplot() 
and contains the basic information about the data that are being graphed and which variables are 
included. The next layer typically gives the graph type, or geometry in the grammar of graphics lan-
guage, and starts with geom_ followed by one of the available types. In this case, Leslie was looking for 
a bar chart, so geom_bar() is the geometry for this graph. Leslie started to write this by adding a %>% 
after the line with ggplot() on it, but Kiara stopped her. The geom_bar() is not a separate new func-
tion, but is a layer of the plot and so is added with a + instead of a %>%. Leslie typed the code to create 
Figure 1.11.

FIGURE 1.11  Support for marijuana legalization among participants in the 2016 General Social Survey
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40  ■   Statistics With R

# make a bar chart for grass variable (Figure 1.11)

legalize.bar <- gss.2016.cleaned %>%

  ggplot(aes(x = grass)) +

  geom_bar()

# show the chart

legalize.bar

Leslie was happy it worked, even though it looked wrong. Kiara was happy, too—this was a great result 
for a first use of ggplot(). One of the first things Leslie noticed was that there were three bars instead 
of two. The missing values are shown as a bar in the graph. In some cases, Leslie might be interested in 
including the missing values as a bar, but for this graph she was interested in comparing the Yes and No 
values and wanted to drop the NA bar from the graphic.

1.10.1 OMITTING NA FROM A GRAPH

Kiara explained that there are many ways to remove the NA bar from the graph, but one of the easiest 
is adding drop_na() to the code. In this case, the NA should be dropped from the grass variable. To 
drop the NA values before the graph, Kiara suggested Leslie add drop_na() above ggplot() in the 
code. Leslie gave it a try, creating Figure 1.12.

# make a bar chart for grass variable (Figure 1.12)

legalize.bar <- gss.2016.cleaned %>%

  drop_na(grass) %>%

  ggplot(aes(x = grass)) +

  geom_bar()

# show the chart

legalize.bar

FIGURE 1.12  Support for marijuana legalization among participants in the 2016 General Social Survey
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1.10.2 WORKING WITH COLOR IN A BAR CHART

Well, that was easy! Leslie thought. She wanted to work on the look of the graph next. She noticed 
that there was a light gray background instead of white and that the bars were dark gray instead of 
green and purple. Kiara introduced Leslie to the concept of fill =. To fill the bars with color based 
on a category of the grass variable, the aesthetic needs to have fill = specified. Leslie looked at 
Kiara with a blank stare. Kiara reached over to Leslie’s keyboard and added fill = grass to the 
aesthetic so that the bars would each be filled with a different color for each category of the grass 
variable (Figure 1.13).

# make a bar chart for grass variable (Figure 1.13)

legalize.bar <- gss.2016.cleaned %>%

  drop_na(grass) %>%

  ggplot(aes(x = grass, fill = grass)) +

  geom_bar()

# show the chart

legalize.bar

Leslie wasn’t sure that was any closer to correct since the colors weren’t right and there was now a legend 
to the right of the graph that was redundant with the x-axis. Kiara told her not to worry, they could fix 
both of these things with a single added layer. The scale_fill_manual() layer allows the selection of 
colors for whatever argument is included in fill =, and it also has a guide = option to specify whether 

FIGURE 1.13  Support for marijuana legalization among participants in the 2016 General Social Survey.
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or not the legend appears. Kiara added the scale_fill_manual() function with the options for Leslie 
(Figure 1.14).

# make a bar chart for grass variable (Figure 1.14)

legalize.bar <- gss.2016.cleaned %>%

  drop_na(grass) %>%

  ggplot(aes(x = grass, fill = grass)) +

  geom_bar() +

  scale_fill_manual(values = c("#78A678", "#7463AC"),

                   guide = FALSE)

# show the chart

legalize.bar

It was starting to look good, thought Leslie. Still, she wondered about the meaning of the values 78A678 
and 7463AC. Kiara said those are RGB (red-green-blue) codes that specify colors. She told Leslie that 
the Color Brewer 2.0 website (http://colorbrewer2.org) is a great place to find RGB codes for colors 
that work well for different sorts of graphs, are color-blind safe, and work with printing or copying. 
The names of colors can also be used; for example, after replacing the codes with the words “green” and 
“purple,” the graph will look like Figure 1.15.

