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1. INTRODUCTION TO MULTIPLE
TIME SERIES MODELS

Many social science data problems are multivariate and dynamic in

nature. For example, how is public sentiment about the president’s job per-

formance related to the aggregate economic performance of the country?

Are arms expenditures by a series of countries related to each other or exo-

genous? Are the actions directed by country A toward country B related to

the actions that country B directs toward country A? How is the percentage

of Americans that identify with the major political parties—aggregate

partisanship—related to their support for government policies? How are tax

rates related to the proportion of political action committees that are orga-

nized by business? In each of these examples, it is possible to write down a

single equation where one of the variables is the dependent variable and the

other is the independent variable. But it is likely that in each of these exam-

ples there is simultaneity and that there exists a second equation with the

roles of the independent and dependent variables reversed.

For the sample research questions noted above, both the variables are

likely to be endogenous. One would expect that the same factors that

explain changes in aggregate partisanship are endogenously and dynami-

cally related to public support of government policies. Similarly, changes

in tax rates for business are both a cause and a consequence of the lobbying

efforts of corporate political action committees. Both these examples

(addressed in more detail in Chapter 3) are ones where a researcher might

posit two (or more) equations, one for each variable, and allow both the cur-

rent and the past values of each variable in the model to affect each other.

Most social scientists learn to use regression relatively early in their sta-

tistical training. But single-equation regression models ignore the fact that

for endogenous, dynamic relationships there is either explicitly or implicitly
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more than one regression equation. An analyst may choose to continue esti-

mating a single regression and hope that statistical inferences are not too

flawed, or he or she might decide to estimate a multiple-equation model

using a variety of techniques developed in econometrics (e.g., seemingly

unrelated regressions, autoregressive distributed lag [ADL] models, transfer

function models). But even this accounts only for specification- and

estimation-related issues such as serial correlation and endogeneity. Ana-

lysts must also confront the additional complication that the data are mea-

sured through time and have time periods as the units of analysis. A

researcher looking at these questions could then choose to estimate a single-

or multiple-equation model with some time series dynamics. This leads us

to consider the relative merits of other avenues of analysis, including vector

autoregression, error correction models, and (dynamic) factor analysis.

Because time series data are much richer—that is, they contain more infor-

mation than cross-sectional data—decisions about how to tackle multiple

time series problems are crucial.

The need for these dynamic multiple-equation models stems from two

very common realities in social science models. First, variables simulta-

neously influence one another, so both are referred to as endogenous vari-

ables. A multiple-equation system usually, but not always, has the same

number of endogenous or dependent variables as equations.1 Although the

theoretical interest of an analyst may be on just a single equation, and this

equation may be the only one estimated, statistics and econometric theory

require that all equations be considered, otherwise inferences can be biased

and inefficient. Second, when considering the relationships among multiple

dependent variables, the unique or identified relationships for each equation

of interest can be made only with reference to the system as a whole. Prop-

erly determining these relationships requires that information from all

equations be used. Identification requires that there be enough exogenous

variables, specified in the correct way, to be able to estimate any or all of

the equations in a system. Estimation requires that exogenous variables

from the entire system be used to provide the most unbiased and efficient

estimates of the relationships among the variables as possible.2

In addressing each of these issues we expect that the dynamic relation-

ships of the variables are of central interest. We would like to know how

changes in one of the variables affects the others. It is possible that the rela-

tionship among the variables is endogenous in one of two senses. First,

changes in one of the variables may have a delayed effect on another (so the

effect is through the past values of one variable on the current or contem-

poraneous values of another). Alternatively, the relationship may be con-

temporaneous in that changes to the system of equations, known as shocks

or innovations, may change both or several variables at the same time. This
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arises because the shocks to one variable are correlated with the shocks to

another variable.

A central concern in translating a theory into an empirically estimable

model (i.e., one where we can estimate the parameters and make inferences

about them) is that we may not know the structure or equation(s) that cor-

rectly represents a model. That is, suppose that some (multivariate) probabil-

ity density f ðyjβÞ describes the observed data y in terms of some parameters

β. This density would identify a unique structure or set of equations if there is

no other set of values β that produce the same density.3 As social scientists,

we do not know for sure if the equations we write down for the specification

of a model are the correct ones in many circumstances. A consequence of this

is that many disputes over the interpretation of models and their parameters

are really based not on the properties of the models per se but rather on the

disagreements about the structures or equations used to represent those mod-

els.4 Our goal in this chapter is to illuminate some of the choices faced by

social scientists in building theory that accompanies modeling of multiple

time series. We will first highlight some of the major choices that analysts

must make and then describe the implications of these choices.

