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b Parameter

The b parameter is an item response theory (IRT)–based 
index of item difficulty. As IRT models have become an 
increasingly common way of modeling item response 
data, the b parameter has become a popular way of 
characterizing the difficulty of an individual item, as 
well as comparing the relative difficulty levels of differ-
ent items. This entry addresses the b parameter with 
regard to different IRT models. Further, it discusses 
interpreting, estimating, and studying the b parameter.

b Parameter Within Different  
Item Response Theory Models

The precise interpretation of the b parameter is depen-
dent on the specific IRT model within which it is 

considered, the most common being the one-parameter 
logistic (1PL) or Rasch model, the two-parameter logis-
tic (2PL) model, and three-parameter logistic (3PL) 
model. Under the 1PL model, the b parameter is the 
single item feature by which items are distinguished in 
characterizing the likelihood of a correct response. 
Specifically, the probability of correct response (X 1ij = ) 
by examinee i to item j is given by

P X
b

b
( 1)

exp( )

1 exp( )
,ij

i j

i j

θ
θ

= =
−

+ −

where jθ  represents an ability-level (or trait-level) 
parameter of the examinee. An interpretation of the b 
parameter follows from its being attached to the same 
metric as that assigned to θ .

Usually this metric is continuous and unbounded; 
the indeterminacy of the metric is often handled by 

B

Figure 1 � Item Characteristic Curves for Example Items, One-Parameter Logistic (1PL or Rasch), Two-Parameter 
Logistic (2PL), and Three-Parameter Logistic (3PL) Models
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70 b Parameter

assigning either the mean of θ  (across examinees) or b 
(across items) to 0. Commonly b parameters will 
assume values between -3 and 3, with more extreme 
positive values representing more difficult (or infre-
quently endorsed) items, and more extreme negative 
values representing easy (or frequently endorsed) items.

The 2PL and 3PL models include additional item 
parameters that interact with the b parameter in deter-
mining the probability of correct response. The 2PL 
model adds an item discrimination parameter ( aj

), so 
the probability of correct response is
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and the 3PL model adds a lower asymptote (“pseu-
doguessing”) parameter, resulting in
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While the same general interpretation of the b 
parameter as a difficulty parameter still applies under 
the 2PL and 3PL models, the discrimination and lower 
asymptote parameters also contribute to the likelihood 
of a correct response at a given ability level.

Interpretation of the b Parameter
Figure 1 provides an illustration of the b parameter with 
respect to the 1PL, 2PL, and 3PL models. In this figure, 
item characteristic curves (ICCs) for three example items 
are shown with respect to each model. Each curve repre-
sents the probability of a correct response as a function 
of the latent ability level of the examinee. Across all three 
models, it can be generally seen that as the b parameter 
increases, the ICC tends to decrease, implying a lower 
probability of correct response.

In the 1PL and 2PL models, the b parameter has the 
interpretation of representing the level of the ability or 
trait at which the respondent has a .50 probability of 
answering correctly (endorsing the item). For each of the 
models, the b parameter also identifies the ability level 
that corresponds to the inflection point of the ICC, and 
thus the b parameter can be viewed as determining the 
ability level at which the item is maximally informative. 
Consequently, the b parameter is a critical element in 
determining where along the ability continuum an item 
provides its most effective estimation of ability, and thus 
the parameter has a strong influence on how items are 
selected when administered adaptively, such as in a 
computerized adaptive testing environment.

Under the 1PL model, the b parameter effectively 
orders all items from easiest to hardest, and this order-
ing is the same regardless of the examinee ability or 

trait level. This property is no longer present in the 2PL 
and 3PL models, as the ICCs of items may cross, imply-
ing a different ordering of item difficulties at different 
ability levels. This property can also be seen in the 
example items in Figure 1 in which the ICCs cross for 
the 2PL and 3PL models, but not for the 1PL model. 
Consequently, while the b parameter remains the key 
factor in influencing the difficulty of the item, it is not 
the sole determinant.

An appealing aspect of the b parameter for all IRT 
models is that its interpretation is invariant with 
respect to examinee ability or trait level. That is, its 
value provides a consistent indicator of item difficulty 
whether considered for a population of high, medium, 
or low ability. This property is not present in more clas-
sical measures of item difficulty (e.g., “proportion cor-
rect”), which are influenced not only by the difficulty 
of the item, but also by the distribution of ability in the 
population in which they are administered. This invari-
ance property allows the b parameter to play a funda-
mental role in how important measurement applications, 
such as item bias (differential item functioning), test 
equating, and appropriateness measurement, are con-
ducted and evaluated in an IRT framework.

Estimating the b Parameter
The b parameter is often characterized as a structural 
parameter within an IRT model and as such will generally 
be estimated in the process of fitting an IRT model to item 
response data. Various estimation strategies have been 
proposed and investigated, some being more appropriate 
for certain model types. Under the 1PL model, conditional 
maximum likelihood procedures are common. For all 
three model types, marginal maximum likelihood, joint 
maximum likelihood, and Bayesian estimation proce-
dures have been developed and are also commonly used.

Studying the b Parameter
The b parameter can also be the focus of further analy-
sis. Models such as the linear logistic test model and its 
variants attempt to relate the b parameter to task com-
ponents within an item that account for its difficulty. 
Such models also provide a way in which the b param-
eter’s estimates of items can ultimately be used to vali-
date a test instrument. When the b parameter assumes 
the value expected given an item’s known task compo-
nents, the parameter provides evidence that the item is 
functioning as intended by the item writer.

Daniel Bolt

See also Differential Item Functioning; Item Analysis; Item 
Response Theory; Parameters; Validity of Measurement
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Balanced Incomplete  
Block Designs

Block designs are useful in experimental design when 
the experimental material is not uniform but can be 
divided into homogeneous blocks. Typically, blocks 
cannot contain all the treatments, so incomplete block 
designs are used. The condition of balance, if it can be 
achieved, guarantees that the designs are optimal in 
minimizing the variance of treatment differences.

This entry provides a survey of balanced incomplete 
block designs (BIBDs). It discusses necessary conditions 
on the parameters for the existence of the designs and 
optimality results. It also provides a brief introduction 
to constructions of BIBDs using difference families, 
finite fields, or recursive methods, and some generaliza-
tions, including pointers about what to do if no BIBD is 
available.

Overview
Balanced incomplete block designs, or BIBDs (known to 
mathematicians as 2-designs), were introduced into sta-
tistics by F. Yates at Rothamsted Experimental Station 
in 1936. So the introductory example provided in this 
entry will be a hypothetical agricultural experiment.

Suppose we have seven types of fertilizer, A, B, . . . ., 
G, to test. We have land available for the test on seven 
farms in different regions; each farm can provide three 
plots for the experiment. The designer’s job is to allocate 
a fertilizer to each of the 21 plots. One possible solution 
is shown in Table 1.