FIGURE 1.14  Support for marijuana legalization among participants in the 2016 General Social Survey
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# make a bar chart for grass variable (Figure 1.15)

legalize.bar <- gss.2016.cleaned %>%

  drop_na(grass) %>%

  ggplot(aes(x = grass, fill = grass)) +

  geom_bar() +

  scale_fill_manual(values = c("green", "purple"),

                   guide = FALSE)

# show the chart

legalize.bar

Yikes! Leslie thought the RGB codes were much better and changed the code back to show the original 
green and purple. The rest of the R-Team agreed, and Nancy mentioned that besides RGB codes, there 
are also R color palettes that mimic the color schemes in scientific journals and from shows like Star 
Trek and Game of Thrones (Xiao & Li, 2019).

Leslie decided that next she would like to remove the gray background and add the labels to the x-axis 
and y-axis. Kiara let her know that the background is part of a theme and that there are many themes 
to choose from (Wickham, n.d.). The theme that Nancy used in the original graphs was the minimal 
theme, which uses minimal color so that printing the graph requires less ink. This sounded great to 
Leslie. Kiara said this theme can be applied by adding another layer using theme_minimal(). She 
said another layer for the labels can be added using the labs() function with text entered for x = and 
y =. Nancy was starting to get bored and really wanted to help with the coding, so she asked Leslie if 
she could take over and let Leslie direct her. Leslie agreed and directed her to add the theme and the 
labels. Nancy added the theme layer and the labels layer and ran the code for Figure 1.16.

FIGURE 1.15  Support for marijuana legalization among participants in the 2016 General Social Survey
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# make a bar chart for grass variable (Figure 1.16)

legalize.bar <- gss.2016.cleaned %>%

  drop_na(grass) %>%

  ggplot(aes(x = grass, fill = grass)) +

  geom_bar() +

  scale_fill_manual(values = c("#78A678", '#7463AC'),

                   guide = FALSE) +

  theme_minimal() +

  labs(x = "Should marijuana be legal?",

       y = "Number of responses")

# show the chart

legalize.bar

This looked great but Leslie was starting to get tired of this graph and the code was really complicated. 
Nancy was so fast at the coding, which looked confusing to Leslie. Leslie started to think that she was 
in over her head.

Kiara reassured her that everyone felt this way when they started to learn ggplot(). Like many things, 
ggplot() and R will make more sense with practice and time. Kiara encouraged her to make the last 
two changes that were needed. First, the y-axis should be a percentage. Second, the labels on the x-axis 
should be Yes and No.

1.10.3 USING SPECIAL VARIABLES IN GRAPHS

To get the y-axis to show percentage rather than count, the y-axis uses special variables with double 
periods around them. Special variables are statistics computed from a data set; the count special variable 

FIGURE 1.16  Support for marijuana legalization among participants in the 2016 General Social Survey
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counts the number of observations in the data set. Nancy saw that Leslie was tired and thought that now 
was her opportunity to do some more coding. She slid the laptop away from Leslie and added the special 
variables to the aesthetics using ..count.. to represent the frequency of a category, or how often it 
occurred, and sum(..count..) to represent the sum of all the frequencies. She multiplied by 100 to 
get a percentage in Figure 1.17.

# make a bar chart for grass variable (Figure 1.17)

legalize.bar <- gss.2016.cleaned %>%

  drop_na(grass) %>%

  ggplot(aes(x = grass,

             y = 100 * (..count..) / sum(..count..),

             fill = grass)) +

  geom_bar() +

  theme_minimal() +

  scale_fill_manual(values = c("#78A678", '#7463AC'),

                   guide = FALSE) +

    labs(x = "Should marijuana be legal?",

         y = "Percent of responses")

# show the chart

legalize.bar

The last thing to do was to recode the levels of the grass variable to be Yes and No. Kiara nodded 
at Nancy and Nancy added the final code needed with mutate() and recode_factor() to create 
Figure 1.18. Leslie thought the mutate() with recode_factor() looked complicated, and Nancy 
assured her they would practice it many times in their next few meetings.