Social science theories are built in several stages. First, the researcher

must identify the main variables and relationships to be explained with a

theory. Here, researchers look at the main theory (or theories) that informs

their empirical questions and specifies the relevant variables and relation-

ships to be modeled. Even when there are competing theories present, this

stage presents few problems, assuming that relevant time series can be mea-

sured for the variables of interest.

Once the main aspects and variables of a theory are determined, the

researcher begins the critical phase of selecting the functional form or math-

ematical structure of the model. It is at this stage that many different models

of the same underlying theory or theories begin to emerge. At this stage, we

need to make decisions about how theories are translated into equations.

This stage will also require that the equations be identified or that there be

sufficient restrictions on the equations we specify to ensure that a unique set

of parameters can be estimated and interpreted. To do this we need both

information about the data, the equations, and the a priori beliefs of the

researcher to determine whether or not a model is formally identified.5

The third stage of theorizing and model building is fitting the specified

model to data and interpreting the results. We note that this step is in one

sense noncontroversial because there is wide consensus about how models

should be fit and what criteria should be used to evaluate them (unbiased-

ness, efficiency, minimum mean-squared error, consistency, etc.) A more

relevant issue, though, is the determination of the dynamic properties of the

specified model from its estimates. Because we are focusing on models of
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multiple time series, we need to be concerned with methods that can be used

to do this.

Finally, once the model has been fit and interpreted, there is often a need

to revisit the earlier steps to evaluate the impact of specification decisions

and look again at confirmed or disconfirmed aspects of the theory.

The most critical aspects of this model-building process are the specifica-

tion of the functional form of the system (Stage 2). The remainder of the

process, to a large degree, depends on the decisions made in this stage.

Models that are specified with missing variables or incorrect dynamics will

suffer from the same problems as ordinary least squares (OLS) models—

bias and inefficiency. In addition, failing to include a relationship or a factor

that is part of the multivariate system can lead to simultaneity biases. Note

that these parameter ills then induce problems with interpretation and

hypothesis testing.

Standard simultaneous equation models and univariate time series mod-

els are commonly proposed to address these types of questions. Although

these kinds of models have much to offer, they also have limitations. We

next discuss the general decisions that researchers face and highlight some

of the trade-offs in the choice of different models. We present the four main

approaches that are typically used to model univariate and multiple time

series data: autoregressive integrated moving average (ARIMA) models,

simultaneous or structural equation (SEQ) systems, error correction models

(ECMs), and vector autoregression (VAR). In the remainder of the text we

use simultaneous and structural equation models interchangeably. We dis-

cuss how each of the main approaches to modeling dynamic simultaneous

relationships forces the researcher to make certain choices about the rela-

tionships that may or may not be clearly specified in a theory and the

empirical representation and statistical model they specify.

Critical to our presentation is the following: The differences among these

methods have less to do with technique and more to do with approach. All

these methods employ some version of linear regression (OLS, generalized

least squares, multistage least squares, etc.) or maximum-likelihood meth-

ods for estimation. What differ among these methods are the assumptions

and building blocks that are the basis for inferences and interpretation.

1.1 Simultaneous Equation Approach

A first approach for building a multiple-equation time series model would

be to work in the simultaneous equation (SEQ) paradigm. SEQ models are

present in the multiple disciplines of the social sciences. The SEQ paradigm

was largely developed by the Cowles Commission in the 1940s and 1950s
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at Yale. The Commission’s early goal was to develop a methodological

paradigm for modeling the economy using econometrics. So the researchers

there worked to adapt existing econometric methods to the study of large-

scale, multiequation models of the economy. In this case, the early Cowles

model was an empirical representation of standard Keynesian macroeco-

nomic theory.