The farms are represented by columns in the array; 
the three entries in a column are, in no particular order, 
the three fertilizers that will be applied to plots on that 
farm. We refer to the fertilizers as treatments and the 
farms as blocks.

Table 1 � Possible Solution to Fertilizer Allocation

A A A B B C C
B D F D E D E
C E G F G G F

This design has several good properties:

1.		�it is binary, that is, the same treatment (fertilizer) is 
not used more than once in a block;

2.		�it is equireplicate, that is, each treatment is used a 
constant number of times (3 times); and

3.		�it is balanced, that is, each pair of treatments occur 
together in a block the same number of times (once).

The design can be specified compactly by regarding 
each block as a set of three treatments (rather than a set 
of three plots). This is the way that mathematicians 
regard such a design, but they use the word points in 
place of treatments. A mathematician might represent 
the design by the diagram shown in Figure 1. This is 
known to finite geometers as the Fano plane.

The experimental units or plots are not easily visible in 
this picture; they are what geometers refer to as flags 
(incident point-block pairs). But from the list of blocks, as 
sets of treatments, we can draw a table similar to the one 
given earlier; the table entries correspond to the plots.

Definition and Properties
A BIBD consists of a set of v treatments, together with 
a collection of k-element subsets of the treatment set 
(blocks), with the property that any two treatments are 
contained in exactly λ blocks. We require that 1 < k < v. 
(If k = 1, then no comparisons would be possible; if 
k = v, we would have a complete block design, with 
every treatment in every block.) The earlier introduc-
tory example has v = 7, k = 3, λ = 1.

Theorem 1. Suppose that a BIBD with parameters v, k, 
λ as above exists. Then 

•	 it is equireplicate, that is, any treatment occurs in a 
constant number r of blocks;

•	 r (k − 1) = (v − 1)λ; and
•	 the number b of blocks satisfies bk = vr.

This result is proved by straightforward double 
counting. It follows that r = (v − 1) λ/(k − 1) and b = v 

Figure 1  Fano Plane
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(v − 1) λ/k (k − 1); so a necessary condition for the exis-
tence of such a design is that k − 1 divides (v − 1) λ and 
k divides v (v − 1) λ.

The next result is known as Fisher’s inequality. It rules 
out the existence of BIBDs with certain parameter sets.

Theorem 2. The numbers v and b of treatments and 
blocks in a BIBD satisfy b ≥ v.

If equality holds, then k = r, and any two blocks have 
exactly λ treatments in common.

A BIBD meeting Fisher’s bound is referred to as a 
symmetric BIBD. We can form the dual by simply inter-
changing the labels “treatment” and “block”; the dual 
of a symmetric BIBD is again a symmetric BIBD.

Optimality
The job of the designer of an experiment like the one in 
the introductory example is to obtain the maximum pos-
sible information from the given experimental material. 
Typically, block designs are used when comparing v treat-
ments, and bk experimental units are available, which are 
divided into b blocks of size k. The assumption is that 
plots within a block are relatively homogeneous but may 
differ in systematic but unknown ways from plots in a 
different block. (In the introductory example, different 
farms may have very different soil and climatic condi-
tions.) In other words, the parameters v, b, and k are 
given. We wish to estimate differences between treatments 
as accurately as possible; this means that we want the 
variances of the estimators to be as small as possible. 
However, this is a multidimensional optimization prob-
lem; we cannot make all variances small simultaneously.

This has led to the introduction of a number of opti-
mality parameters which give an overall summary of the 
variances. The most important are

1.		�A-optimality, the average variances of treatment 
differences;

2.		�D-optimality, the volume of a confidence ellipsoid; and

3.		�E-optimality, the largest variance of a treatment 
difference.

In general, different designs might optimize different 
parameters here. The importance of BIBDs, when they 
exist, is that they minimize these three parameters and a 
number of others. The following was shown by Anant 
M. Kshirgar (1958) and Jack Kiefer (1975).

Theorem 3. Suppose that a BIBD exists for v treat-
ments in b blocks of size k. Then a design for these 

parameters minimizes any one of the parameters A, D, 
and E if and only if it is a BIBD.

So, if a BIBD exists, the designer should use it. If not, 
the situation is significantly more complicated.

Constructions
Many constructions of BIBDs are known. A few of 
important ones are mentioned here.

Finite Geometry

These designs are finite analogues of the usual pro-
jective and affine (Euclidean) geometry. We work over 
a finite field with q elements: This is a structure in 
which the arithmetic operations of addition, subtrac-
tion, multiplication, and division (except by zero) are 
defined and satisfy the usual rules. (It goes back to 
Évariste Galois, the 19th century mathematician who 
established that finite fields with q elements exist if 
and only if q is a prime power.)

The earlier introductory example is of this form. If 
we represent the treatments A, . . . ,G by 3-dimensional 
vectors over the binary field {0,1}, specifically A = 001, 
B = 010, C = 011, D = 100, E = 101, F = 110, G = 111, 
then the blocks are precisely the triples of vectors with 
sum zero (recall that 1 + 1 = 0 in the binary field).

Geometries of dimension n over a field with q ele-
ments give rise to designs, where we take the blocks to 
be the m-dimensional subspaces with 0 < m < n. The 
number of treatments is (qn − 1)/(q − 1) for projective 
geometry and qn for affine geometry.

Difference Families

In the integers mod 7, represented as {0, 1, 2, . . . , 6}, 
the set {1, 2, 4} has the property that every nonzero  
element has a unique representation as the difference 
(mod 7) between two elements of the set:

1 = 2 − 1, 2 = 4 − 2, 3 = 4 − 1, 4 = 1 − 4,  
5 = 2 − 4, 6 = 1 − 2.

(The set {1, 2, 4} is called a difference set.) It 
follows that the translates of {1, 2, 4}, namely

124, 235, 346, 450, 561, 602, 013

are the blocks of a symmetric BIBD. This matches the 
introductory example if we take 1 = A, 2 = B, 3 = D,  
4 = C, 5 = F, 6 = G, and 0 = E.
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The construction can be generalized: we can replace 
the integers mod 7 by an arbitrary group; we can 
replace the uniqueness property by the property that 
every nonidentity element has a constant number λ of 
representations, or we can take a difference family con-
sisting of several sets of the same size, such that each 
nonidentity element has λ representations as the differ-
ence between two elements of the same set.

Recursive Constructions

There are many constructions that build larger 
BIBDs from smaller ones. These often require the exis-
tence of auxiliary structures such as Latin squares or 
transversal designs. These are complicated and so are 
not described here.