FIGURE 1.17  Support for marijuana legalization among participants in the 2016 General Social Survey
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# make a bar chart for grass variable (Figure 1.18)

legalize.bar <- gss.2016.cleaned %>%

  drop_na(grass) %>%

  mutate(grass = recode_factor(.x = grass,

                              `LEGAL` = "Yes",

                              `NOT LEGAL` = "No")) %>%

  ggplot(aes(x = grass,

             y = 100 * (..count..) / sum(..count..),

             fill = grass)) +

  geom_bar() +

  theme_minimal() +

  scale_fill_manual(values = c("#78A678", '#7463AC'),

                   guide = FALSE) +

  labs(x = "Should marijuana be legal?",

       y = "Percent of responses")

# show the chart

legalize.bar

Kiara wanted to show Leslie one more trick to add the age.cat variable into the graphic, but she real-
ized Leslie had had about enough ggplot(). Kiara told Nancy what she wanted, and Nancy wrote the 
code with Leslie looking over her shoulder. She changed the x-axis variable in the aesthetics to be x = 
age.cat, removed the guide = FALSE from the scale_fill_manual() layer, changed the x-axis 
label, and added position = 'dodge' in the geom_bar() layer. The code position = 'dodge' 
makes the bars for Yes and No in each age category show side by side (Figure 1.19).

FIGURE 1.18  Support for marijuana legalization among participants in the 2016 General Social Survey
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# adding dodge to show bars side by side (Figure 1.19)

legalize.bar <- gss.2016.cleaned %>%

  drop_na(grass) %>%

  drop_na(age) %>%

  mutate(grass = recode_factor(.x = grass,

                              `LEGAL` = "Yes",

                              `NOT LEGAL` = "No")) %>%

  ggplot(aes(x = age.cat,

             y = 100*(..count..)/sum(..count..),

             fill = grass)) +

  geom_bar(position = 'dodge') +

  theme_minimal() +

  scale_fill_manual(values = c("#78A678", '#7463AC'), 
                       name = "Should marijuana\nbe legal?") +

  labs(x = "Age category",

       y = "Percent of total responses")

legalize.bar

Finally, the full graph appeared. Leslie was overwhelmed by what seemed to be hundreds of layers in 
ggplot() to create a single graph. Kiara and Nancy both reassured her that this is complicated coding 
and she will start to understand it more as she practices. They planned to do a whole day about graphs 
soon, but they wanted her to see the power of R early on. Leslie noticed that while the general pattern 
was the same, Figure 1.19 showed different percentages than Figure 1.2. Nancy explained that the bars 
in Figure 1.19 added up to 100% total, whereas the bars in Figure 1.2 added up to 100% in each age 

FIGURE 1.19  Support for marijuana legalization among participants in the 2016 General Social Survey
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group. She said that this required the use of some additional R coding tricks that they would get to in 
their next two meetings. Leslie was curious about the code, so Nancy showed her as a preview, but sug-
gested they wait to discuss all the new functions until next time. Leslie agreed that this was a good idea, 
given all the R ideas swimming around in her head already.

# code to create Figure 1.2

legalize.bar <- gss.2016.cleaned %>%

  drop_na(grass) %>%

  drop_na(age) %>%

  mutate(grass = recode_factor(.x = grass,

                               `LEGAL` = "Yes",

                               `NOT LEGAL` = "No")) %>%

  group_by(grass, age.cat) %>%

  count() %>%

  group_by(age.cat) %>%

  mutate(perc.grass = 100*n/sum(n)) %>%

  ggplot(aes(x = age.cat, fill = grass,

             y = perc.grass)) +

  geom_col(position = 'dodge') +

  theme_minimal() +

  scale_fill_manual(values = c("#78A678", '#7463AC'),

                   name = "Should marijuana\nbe legal?") +

  labs(x = "Age group (in years)",

       y = "Percent of responses in age group")

legalize.bar

The R-Team learned a little more about marijuana policy during their introduction to R day. They found 
that more people support legalizing marijuana than do not support it. They also found that support for 
legalization is higher in younger age categories, so support is likely to increase as those who are cur-
rently in the younger categories get older over time. Leslie mentioned that this seems important for 
state-level policymakers to consider. Even if legalization does not have enough support currently, this 
may change over time, and state government officials might start paying attention to the challenges and 
benefits realized by those states that have already adopted legal marijuana policies.