Model building with SEQs is based on taking the representation of a

single theory or approach and rendering it into a set of equations. Using a

single theory to specify the relationships among several variables leads to

choices about which variables are exogenous to the system and which

are endogenous. The exogenous variables are those that are determined out-

side the system or are considered fixed (at a point in time or in the past).

Those that are determined inside the system and are the dependent variables

of the equations are endogenous. The result is a single structural system of

equations that express the relationships among the variables. The reason

there is such a focus on a single theory is that multiple theories may lead to

different, typically non-nested specifications of the structural equations

(good examples include Zellner, 1971; Zellner & Palm, 2004).

Consider the earlier research question about how aggregate partisanship is

related to public support of government policies. A simultaneous equation

representation of the relationships among these variables would have two

equations, one for each variable. Each endogenous variable would be a func-

tion of the other and (possibly) past values of each variable. To estimate such

a system, one would need to rewrite the system as a reduced form set of equa-

tions where each endogenous variable is a function of predetermined or exo-

genous values. Unspecified in this modeling approach is how decisions about

the number of past values influence the system of equations or how the system

of equations will be identified. Typically (vague) appeals are made to ‘‘the-

ory’’ and hypothesis test results for the inclusion or exclusion of variables.

Several issues arise in constructing SEQ models in this manner. First,

alternative theories must be nested within a common structure to be com-

pared. If the models cannot be nested (because of nonlinearity or different

specifications), then no single structure can be used to compare different

models. Second, the models require that choices be made about the inclu-

sion or exclusion of different variables and lagged values to ensure identifi-

cation. Two methods are common here: restricting ‘‘predetermined’’ or

lagged endogenous variables as exogenous variables and the classification

of variables as either endogenous or exogenous. Here, ‘‘theory’’ is used to

restrict the parameter space of the model parameters. Often hypothesis tests

are used to determine the exclusion of variables, but this then induces pret-

est biases in the final models, because the exclusion of variables based on

tests typically leads to overconfident results.
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As argued by Sims (1980), such exclusion restrictions are often not theo-

retically justified and are often not well supported by empirical analysis.

One consequence of this is that extra lagged values are included or excluded

from an SEQ model leading to incorrect dynamic specifications. Even if the

models have white noise or serially uncorrelated residuals, the specification

search for these models may be incorrect and may imply the wrong dynamic

specification, because it has incorrectly restricted the parameter space.

Finally, these models often perform poorly at forecasting and policy

analysis. Alternative, simpler models typically will outperform complex,

multiple-equation simultaneous equation models.

1.2 ARIMA Approach

Another approach to multiple time series models starts from a time series

perspective. One could address multiple time series as a collection of uni-

variate series. In this vein, the researcher would use the standard ‘‘Box-

Jenkins approach’’ or ARIMA models for each of the series (Box & Jen-

kins, 1970). Once the dynamics are known, one could begin to build a

model where some of the variables are included as pulse, intervention, or

other exogenous effects on the right-hand side of an ARIMA model.

The Box-Jenkins approach is oriented toward forecasting and describing

the behavior of a time series (Granger & Newbold, 1986). The general Box-

Jenkins approach defines a class of models—in this case ARIMA models—

to describe a time series. One then fits a series of ARIMA models to each of

the series with the goal being to choose the most parsimonious model with

uncorrelated residuals. This approach requires that we designate some of

the variables as endogenous and others as exogenous for the fitting of the

model. The Box-Jenkins approach is particularly successful at forecast-

ing—in fact, Box-Jenkins-style models will typically outperform SEQ

models in forecast performance. The main reason for this is parsimony: The

models are built by exploiting the parsimony principle and allowing the

data to speak as much as possible.

A Box-Jenkins model for the aggregate partisanship percentage and the

percentage of the public supporting the government policies over time

would be constructed as follows. Suppose we are most interested in predict-

ing public support. One would first construct a univariate ARIMA model of

the public support dynamics. Next, once the model is determined, one

would add the aggregate partisanship covariate to see if it improved the fit

of the public support model. One would examine various specifications of

the partisanship variable (including contemporaneous values and various

lags). Hypothesis tests would be used to determine the best specification.
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One might reverse the roles of the variables as well and fit a model to the

partisanship measure.