Existence Theorems

BIBDs were first considered in the 19th century, 
mostly as a branch of recreational mathematics. Designs 
with k = 3 and λ = 1 are called Steiner triple systems, 
since the question of their existence was posed by the 
Swiss geometer Jakob Steiner in 1853; unknown to him, 
the problem had been solved by Thomas P. Kirkman, the 
rector of a country parish in the north of England, in 
1847 and published in the Ladies’ and Gentlemen’s 
Diary:

Theorem 4. A BIBD with k = 3 and λ = 1 on v 
treatments exists if and only if v is congruent to 1 or 3  

mod 6.

The necessity of the condition follows from our nec-
essary conditions: 2 divides v − 1, so v is odd; 3 divides 
v (v − 1), so v is congruent to 0 or 1 mod 3. The suffi-
ciency was proved by Kirkman by construction, partly 
direct and partly recursive.

In the 20th century, Haim Hanani showed that, for 
k = 3 and any value of λ, the necessary divisibility con-
ditions are sufficient for the existence of a BIBD. Then 
in 1975, Richard M. Wilson solved the general existence 
question asymptotically:

Theorem 5. There is a number N (k, λ) such that, if  
k − 1 divides (v − 1)λ, k divides v (v − 1)λ, and v ≥ N(k, 

λ), then a BIBD with parameters v, k, λ exists.

Tables of parameters of BIBDs can be found in a 
number of places. Marshall Hall’s book Combinatorial 
Theory tabulates parameter sets by the replication num-
ber r for r ≤ 15, giving either a construction or a refer-
ence to a nonexistence proof in each case.

Resolvability
A block design is resolvable if the set of blocks can be 
partitioned into resolution classes, so that the blocks in 
each class contain each treatment precisely once.

An example, with v = 9, k = 3 and λ = 1 (a Steiner 
triple system) consists of the following blocks:

ABC, DEF, GHI, ADG, BEH, CFI, AEI, BFG, 
CDH, AFH, BDI, CEG.

From the definition, we see that the blocks in a reso-
lution class are pairwise disjoint and that the stronger 
necessary condition that k divides v holds. Kirkman, 
mentioned earlier, posed his celebrated schoolgirls prob-
lem, asking for a resolvable BIBD with v = 15, k = 3, and 
λ = 1. He solved this problem himself, but the general 
case with k = 3 and λ = 1 was not solved until the mid-
20th century, when Dijen K. Ray-Chaudhuri and 
Richard M. Wilson showed that resolvable designs exist 
whenever v is an odd multiple of 3.

The designs from affine spaces described earlier are 
resolvable, the resolution classes being parallel classes of 
subspaces of the geometry. Indeed, in the example just 
given, the blocks are lines of the affine plane over the 
3-element field.

Resolvable designs can be useful in managing an 
experiment. If we perform the experiment on the resolu-
tion classes in order, then losing (say) the last replication 
class leaves a block design which is still equireplicate, 
though no longer balanced.

Generalizations
The concept of BIBD has been generalized in various 
ways. However, the difference in outlook of statisticians 
and mathematicians means that many of the mathemati-
cal generalizations, though applicable in various fields 
such as information security, are not relevant to experi-
mental design. 

One case of interest to both groups is that of partially 
balanced incomplete block designs, or PBIBDs. There is 
an association scheme on the set of treatments, such that 
the concurrence of two treatments (the number of blocks 
containing both) depends only on the associate class 
containing the pair. This notion was introduced by Raj 
Chandra Bose and his students in the 1950s and was 
widely used since it simplified the computational prob-
lem of inverting the information matrix of the design; it 
also includes many examples of great interest to mathe-
maticians, such as generalized polygons.

Our first condition asserted that BIBDs are binary, 
that is, a treatment occurs at most once in each block. 
Relaxing this is difficult for the mathematical approach, 
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since blocks would have to be multisets rather than sets 
of treatments, but it is quite natural in experimental 
design. Indeed, the (nonbinary) design for five treat-
ments in seven blocks of three, with blocks AAB, ACD, 
ACE, ADE, BCD, BCE, BDE, is E-optimal for these 
parameters (it beats any binary design on this crite-
rion). Since 1995, John. P. Morgan and his students 
have investigated what they call variance-balanced 
designs, which are E-optimal, and have given necessary 
and sufficient conditions for their existence when k = 3.

Peter J. Cameron

See also Block Design; Experimental Design; Factorial Design; 
Pairwise Comparisons; Randomized Block Design; Replication
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Bar Chart

The term bar chart refers to a category of diagrams in 
which values are represented by the height or length of 
bars, lines, or other symbolic representations. Bar charts 
are typically used to display variables on a nominal or 
ordinal scale. Bar charts are a very popular form of 
information graphics often used in research articles, 
scientific reports, textbooks, and popular media to visu-
ally display relationships and trends in data. However, 
for this display to be effective, the data must be pre-
sented accurately, and the reader must be able to ana-
lyze the presentation effectively. This entry provides 
information on the history of the bar charts, the types 
of bar charts, and the construction of a bar chart.

History
The creation of the first bar chart is attributed to William 
Playfair and appeared in The Commercial and Political 
Atlas in 1786. Playfair’s bar graph was an adaptation of 
Joseph Priestley’s time-line charts, which were popular at 
the time. Ironically, Playfair attributed his creation of the 
bar graph to a lack of data. In his Atlas, Playfair presented 
34 plates containing line graphs or surface charts graphi-
cally representing the imports and exports from different 
countries over the years. Since he lacked the necessary 
time-series data for Scotland, he was forced to graph its 

trade data for a single year as a series of 34 bars, one for 
each of the imports and exports of Scotland’s 17 trading 
partners. However, his innovation was largely ignored in 
Britain for a number of years. Playfair himself attributed 
little value to his invention, apologizing for what he saw 
as the limitations of the bar chart. It was not until 1801 
and the publication of his Statistical Breviary that Playfair 
recognized the value of his invention. Playfair’s invention 
fared better in Germany and France. In 1811 the German 
Alexander von Humboldt published adaptations of 
Playfair’s bar graph and pie charts in Essai Politique sur le 
Royaume de la Nouvelle Espagne. In 1821, Jean Baptiste 
Joseph Fourier adapted the bar chart to create the first 
graph of cumulative frequency distribution, referred to as 
an ogive. In 1833, A. M. Guerry used the bar chart to plot 
crime data, creating the first histogram. Finally, in 1859 
Playfair’s work began to be accepted in Britain when 
Stanley Jevons published bar charts in his version of an 
economic atlas modeled on Playfair’s earlier work. Jevons 
in turn influenced Karl Pearson, commonly considered the 
“father of modern statistics,” who promoted the wide-
spread acceptance of the bar chart and other forms of 
information graphics.

Types
Although the terms bar chart and bar graph are now used 
interchangeably, the term bar chart was reserved tradi-
tionally for corresponding displays that did not have 
scales, grid lines, or tick marks. The value each bar repre-
sented was instead shown on or adjacent to the data 
graphic.