1.10.4 ACHIEVEMENT 6: CHECK YOUR UNDERSTANDING

Think about the number of missing values for grass (after DK and IAP were converted to NAs) and 
age. Run the summary function to confirm. If 1,836 of the 2,867 observations had values for both 
grass and age, 10 observations were missing age, and 1,024 observations were missing grass, then 
how many observations were missing values for both?

Now try some visual changes to the graph. Change the No bar to the official R-Ladies purple color 
88398a and change the Yes bar to the color gray40. Change the theme to another theme of your choice 
by selecting from the ggplot2 themes available online (see Wickham, n.d.).
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/// 1.11  CHAPTER SUMMARY

1.11.1  Achievements  
unlocked in this chapter: Recap

Congratulations! Like Leslie, you’ve learned and practiced 
a lot in this chapter.

1.11.1.1  Achievement 1 recap: 
Observations and variables

R is a coding language in which information is stored as 
objects that can then be used in calculations and other proce-
dures. Information is assigned to an object using the <-, which 
puts the information on the right of the arrow into an object 
name included to the left of the arrow. To print the object in R, 
type its name and use one of the methods for running code.

Data are stored in many formats, including vectors for sin-
gle variables and matrix and data frame formats for rows 
and columns. In data frames, rows typically hold observa-
tions (e.g., people, organizations), while columns typically 
hold variables (e.g., age, revenue).

1.11.1.2  Achievement 2 recap:  
Using reproducible research practices

It is important to think about how to write and organize R 
code so it is useful not only right now but in the future for 
anyone (including the original author) to use. Some of the 
practices to start with are using comments to explain code, 
limiting lines of code to 80 characters, naming variables 
with logical names and consistent formatting, naming files 
with useful human and machine readable information, and 
including a prolog in each code file.

1.11.1.3  Achievement 3 recap: 
Understanding and changing data types

Most statistics are appropriate for only certain types of 
data. R has several data types, with the more commonly 
used ones being numeric, integer, factor, character, 
and logical. The class function can be used to check 
a data type, and the appropriate as function (e.g., as 
.factor()) can be used to change data types.

1.11.1.4  Achievement 4 recap: 
Entering or loading data into R

R is unique in its ability to load data from most file for-
mats. Depending on what file type the data are saved as, 

a different R function can be used. For example, read 
.csv() will read in a data file saved in the comma sepa-
rated values (csv) format.

1.11.1.5  Achievement 5 recap:  
Identifying and treating missing values

In addition to making sure the variables used are an appro-
priate type, it is also important to make sure that missing 
values are treated appropriately by R. In R, missing val-
ues are recorded as NA, which stands for not available. 
Researchers code missing values in many different ways 
when collecting and storing data. Some of the more com-
mon ways to denote missing values are blank, 777, -777, 
888, -888, 999, -999, a single period, -1, and NULL. Other 
responses, such as “Don’t know” or “Inapplicable,” may 
sometimes be treated as missing or treated as response 
categories depending on what is most appropriate given the 
characteristics of the data and the analysis goals. There are 
many ways to recode these values to be NA instead.

1.11.1.6  Achievement 6 recap: 
Building a basic bar chart

One of the biggest advantages to using R is the ability 
to make custom graphics. The ggplot2, or grammar 
of graphics, package is useful for making many types of 
graphs, including bar charts. The ggplot() function 
takes the name of the data frame object and the name 
of the variable within the data frame that you would like 
to graph. Layers following the initial function are used to 
change the look of the graph and refine its elements.