There are limitations to this approach when building a multivariate time

series model. First, it ignores the fact that some of the variables in the model

may help to proxy dynamics in the others. If this is the case, then the sug-

gested procedure may lead to severe overfitting of the data, because the

standard Box-Jenkins approach is to filter or explain most of a variable’s

variance using its own past values. Second, this approach leads us to focus

on the dynamics of the variables first rather than on the general relation-

ships in the system. Third, because this is generally done in separate equa-

tions—one for each of the variables—we expect that unless the equations

are perfectly independent, there will be inefficiency in the estimates.

Finally, unless the variables are causally related in a specific way, treating

the many variables in separate ARIMA models will lead to inefficient esti-

mates. The reason is that if the residuals for the several variables are con-

temporaneously correlated (i.e., at the same time), then the estimates will

be inefficient. Only when the results of each equation are explicit of the

others can we use a sequence of independent equations to model the results.

1.3 Error Correction or LSE Approach

Error correction models are a specialized case of ARIMA regression and

simultaneous equation models. They are commonly referred to as the

London School of Economics or ‘‘LSE’’ approach because they have been

advocated by economists there (Pagan, 1987). The basic building block of

an ECM is an autoregressive distributed lag (ADL) specification for two or

more variables with provisions for the (possible) long-run relationships

among the variables.

The ECM approach differs from ARIMA models in that the long-run

relationships—typically, stochastic and deterministic trends—are directly

modeled. In ARIMA models, these long-run components, trends or unit

roots, are ‘‘differenced’’ from the data to create a stationary data series that

can be modeled as an ARIMA process. The ECM approach instead explains

the long-run components in two or more data series as a function of each

other. The ECM approach uses the long-run component in two or more of

the series being modeled to derive a common (stochastic trend) representa-

tion that is shared among the series. An ECM uses this common representa-

tion to produce a model that has a common long-run component for the

variables and a short-run component known as an error correction mechan-

ism that describes how each variable varies or equilibrates around the com-

mon long-run component.
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The ECMs can be applied to both stationary (mean reverting) and nonsta-

tionary (unit root) data. For stationary data, the ECM allows one to estimate

a common or equilibrium level for the variables and how each varies around

the equilibrium. This model is equivalent to an ADL model, which is an

ARIMA model with exogenous variables. For nonstationary or trending

data, the ECM modeler starts with a specialized set of data series—two

or more series that have unit roots or are integrated to order one.6 This

determination is made using unit root tests (such as the augmented Dickey-

Fuller [ADF] test). Once the series are found to be unit roots, a specialized

estimation technique is used to estimate both the long- and short-run rela-

tionships in the data. For bivariate relationships, a one- or two-step ECM

estimation procedure can be used. For multivariate time series (typically

with unit roots), the vector ECM (VECM), described in detail in Johansen

(1995), is used. The first step in this process is the determination of the com-

mon stochastic trend processes in the data. Then, once these long-run trends

have been estimated, the short-run dynamics around the long-run trend are

estimated using a regression model.

Because the ECM and its multivariate version, the VECM, are based on

describing the long- and short-run components of a multivariate time series

regression model, researchers can test for a variety of relationships among

the common long- and short-run dynamics and how they are related across

the various series. For nonstationary data, the representation of the ECM

ensures that there is a particular form of ‘‘causal’’ relationship among the

series (Engle & Granger, 1987). This causal relationship is known as a

‘‘Granger causal’’ relationship, where the past values of one series must

(linearly) predict the current values of the other series. This means that the

trend in the two integrated series is ‘‘driven’’ or predicted by the changes in

one of the variables. As such, these models are a specialized case of the

simultaneous equation models, because they impose and estimate a com-

mon trend structure across the series.

Consider again the model of the relationship between aggregate partisan-

ship and the percentage of the public that supports government policies over

time. Some argue that these variables are nonstationary or unit roots because

they are the sum of a series of accumulated events or shocks that persist (see

the discussion and references in Chapter 3 for more details). If this is the

case, then an ECM may be appropriate. The ECM can then be used to evalu-

ate how the short- and long-run relationships of these two variables are

related and which variable Granger causes the other. The ECM will allow

one to apply hypothesis tests to determine the long- and short-run structures

of the relationship among the series. The ECM representation of the rela-

tionship will provide more information about the dynamics, but we will

have to estimate the cointegration relationship and the short-run dynamics.
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Inference and model formulation using ECMs, although well developed