An example bar chart is presented in Figure 1. Bar 
charts can display data by the use of either horizontal or 
vertical bars; vertical bar charts are also referred to as 
column graphs. The bars are typically of a uniform 
width with a uniform space between bars. The end of the 
bar represents the value of the category being plotted. 
When there is no space between the bars, the graph is 
referred to as a joined bar graph and is used to empha-
size the differences between conditions or discrete cate-
gories. When continuous quantitative scales are used on 
both axes of a joined bar chart, the chart is referred to 
as a histogram and is often used to display the distribu-
tion of variables that are of interval or ratio scale. If the 
widths of the bars are not uniform but are instead used 
to display some measure or characteristic of the data 
element represented by the bar, the graph is referred to 
as an area bar graph (see Figure 2). In this graph, the 
heights of the bars represent the total earnings in U.S. 
dollars, and the widths of the bars are used to represent 
the percentage of the earnings coming from exports. The 
information expressed by the bar width can be displayed 
by means of a scale on the horizontal axis or by a legend, 
or, as in this case, the values might be noted directly on 
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Figure 1  Simple Bar Chart and Associated Data

Note: USD = U.S. dollars.
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Figure 2  Area Bar Graph and Associated Data

Note: USD = U.S. dollars.
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the graph. If both positive and negative values are plot-
ted on the quantitative axis, the graph is called a devia-
tion graph. On occasion the bars are replaced with 
pictures or symbols to make the graph more attractive 
or to visually represent the data series; these graphs are 
referred to as pictographs or pictorial bar graphs.

It may on occasion be desirable to display a confi-
dence interval for the values plotted on the graph. In 
these cases the confidence intervals can be displayed by 
appending an error bar, or a shaded, striped, or tapered 
area to the end of the bar, representing the possible val-
ues covered in the confidence interval. If the bars are 
used to represent the range between the upper and 
lower values of a data series rather than one specific 
value, the graph is called a range bar graph. Typically 
the lower values are plotted on the left in a horizontal 
bar chart and on the bottom for a vertical bar chart. A 
line drawn across the bar can designate additional or 
inner values, such as a mean or median value. When the 
five-number summary (the minimum and maximum 
values, the upper and lower quartiles, and the median) 
is displayed, the graph is commonly referred to as a box 
plot or a box-and-whisker diagram.

A simple bar graph allows the display of a single data 
series, whereas a grouped or clustered bar graph displays 
two or more data series on one graph (see Figure 3). 
In  clustered bar graphs, elements of the same category 
are plotted side by side; different colors, shades, or pat-
terns, explained in a legend, may be used to differentiate 
the various data series, and the spaces between clusters 
distinguish the various categories.

While there is no limit to the number of series that can 
be plotted on the same graph, it is wise to limit the number 
of series plotted to no more than four in order to keep the 
graph from becoming confusing. To reduce the size of the 
graph and to improve readability, the bars for separate 
categories can be overlapped, but the overlap should be 
less than 75% to prevent the graph from being mistaken 
for a stacked bar graph. A stacked bar graph, also called a 
divided or composite bar graph, has multiple series 
stacked end to end instead of side by side. This graph 
displays the relative contribution of the components of a 
category; a different color, shade, or pattern differentiates 
each component, as described in a legend. The end of the 
bar represents the value of the whole category, and the 
heights of the various data series represent the relative 
contribution of the components of the category. If the 
graph represents the separate components’ percentage of 
the whole value rather than the actual values, this graph is 
commonly referred to as a 100% stacked bar graph. Lines 
can be drawn to connect the components of a stacked bar 
graph to more clearly delineate the relationship between 

the same components of different categories. A stacked 
bar graph can also use only one bar to demonstrate the 
contribution of the components of only one category, 
condition, or occasion, in which case it functions more 
like a pie chart. Two data series can also be plotted 
together in a paired bar graph, also referred to as a sliding 
bar or bilateral bar graph. This graph differs from a clus-
tered bar graph because rather than being plotted side by 
side, the values for one data series are plotted with hori-
zontal bars to the left and the values for the other data 
series are plotted with horizontal bars to the right. The 
units of measurement and scale intervals for the two data 
series need not be the same, allowing for a visual display 
of correlations and other meaningful relationships between 
the two data series. A paired bar graph can be a variation 
of either a simple, clustered, or stacked bar graph. A 
paired bar graph without spaces between the bars is often 
called a pyramid graph or a two-way histogram. Another 
method for comparing two data series is the difference bar 
graph. In this type of bar graph, the bars represent the dif-
ference in the values of two data series. For instance, one 
could compare the performance of two different classes 
on a series of tests or compare the different performance 
of males and females on a series of assessments. The direc-
tion of the difference can be noted at the ends of bars or 
by labeling the bars. When comparing multiple factors at 
two points in time or under two different conditions, one 
can use a change bar graph. The bars in this graph are 
used to represent the change between the two conditions 
or times. Since the direction of change is usually important 
with these types of graphs, a coding system is used to 
indicate the direction of the change.

Creating an Effective Bar Chart
A well-designed bar chart can effectively communicate a 
substantial amount of information relatively easily, but a 
poorly designed graph can create confusion and lead to 
inaccurate conclusions among readers. Choosing the cor-
rect graphing format or technique is the first step in creat-
ing an effective graphical presentation of data. Bar charts 
are best used for making discrete comparisons between 
several categorical variables because the eye can spot very 
small differences in relative height. However, a bar chart 
works best with four to six categories; attempting to dis-
play more than six categories on a bar graph can lead to 
a crowded and confusing graph. Once an appropriate 
graphing technique has been chosen, it is important to 
choose the direction and the measurement scale for the 
primary axes. The decision to present the data in a hori-
zontal or vertical format is largely a matter of personal 
preference; a vertical presentation, however, is more intui-
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tive for displaying amount or quantity, and a horizontal 
presentation makes more sense for displaying distance or 
time. A horizontal presentation also allows for more space 
for detailed labeling of the categorical axis. The choice of 
an appropriate scale is critical for accurate presentation of 
data in a bar graph. Simple changes in the starting point 
or the interval of a scale can make the graph look dra-
matically different and may possibly misrepresent the 
relationships within the data. The best method for avoid-
ing this problem is to always begin the quantitative scale 
at 0 and to use a linear rather than a logarithmic scale. 
However, in cases in which the values to be represented 
are extremely large, a start value of 0 effectively hides any 
differences in the data because by necessity the intervals 
must be extremely wide. In these cases it is possible to 
maintain smaller intervals while still starting the scale at 0 
by the use of a clearly marked scale break. Alternatively, 
one can highlight the true relationship between the data 
by starting the scale at 0 and adding an inset of a small 
section of the larger graph to demonstrate the true rela-
tionship. Finally, it is important to make sure the graph 
and its axes are clearly labeled so that the reader can 
understand what data are being presented. Modern tech-

nology allows the addition of many superfluous graphical 
elements to enhance the basic graph design. Although the 
addition of these elements is a matter of personal choice, 
it is important to remember that the primary aim of data 
graphics is to display data accurately and clearly. If the 
additional elements detract from this clarity of presenta-
tion, they should be avoided.