1.11.2  Chapter exercises

The coder and hacker exercises are an opportunity to apply 
the skills from this chapter to a new scenario or a new data 
set. The coder edition evaluates the application of the con-
cepts and code learned in this R-Team meeting to scenarios 
similar to those in the meeting. The hacker edition evalu-
ates the use of the concepts and code from this R-Team 
meeting in new scenarios, often going a step beyond what 
was explicitly explained.

The coder edition might be best for those who found some 
or all of the Check Your Understanding activities to be chal-
lenging, or if you needed review before picking the correct 
responses to the multiple-choice questions. The hacker 
edition might be best if the Check Your Understanding 
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activities were not too challenging and the multiple-choice 
questions were a breeze. 

The multiple-choice questions and materials for the exer-
cises are online at edge.sagepub.com/harris1e.

Q1:	 Which R data type is most appropriate for a categori-
cal variable?

a.	 Numeric

b.	 Factor

c.	 Integer

d.	 Character

Q2: 	 Which of the following opens ggplot2?

a.	 install.packages("ggplot2")

b.	 library(package = "ggplot2")

c.	 summary(object = ggplot2)

d.	 open(x = ggplot2)

Q3: 	 The block of text at the top of a code file that intro-
duces the project is called

a.	 library.

b.	 summary.

c.	 prolog.

d.	 pane.

Q4:	 In a data frame containing information on the age and 
height of 100 people, the people are the ___________ 
and age and height are the _____________.

a.	 observations, variables

b.	 variables, observations

c.	 data, factors

d.	 factors, data

Q5:	 The results of running R code show in which pane?

a.	 Source

b.	 Environment

c.	 History

d.	 Console

1.11.2.1  Chapter exercises: Coder edition

Use the National Health and Nutrition Examination Survey 
(NHANES) data to examine marijuana use in the United States. 
Spend a few minutes looking through the NHANES web-
site (https://www.cdc.gov/nchs/nhanes/index.htm) before  
you begin, including finding the online codebook for the 

2013–2014 data. Complete the following tasks to explore 
whether age is related to marijuana use in the United States.

1)	 Open the 2013–2014 NHANES data file saved as 
nhanes_2013_ch1.csv with the book materials at 
edge.sagepub.com/harris1e (Achievement 4).

2)	 Examine the data types for DUQ200, RIDAGEYR, and 
RIAGENDR, and fix data types if needed based on the 
NHANES codebook (Achievement 3).

3)	 Based on the online NHANES codebook, code missing 
values appropriately for DUQ200, RIDAGEYR, and 
RIAGENDR (Achievement 5).

4)	 Create a bar chart showing the percentage of NHANES 
participants answering yes and no to marijuana use 
(Achievement 6).

5)	 Recode age into a new variable called age.cat 
with 4 categories: 18–29, 30–39, 40–49, 50–59 
(Achievement 5).

6)	 Create a bar chart of marijuana use by age group 
(Achievement 6).

7)	 Add a prolog and comments to your code (Achievement 2).

8)	 Following the R code in your code file, use comments 
to describe what you found. Given what you found 
and the information in the chapter, what do you pre-
dict will happen with marijuana legalization in the 
next 10 years? Discuss how the omission of older 
people from the marijuana use question for NHANES 
influenced your prediction. Write your prediction and 
discussion in comments at the end of your code file 
(Achievement 2).

1.11.2.2  Chapter exercises: Hacker edition

Read the coder instructions and complete #1–#5 from the 
coder edition. Then do the following:

6)	 Create a bar chart of marijuana use by age group and 
sex with side-by-side bars (Achievement 6).

7)	 Add a prolog and comments to your code (Achievement 2).

8)	 Following the R code in your code file, use comments 
to describe what you found in no more than a few sen-
tences. Given what you found and the information in 
the chapter, what do you predict will happen with mari-

juana legalization in the next 10 years? Discuss how 
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the omission of older people from the marijuana use 

question for NHANES influenced your prediction. Write 

your prediction and discussion in comments at the end 

of your code file (Achievement 2).

1.11.2.3  Instructor note

Solutions to exercises can be found on the website for this 
book, along with ideas for gamification for those who want 
to take it further.

Visit edge.sagepub.com/harris1e to download the data sets, complete the chapter exercises, and watch R tutorial 
videos.
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