(e.g., Banerjee, Dolado, Galbraith, & Hendry, 1993), can be quite compli-

cated for nonstationary or unit root data. Many economic variables (e.g.,

consumption, gross domestic product, government spending) will have unit

roots. This is an important reason for considering these models, because

they allow one to look at the short- and long-run dynamics of these vari-

ables correctly. However, frequentist inference using nonstationary data in

these models is complex. This is because of the nonstandard distributions

and the complications of computing dynamic analyses when there are unit

root variables in the model. This means that hypothesis tests for the pre-

sence of error correction relationships and the number of error correction

relationships and tests concerning the model parameters often have non-

standard distributions that must be simulated or analyzed using nonstandard

test statistic tables (Cromwell, et al., 1994, Lutkepohl, 2004). Further, the

causal structure of ECMs may be no easier to determine. Sims, Stock, and

Watson (1990) note that such inference in models with multiple unit roots

is difficult.

1.4 Vector Autoregression Approach

A final approach to modeling multivariate time series is the VAR model.

VAR modelers do not assume to know the correct structure of the underly-

ing relationship that generated the multiple time series. Instead, they focus

on the underlying correlation and dynamic structure of the time series.

The VAR approach starts by focusing on the interrelated dynamics of the

series. It asks the following questions (in contrast to the SEQ approach):

1. What is to say that some lagged variables would not be in each equa-

tion? Does restricting the dynamics for identification make sense?

2. What impacts do each of the variables have on each other over time?

3. If a variable affects one equation in the system of equations, what is

to say that it does (or does not) affect another?

4. Are rational expectations—the idea that a variable is best predicted

by its immediate past value plus a random component—present? In

this case, the past is of little predictive value, and policy makers and

analysts are interested in how the random components—innovations

or policy shocks—are translated into outcomes. In this framework,

the shocks are themselves exogenous variables.

These are all critiques of the standard (i.e., Cowles Commission)

approach to simultaneous equation models. The main difference in the VAR
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approach is that it is built on creating a complete dynamic specification of

the series in a system of equations. The basic idea of VAR modeling is built

on the insights of the Wold decomposition theorem (Hamilton, 1994, pp.

108–109; Wold, 1954). Wold showed that every dynamic time series could

be partitioned into a set of deterministic and stochastic components.

All these critiques point toward understanding dynamics. In response to

these critiques, Sims (1972, 1980) pioneered the VAR methodology, building

on the idea of dynamic decomposition of the variable in the system. Sims

rejected the use of standard simultaneous equation models for three reasons:

1. Identification restrictions on parameters used in SEQ models are typi-

cally not based on theory and thus may lead to incorrect conclusions

about the structure of the models and the estimates.

2. SEQ models are often based on tenuous assumptions about the exo-

geneity and endogeneity of the variables. Because the true lag lengths

of the variables are not known a priori, identification is then based on

possibly specious assumptions about exogeneity. The formal identifi-

cation of a dynamic simultaneous equation model requires that the

exact true lag length be known for each variable; otherwise, identifi-

cation assumptions may not hold (Hatanaka, 1975).

3. If the variables in the model are themselves policy projections, addi-

tional identification problems will be present because of temporal

restrictions. This is the rational expectations critique: Models are

typically treated as though ceteris paribus claims will be true. In fact,

they are not, then we need to be able to assess the probabilistic impli-

cations of different paths for the variables.

The Sims-proposed method for addressing the tenuous identification pro-

blems of the SEQ approach is to focus on the dynamic specification of the

reduced form model. This is in contrast to the SEQ approach, which focuses

on the identification choices in the model specification. Sims’ approach is

to ensure that the modeling approach to multiple time series provides a

complete characterization of the dynamics of several series. This is done

using a multivariate autoregressive model to account for the dynamics of

all the variables.7

The VAR model proposed by Sims is a multivariate autoregressive

model where each variable is regressed on its past values and the past values

of the other variables in the system. Model building in VAR models then

depends on the selection of the appropriate variables (based on theory). The

specification of the dynamic structure proceeds based on testing for the

appropriate lag length using the sample data. Sims (1980) argues that one

of the critical contributions of the VAR approach is that it can serve to
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define the ‘‘battleground’’ of empirical debates about multiple time series

data. It does this by providing a model of the dynamic and empirical regula-

rities of a set of related time series. From this point, one is able to refine and

develop the empirical model to evaluate theoretical debates.