Teresa P. Clark and Sara E. Bolt

See also Box-and-Whisker Plot; Distribution; Graphical Display 
of Data; Histogram; Pie Chart
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Bartlett’s Test

The assumption of equal variances across treatment 
groups may cause serious problems if violated in one-
way analysis of variance models. A common test for 
homogeneity of variances is Bartlett’s test. This statisti-
cal test checks whether the variances from different 
groups (or samples) are equal.

Suppose that there are r  treatment groups and we 
want to test

H

H m k

:

versus

: for some .

r

m k

0 1
2

2
2 2

1
2 2

σ σ σ

σ σ

= = =
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In this context, we assume that we have independently 
chosen random samples of size n i r, 1, ,i = …  from each of 
the r  independent populations. Let μ σ )(X N~ ,ij i i

2  be 
independently distributed with a normal distribution hav-
ing mean μi and variance i

2σ  for each j n1, , i= …  and 
each i r1, ,= … . Let Xi

 be the sample mean and Si
2  the 

sample variance of the sample taken from the ith  group 
or population. The uniformly most powerful unbiased 
parametric test of size α  for testing for equality of vari-
ances among r  populations is known as Bartlett’s test, 
and Bartlett’s test statistic is given by
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where w n N r1 /i i )( )(= − −  is known as the weight 

for  the ith  group and N ni
i

r

1
∑=

=

 is the sum of the 

individual  sample sizes. In the equireplicate case 
(i.e., n n nr1 = = = ), the weights are equal, and 
w r1 /i =  for each i r1, , .= …  The test statistic is the 
ratio of the weighted geometric mean of the group 
sample variances to their weighted arithmetic mean. 
The values of the test statistic are bounded as 

0 11
*≤ ≤  by Jensen’s inequality. Large values of 
0 11

*≤ ≤  (i.e., values near 1) indicate agreement 
with the null hypothesis, whereas small values indi-
cate disagreement with the null. The terminology 1

*  
is used to indicate that Bartlett’s test is based on M. 
S. Bartlett’s modification of the likelihood ratio test, 
wherein he replaced the sample sizes ni  with their 
corresponding degrees of freedom, n 1i − . Bartlett 
did so to make the test unbiased. In the equireplicate 
case, Bartlett’s test and the likelihood ratio test 
result in the same test statistic and same critical  
region.

The distribution of 
1

*  is complex even when the null 
hypothesis is true. R. E. Glaser showed that the distribu-
tion of 

1
*  could be expressed as a product of indepen-

dently distributed beta random variables. In doing so he 
renewed much interest in the exact distribution of 
Bartlett’s test. We reject H0  provided  b n n, , r1

*
1 )(≤ …α  

where 
 b n nPr , , r1

*
1 α)( )(< … =α  when H0  is true. The 

Bartlett critical value b n n, , r1 )( …α  is indexed by level of 
significance and the individual sample sizes. The critical 
values were first tabled in the equireplicate case, and the 
critical value was simplified to b n n b n, , )( )(… =α α . 
Tabulating critical values with unequal sample sizes 
becomes counterproductive because of possible combi-
nations of groups, sample sizes, and levels of signifi-
cance.

Example
Consider an experiment in which lead levels are mea-
sured at five different sites. The data in Table 1 come 
from Paul Berthouex and Linfield Brown:

Table 1  Ten Measurements of Lead Concentration (mG=L) Measured on Waste Water Specimens

Measurement No.

Lab 1 2 3 4 5 6 7 8 9 10

1 3.4 3.0 3.4 5.0 5.1 5.5 5.4 4.2 3.8 4.2
2 4.5 3.7 3.8 3.9 4.3 3.9 4.1 4.0 3.0 4.5
3 5.3 4.7 3.6 5.0 3.6 4.5 4.6 5.3 3.9 4.1
4 3.2 3.4 3.1 3.0 3.9 2.0 1.9 2.7 3.8 4.2
5 3.3 2.4 2.7 3.2 3.3 2.9 4.4 3.4 4.8 3.0

Source: Berthouex, P. M., & Brown, L. C. (2002). Statistics for environmental engineers (2nd ed., p. 170). Boca Raton, FL: Lewis.
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From these data one can compute the sample vari-
ances and weights, which are:

Labs Weight Variance

1 0.2 0.81778

2 0.2 0.19344
3 0.2 0.41156
4 0.2 0.58400
5 0.2 0.54267

By substituting these values into the formula for 1
* , 

we obtain

 = =
0.46016
0.509889

0.902481
*

Critical values, b n( , )αα  of Bartlett’s test are tabled 
for cases in which the sample sizes are equal and 

.05α = .

Table 2  Table of Bartlett’s Critical Values

Number of Populations, r

n 2 3 4 5 6 7 8 9 10

3 .3123 .3058 .3173 .3299 . . . . .
4 .4780 .4699 .4803 .4921 .5028 .5122 .5204 .5277 .5341
5 .5845 .5762 .5850 .5952 .6045 .6126 .6197 .6260 .6315
6 .6563 .6483 .6559 .6646 .6727 .6798 .6860 .6914 .6961
7 .7075 .7000 .7065 .7142 .7213 .7275 .7329 .7376 .7418
8 .7456 .7387 .7444 .7512 .7574 .7629 .7677 .7719 .7757
9 .7751 .7686 .7737 .7798 .7854 .7903 .7946 .7984 .8017

10 .7984 .7924 .7970 .8025 .8076 .8121 .8160 .8194 .8224
11 .8175 .8118 .8160 .8210 .8257 .8298 .8333 .8365 .8392
12 .8332 .8280 .8317 .8364 .8407 .8444 .8477 .8506 .8531
13 .8465 .8415 .8450 .8493 .8533 .8568 .8598 .8625 .8648
14 .8578 .8532 .8564 .8604 .8641 .8673 .8701 .8726 .8748
15 .8676 .8632 .8662 .8699 .8734 .8764 .8790 .8814 .8834
16 .8761 .8719 .8747 .8782 .8815 .8843 .8868 .8890 .8909
17 .8836 .8796 .8823 .8856 .8886 .8913 .8936 .8957 .8975
18 .8902 .8865 .8890 .8921 .8949 .8975 .8997 .9016 .9033
19 .8961 .8926 .8949 .8979 .9006 .9030 .9051 .9069 .9086
20 .9015 .8980 .9003 .9031 .9057 .9080 .9100 .9117 .9132
21 .9063 .9030 .9051 .9078 .9103 .9124 .9143 .9160 .9175
22 .9106 .9075 .9095 .9120 .9144 .9165 .9183 .9199 .9213
23 .9146 .9116 .9135 .9159 .9182 .9202 .9219 .9235 .9248
24 .9182 .9153 .9172 .9195 .9217 .9236 .9253 .9267 .9280
25 .9216 .9187 .9205 .9228 .9249 .9267 .9283 .9297 .9309
26 .9246 .9219 .9236 .9258 .9278 .9296 .9311 .9325 .9336
27 .9275 .9249 .9265 .9286 .9305 .9322 .9337 .9350 .9361
28 .9301 .9276 .9292 .9312 .9330 .9347 .9361 .9374 .9385
29 .9326 .9301 .9316 .9336 .9354 .9370 .9383 .9396 .9406
30 .9348 .9325 .9340 .9358 .9376 .9391 .9404 .9416 .9426
40 .9513 .9495 .9506 .9520 .9533 .9545 .9555 .9564 .9572
50 .9612 .9597 .9606 .9617 .9628 .9637 .9645 .9652 .9658
60 .9677 .9665 .9672 .9681 .9690 .9698 .9705 .9710 .9716
80 .9758 .9749 .9754 .9761 .9768 .9774 .9779 .9783 .9787

100 .9807 .9799 .9804 .9809 .9815 .9819 .9823 .9827 .9830

Source: Dyer, D., & Keating, J. P. (1980). On the determination of critical values for Bartlett’s test. Journal of the American 
Statistical Association, 75, 313–319. Reprinted with permission from the Journal of the American Statistical Association. 
Copyright 1980 by the American Statistical Association. All rights reserved.

Note: The table shows the critical values used in Bartlett’s test of equal variance at the 5% level of significance.
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80 Barycentric Discriminant Analysis

These values are given in D. Dyer and Jerome Keating 
for various values of r, the number of groups, and n , 
the common sample size (see Table 2). Works by Glaser, 
M. T. Chao, and Glaser, and S. B. Nandi provide tables 
of exact critical values of Bartlett’s test. The most 
extensive set is contained in Dyer and Keating. 
Extensions (for larger numbers of groups) to the table 
of critical values can be found in Keating, Glaser, and 
N. S. Ketchum.

Approximation
In the event that the sample sizes are not equal, one can 
use the Dyer–Keating approximation to the critical 
values:


b a n n

n
N

b a n( ; , , ) ( , ).a
i

i
i

a

1
1

∑… = ×α α
=

So for the lead levels, we have the following values: 


b (5;10) 0.80250.05 = . At the 5% level of significance, 
there is not enough evidence to reject the null hypothe-
sis of equal variances.

Because of the complexity of the distribution of 
1

* , 
Bartlett’s test originally employed an approximation. 
Bartlett proved that

−ln ℓ1
*( )⎡

⎣⎢
⎤
⎦⎥ / c ~  χ2 r−1( ),

where

c =
1+ 1

3 r −1( )
⎡

⎣
⎢

⎤

⎦
⎥

1
ni −1

− 1
N − ri=1

r

∑
N − r

.

The approximation works poorly for small sample 
sizes. This approximation is more accurate as sample 
sizes increase, and it is recommended that nmin 3i )( ≥  
and that most n 5i > .

Assumptions
Bartlett’s test statistic is quite sensitive to nonnormality. 
In fact, W. J. Conover, M. E. Johnson, and M. M. 
Johnson echo the results of G. E. P. Box that Bartlett’s 
test is very sensitive to samples that exhibit nonnormal 
kurtosis. They recommend that Bartlett’s test be used 
only when the data conform to normality. Prior to using 
Bartlett’s test, it is recommended that one test for nor-
mality using an appropriate test such as the Shapiro–
Wilk W test. In the event that the normality assumption 
is violated, it is recommended that one test equality of 
variances using Howard Levene’s test.

Mark T. Leung and Jerome P. Keating

See also Critical Value; Likelihood Ratio Statistic; Normality 
Assumption; Parametric Statistics; Variance
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Barycentric Discriminant Analysis

Barycentric discriminant analysis (BADA) generalizes dis-
criminant analysis, and like discriminant analysis, it is 
performed when measurements made on some observa-
tions are combined to assign these observations, or new 
observations, to a priori defined categories. For example, 
BADA can be used (a) to assign people to a given diagnos-
tic group (e.g., patients with Alzheimer’s disease, patients 
with other dementia, or people aging without dementia) 
on the basis of brain imaging data or psychological tests 
(here the a priori categories are the clinical groups), (b) to 
assign wines to a region of production on the basis of 

Do n
ot c

opy
, po

st, 
or d

istr
ibu

te

Copyright ©2022 by SAGE Publications, Inc. 
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.



81Barycentric Discriminant Analysis

several physical and chemical measurements (here the a 
priori categories are the regions of production), (c) to use 
brain scans taken on a given participant to determine 
what type of object (e.g., a face, a cat, a chair) was 
watched by the participant when the scans were taken 
(here the a priori categories are the types of object), or (d) 
to use DNA measurements to predict whether a person is 
at risk for a given health problem (here the a priori cate-
gories are the types of health problem).

BADA is more general than standard discriminant 
analysis because it can be used in cases for which dis-
criminant analysis cannot be used. This is the case, for 
example, when there are more variables than observa-
tions, when the predictors are colinear, or when the 
measurements are categorical.

BADA is a class of methods that all rely on the same 
principle: Each category of interest is represented by the 
barycenter of its observations (i.e., the weighted average 
of the observations of a given category; the barycenter is 
also called the center of gravity or center of mass), and a 
generalized principal components analysis (GPCA) is 
performed on the category by variable matrix. This 
analysis gives a set of discriminant factor scores for the 
categories and another set of factor scores for the vari-
ables. The original observations are then projected onto 
the category factor space, providing a set of factor scores 
for the observations. The distance of each observation to 
the set of categories is computed from the factor scores, 
and each observation is assigned to the closest category. 
The a priori and a posteriori category assignments are 
compared to assess the quality of the discriminant pro-
cedure. The prediction for the observations that were 
used to compute the barycenters is called the fixed-effect 
prediction. The fixed-effect performance is evaluated by 
counting the number of correct and incorrect assign-
ments and storing these numbers in a confusion matrix. 
Another index of the performance of the fixed-effect 
model—equivalent to a squared coefficient of 
correlation—is the ratio of the category variance to the 
sum of the category variance and the variance of the 
observations within each category. This coefficient is 
denoted R2 and is interpreted as the proportion of vari-
ance of the observations explained by the categories or 
as the proportion of the variance explained by the dis-
criminant model. The performance of the fixed-effect 
model can also be represented graphically as a tolerance 
ellipsoid that encompasses a given proportion (say 95%) 
of the observations. The overlap between the tolerance 
ellipsoids of two categories is proportional to the num-
ber of misclassifications between these two categories.