The logic of the VAR approach can be applied to the aggregate partisan-

ship and public support of government policies example. Instead of starting

with a set of structural (e.g., SEQ), dynamic (e.g., ARIMA or ECM), or a

priori causal relationships (e.g., ECM) among the variables, a VAR model

begins by assuming that the reduced form dynamics are of central interest.

Thus, rather than impose possibly structural or dynamic restrictions on the

relationships among the two series, a VAR would have two equations, one

for each variable. Each variable would be regressed on its past values and

the past values of the other variable. The resulting residuals (after checking

for serial correlation) would be exogenous shocks or innovations. One

could look at the responses of each equation to see how these ‘‘surprises’’ in

each variable affect the observed system. After accounting for these (histor-

ical) dynamics, one could engage in inferences about the Granger causal

relationships between the two variables and try to determine the endogen-

ous structure and dynamics of the two series.

Building multivariate time series models according to the VAR metho-

dology does not then depend on a single theory. Instead, multiple theories

can be compared explicitly and evaluated (using hypothesis testing) with-

out the identification assumptions that would be made in the specification

of alternative simultaneous equation models. Because the variables in the

VAR model are not segmented a priori into endogenous and exogenous

variables, we are less likely to violate the model specification and incor-

rectly induce simultaneity biases by incorrectly specifying a variable as

exogenous when it is really endogenous.

The key distinction between VAR and SEQ models is the treatment of

identification assumptions. In the SEQ model, these are taken as fixed,

invariant, and specified by theory. In the VAR approach, such zero-order

restrictions (e.g., excluding variables from some equations or omitting some

lagged values of some variables from some equations) are seen as unlikely

to be true. Thus, in an effort to eliminate biases from these incorrect restric-

tions, VAR models are able to consider trading off these biases for some

inefficiency. The biases in the SEQ model estimates are the result of omit-

ting lagged values that should be included in the models. Under Sims’ logic,

often some lags of some variables are (incorrectly) excluded to identify the

SEQ model. These incorrect restrictions, which lead to the omission of rele-

vant lagged variables, produce omitted variable bias. The solution to miti-

gating this bias is to include all possible lags (which may be more than

necessary). In this case, the goal is to reduce bias at the cost of efficiency.
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The key identification assumption in a VAR model is how the contempora-

neous effects of each variable are related to each other. Because the VAR

model is specified in terms of the lagged values of the variables in the system

on each other, identification concerns the specification of the residual or con-

temporaneous covariance matrix of the residuals alone. The benefit of this is

that it allows one to separate the interpretation of the model dynamics from

the identification. This allows researchers to explicitly look at how identifica-

tion decisions are related to the path of the variables’ dynamics.

VAR modelers also have a different conception of the interplay of data

and models. The goal of a VAR model is to provide a probability model of

the dynamics and correlations among the data (Sims, 1980). Thus, VAR

models are considered best when based on a simple, unbiased specification

that accounts for the uncertainty about the dynamics and the model. To do

this pretest biases must be avoided (Pagan, 1987). Thus, unlike the ‘‘spe-

cify-estimate-test-respecify’’ logic of classical approaches, SEQ models,

and ARIMA models, VAR models employ few hypothesis tests to justify

their specification. This leads to a less biased representation of the model

and its dynamics rather than the false sense of precision that can accompany

other modeling strategies. That is, once we have entered this cycle of speci-

fication testing, the resulting inferences are a function of the test procedure

and are less certain than the reported test statistics and associated levels of

significance or reported P values would lead us to believe.

1.5 Comparison and Summary

This brief review of possible approaches to multiple time series models has

been intended to connect other approaches to the VAR methodology (see,

e.g., Pagan, 1987; Sims, 1996). The ARIMA, ECM, and SEQ methods are

special cases of the more general VAR methodology. Freeman, Williams,

and Lin (1989) presented a basic comparison of the VAR and SEQ

approaches. Here, we have discussed these and other models with the goal

of comparing how dynamics are modeled and how inferences are made.