New observations can also be projected onto the 
discriminant factor space, and they can be assigned to 
the closest category. When the actual assignment of these 
observations is not known, the model can be used to 
predict category membership. The model is then called a 

random model (as opposed to the fixed model). An obvi-
ous problem, then, is to evaluate the quality of the pre-
diction for new observations. Ideally, the performance of 
the random-effect model is evaluated by counting the 
number of correct and incorrect classifications for new 
observations and computing a confusion matrix based 
on these new observations. However, it is not always 
practical or even feasible to obtain new observations, 
and therefore the random-effect performance is often 
evaluated using computational cross-validation tech-
niques such as the leave one out (LOO) or the bootstrap. 
For example, an LOO approach can be used by which 
each observation is taken out of the set, in turn, and 
predicted from the model built on all the other observa-
tions. The predicted observations are then projected in 
the space of the fixed-effect discriminant scores. This can 
also be represented graphically as a prediction ellipsoid. 
A prediction ellipsoid encompasses a given proportion 
(say 95%) of the new observations. The overlap between 
the prediction ellipsoids of two categories is propor-
tional to the number of misclassifications of new obser-
vations between these two categories.

The stability of the discriminant model can be 
assessed by a cross-validation model such as the boot-
strap. In this procedure, multiple sets of observations are 
generated by sampling with replacement from the origi-
nal set of observations, and the category barycenters are 
computed from each of these sets. These barycenters are 
then projected onto the discriminant factor scores. The 
variability of the barycenters can be represented graphi-
cally as a confidence ellipsoid that encompasses a given 
proportion (say 95%) of the barycenters. When the 
confidence intervals of two categories do not overlap, 
these two categories are significantly different.

In summary, BADA is a GPCA performed on the 
category barycenters. GPCA encompasses various tech-
niques, such as correspondence analysis, biplot, 
Hellinger distance analysis, discriminant analysis, and 
canonical variate analysis. For each specific type of 
GPCA, there is a corresponding version of BADA. For 
example, when the GPCA is correspondence analysis, 
this gives the most well-known version of BADA: dis-
criminant correspondence analysis. Because BADA is 
based on GPCA, it can also analyze data tables 
obtained by the concatenation of blocks (i.e., subta-
bles). In this case, the importance (often called the 
contribution) of each block to the overall discrimina-
tion can also be evaluated and represented as a graph.

Hervé Abdi and Lynne J. Williams

See also Bootstrapping; Canonical Correlation Analysis; 
Correspondence Analysis; Jackknife; Matrix Algebra; 
Predictive Discriminant Analysis; Principal Components 
Analysis
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Basket Trials Design

Basket trials test a therapeutic intervention for several 
different disease indications simultaneously in the same 
clinical trial. Indications are grouped together in a bas-
ket because they share a molecular marker or a disease 
mechanism believed to be predictive of clinical benefit 
from the therapeutic intervention under study. Basket 
trials are a type of master protocol, a class of clinical 
designs that investigate several hypotheses concurrently. 
Master protocols include basket trials, whereby one 
therapy is tested in multiple indications; umbrella trials, 
whereby multiple therapies are tested in one indication; 
and platform trials, whereby multiple therapies enter 
and exit an ongoing study in an assembly-line fashion.

This entry summarizes the motivation for using mas-
ter protocols, metrics for basket trial performance 
evaluation, advantages and limitations of basket trials, 
and types of basket trials.  

Motivation 
Master protocols address the high cost and long time 
required for clinical drug development, the process of test-
ing safety and effectiveness for therapies, to facilitate 
approval by national health authorities for patient use. 
The total cost of developing a new therapy, including 
basic research, medicinal chemistry, animal efficacy and 
toxicology, and clinical development, is estimated at 
approximately US$ 1 billion, including the cost of failed 
attempts. The resulting high cost of therapy means 
patients often cannot afford needed medications and must 
choose between medications and other basic necessities. 
The total time for development is a decade or longer. 
During this waiting period, patients facing debilitating 
and/or life-threatening diseases may have their medical 

needs unmet. By investigating several hypotheses at once, 
master protocols aim to reduce these severe cost and time 
issues. Alternatively, the savings may be utilized to more 
thoroughly investigate optimal dosing, scheduling, and 
matching of therapies to patient subpopulations, rather 
than to reduce cost and development time.

Performance Evaluation 
The performance metrics discussed in this section pro-
vide a framework for comparing possible basket trials 
designs. Because basket trials are complex, it is usually 
not possible to write mathematical formulas for their 
performance. The performance is evaluated by computer 
simulation, in which the trial is simulated numerous 
times with chance variation, and the results observed.

False Positive Rate

For conventional clinical trials, the definition of the 
false positive rate is relatively simple. If investigators 
execute the clinical trial for a therapy that is actually 
ineffective in the proposed indication, the false positive 
rate is the proportion of times the trial will falsely reach 
the conclusion that the therapy is effective, due to the 
play of chance. However, for basket trials, the situation 
is more complicated, in that the therapy is being tested 
in multiple indications at once. A positive basket may be 
defined as a basket for which the drug is actually effec-
tive in one or more indications, and a negative basket as 
one in which the drug is actually ineffective in all indica-
tions. The false positive rate by basket is then the propor-
tion of times among evaluations of a negative basket 
that the trial falsely concludes that it is positive. A more 
stringent approach is the false positive rate by indication. 
In this approach, each indication is defined as positive or 
negative by whether the therapy is actually effective or 
ineffective in that indication. The false positive rate by 
indication is the probability that a negative indication 
will be falsely considered positive by the study. 

An important controversy in the field is whether (and 
when) control of false positive rates by indication is 
required in basket trials. The indications are subgroups of 
the overall basket. In a conventional clinical trial, control 
of the false positive rate by subgroups is not required. But 
basket trials feature nontraditional groupings, in which 
molecular characteristics that normally define subgroups 
define the overall group, and diseases which are tradition-
ally considered different are grouped as one. 

False Negative Rate

In analogy with the false positive rate, the false nega-
tive rate by basket is the proportion of times in 
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evaluating a positive basket that the trial design will, by 
the play of chance, falsely conclude it is negative. The 
more stringent false negative rate by indication is the 
proportion of times a positive individual indication will 
be falsely considered to be negative by the study. Power 
is one minus the false negative rate.

Efficiency

Efficiency is an important metric for any master pro-
tocol. It normalizes (divides) a results metric by a cost 
metric, such as financial cost or number of trial partici-
pants. Although power is a popular performance indica-
tor, it is possible to increase the power of a study to any 
desired level by increasing the sample size. Yet, for each 
constant increment in power, a progressively higher cost 
must be paid in sample size, and the efficiency decreases 
due to the diminishing returns. 