Table 1.1 presents a summary of each of these methods, which extends

the summary initially presented in Freeman Williams, and Lin (1989). The

table shows the main methodological differences in the specification of

time series models.

The critical point is that VAR models are a generalization of the other

approaches. Each of the other modeling approaches focuses on some

feature of time series data that may be true in practice. However, from

the standpoint of model formation and theory testing, the more general

approach is a VAR model.
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Why then do we advocate the VAR approach? First, we are not trying to

rule out structural models. In fact, such structural models can and will do a

good job in some cases when the restrictions in those models are true. They

will provide better inferences, summaries of dynamics, representations of

relationships, and other measures. Second, using a step-by-step approach to

structural model building that is explicit in its treatment of assumptions about

dynamics will be to produce a better model based on the parsimony principle.

When are these structural equation models a poor choice, and when

should they be replaced by VAR models? There are three situations, all of

TABLE 1.1

Comparison of Time Series Modeling Approaches

ARIMA Error Correction SEQ VAR

Model Building

Specification Single theory

focused on

univariate

series

Long- and

short-run trends

and dynamics

based on results

of tests for

cointegration

and unit roots

Single theory

with assumptions

about endo-geneity

and exogeneity

Recognition of

multiple theories

by including

variables as

endogenous

Estimation Maximum

likelihood;

OLS

Johansen

procedure;

one- or two-step

procedure

Higher-order

OLS and maximum-

likelihood methods;

corrections for

heteroscedasticity

and serial

correlation; tests

for overidentification

and orthogonality

OLS and tests

for lag length

Methodological

Conventions

Hypothesis

testing

Analysis of

individual

coefficients

Tests of

cointegrating

relationships;

short-term

dynamics

Analysis of

individual

coefficients;

goodness

of fit

Analysis of

significance of

blocks of

coefficients; tests

for exogeneity

Dynamic

analysis

Dynamic

multipliers;

intervention

analysis

Analysis of

cointegrating

vector; impulse

responses

Simulation;

deduction of

model dynamics

Forecasts,

model projections,

decomposition of

forecast error

variation, impulse

responses
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which are when these models fail. First, unless we know or test the precise

structure of the relationships among the variables in our models, SEQ

models will be misspecified. Second, for policy or counterfactual analysis,

unless the models are correct, we may make incorrect inferences. Finally, if

one of our goals is to characterize uncertainty and dynamics, then VAR

models will typically be superior because they are less likely to be overly

precise via ad hoc pretesting of the models under consideration.

Second, there are times when one would prefer to use an ECM. These are

when one wants to isolate the long- and short-run behaviors of several

series simultaneously, or when trending or unit root variables are present in

a multiple time series models. In these cases, one is actually estimating a

VAR model with a set of restrictions or assumptions (which can be tested)

about how the long-run behavior of the multiple time series model evolves.

Our contention in this book is that to understand and apply the ECM and

VECM models, one should have a solid basis in the more general, unrest-

ricted VAR approach. We return to the relationship between VAR and

ECM models in the next chapter.

The next chapter outlines the mathematical details of a VAR model. We

then discuss how this model is used for inference about the relationships in

multivariate time series data.

2. BASIC VECTOR AUTOREGRESSION MODELS

Vector autoregression (VAR) models are not a statistical technique or metho-

dology. Rather, VAR models are an approach to modeling dynamics among

a set of (endogenous) variables. This approach focuses on the dynamics of

multiple time series and typically employs multiple regression and multivari-

ate seeming unrelated regression models. The central focus is on the data and

their dynamics. A central tenet of VAR models is the idea that restrictions on

the data and parameters in the model should be viewed skeptically.

How skeptically? Consider some hypothetical time series data that have a

rich dynamic and correlated structure. Consider a ‘‘view’’ of these data: With

perfect knowledge you can see these data and know their rich dynamics.

Now consider closing one eye. With one eye closed you only see part of the

dynamics of the data (the left or the right depending on which one you closed)

and may lack the full perception of the depth of these data. VAR modeling is

an effort to force you to keep your eyes open rather than incorrectly closing

your eyes or occluding your vision with incorrect assumptions.

What then is a VAR model? Simply, it is an interdependent reduced form

dynamic model. For each endogenous variable in the system of equations,
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