The choice of results and cost metrics is varied and 
depends on the situation. Moreover, the concept of effi-
ciency applies not only to individual therapies and indica-
tions but to a portfolio of many therapies and indications. 
In some instances, with finite resources, it may be wise to 
invest less in one trial to preserve resources for another. 

Advantages
Basket trials group multiple indications together as one. 
Under ideal conditions, a basket trial consisting of k 
indications can offer a nearly k-fold increase in effi-
ciency. This increase in efficiency is potentially greater 
than other master protocols. Even if control of the false 
positive rate by indication is required, a 40% increase 
in efficiency may be achieved with optimization.

Basket trials typically study only one therapy, and 
therefore they can be conducted by a single sponsor, 
avoiding the complex negotiations between multiple 
sponsors required for other master protocols.

Limitations
Basket trials assume that the indications within the basket 
will have similar responses to the therapy, due to the 
shared marker or mechanism. However, this is not always 
true. The drug may work in melanoma with a given muta-
tion but not in colon cancer with the same mutation. This 
heterogeneity can result in false positives and false nega-
tives when data are pooled across indications.

Much of basket trial methodology is aimed at mini-
mizing heterogeneity. In adaptive basket designs, interim 
study data are used to minimize heterogeneity. The final 
result is judged on a grouping that is more likely to be 
homogeneous; other indications may be discarded. 

Types of Basket Trials
Basket trials may be randomized controlled or single 
arm. Randomized controlled trials are more conclusive 
in that they minimize biased selection of participants as 
well as biases due to improvements in supportive care 
and diagnostic technologies which affect comparisons 
of single-arm results to historical controls.

Basket trials also differ in the degree to which data 
from different indications are pooled. In early basket 
trials, the data were not pooled, and thus the studies 
were primarily a useful administrative strategy for 
rare diseases. Most current designs either fully pool 
the data or utilize partial pooling calibrated by the 
degree of similarity in the results (information 
borrowing).

Basket trials have been applied mostly to the explor-
atory phase of clinical development, which involves 
early safety and efficacy data and dose/schedule 
optimization. In contrast, applications in the confirma-
tory phase of development, where large studies are usu-
ally performed to obtain statistical proof of efficacy, 
have been limited to special cases supported by extraor-
dinary scientific evidence, and/or unusual efficacy in 
conditions with limited or no other medical options. In 
these settings, single-arm designs, small sample sizes, 
and short-term binary end points with uncertain rela-
tionship to definitive end points like survival are appro-
priate even in the confirmatory phase, facilitating 
application of basket designs. 

Cost and time savings would be greater if basket tri-
als could be applied generally to the resource-intensive 
confirmatory space. A randomized controlled confirma-
tory basket trial design has been proposed, and the false 
positive rate can be strictly controlled as required in the 
confirmatory space. The design can be further modified 
to achieve control of the false positive rate by indication. 
Nonetheless, whether the design can be confirmatory 
despite possible differences in the control arms and the 
natural histories of the indications may depend on the 
strength of scientific and medical evidence for pooling.

Robert A. Beckman

See also Adaptive Designs in Clinical Trials; Multiplicity 
Problem; Type I Error; Type II Error; Umbrella Trials Designs
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Bayes’s Theorem

Bayes’s theorem is a simple mathematical formula used 
for calculating conditional probabilities. It figures 
prominently in subjectivist or Bayesian approaches to 
statistics, epistemology, and inductive logic. Subjectivists, 
who maintain that rational belief is governed by the 
laws of probability, lean heavily on conditional proba-
bilities in their theories of evidence and their models of 
empirical learning. Bayes’s theorem is central to these 
paradigms because it simplifies the calculation of condi-
tional probabilities and clarifies significant features of 
the subjectivist position.

This entry begins with a brief history of Thomas 
Bayes and the publication of his theorem. Next, the 
entry focuses on probability and its role in Bayes’s theo-
rem. Last, the entry explores modern applications of 
Bayes’s theorem.

History
Thomas Bayes was born in 1702, probably in London, 
England. Others have suggested the place of his birth to 
be Hertfordshire. He was the eldest of six children of 
Joshua and Ann Carpenter Bayes. His father was a non-
conformist minister, one of the first seven in England. 
Information on Bayes’s childhood is scarce. Some sources 
state that he was privately educated, and others state he 
received a liberal education to prepare for the ministry. 
After assisting his father for many years, he spent his adult 
life as a Presbyterian minister at the chapel in Tunbridge 
Wells. In 1742, Bayes was elected as a fellow by the Royal 
Society of London. He retired in 1752 and remained in 
Tunbridge Wells until his death in April 1761.

Throughout his life he wrote very little, and only two 
of his works are known to have been published. These 
two essays are Divine Benevolence, published in 1731, 

and Introduction to the Doctrine of Fluxions, published 
in 1736. He was known as a mathematician not for these 
essays but for two other papers he had written but never 
published. His studies focused in the areas of probability 
and statistics. His posthumously published article now 
known by the title “An Essay Towards Solving a Problem 
in the Doctrine of Chances” developed the idea of inverse 
probability, which later became associated with his name 
as Bayes’s theorem. Inverse probability was so called 
because it involves inferring backward from the data to 
the parameter (i.e., from the effect to the cause). Initially, 
Bayes’s ideas attracted little attention. It was not until 
after the French mathematician Pierre-Simon Laplace 
published his paper “Mémoire sur la Probabilité des 
Causes par les Évènements” in 1774 that Bayes’s ideas 
gained wider attention. Laplace extended the use of 
inverse probability to a variety of distributions and intro-
duced the notion of “indifference” as a means of specify-
ing prior distributions in the absence of prior knowledge. 
Inverse probability became during the 19th century the 
most commonly used method for making statistical infer-
ences. Some of the more famous examples of the use of 
inverse probability to draw inferences during this period 
include estimation of the mass of Saturn, the probability 
of the birth of a boy at different locations, the utility of 
antiseptics, and the accuracy of judicial decisions.

In the latter half of the 19th century, authorities such 
as Siméon-Denis Poisson, Bernard Bolzano, Robert Leslie 
Ellis, Jakob Friedrich Fries, John Stuart Mill, and  
A. A. Cournot began to make distinctions between prob-
abilities about things and probabilities involving our 
beliefs about things. Some of these authors attached the 
terms objective and subjective to the two types of proba-
bility. Toward the end of the century, Karl Pearson, in his 
Grammar of Science, argued for using experience to deter-
mine prior distributions, an approach that eventually 
evolved into what is now known as empirical Bayes. The 
Bayesian idea of inverse probability was also being chal-
lenged toward the end of the 19th century, with the criti-
cism focusing on the use of uniform or “indifference” prior  
distributions to express a lack of prior knowledge.

The criticism of Bayesian ideas spurred research into 
statistical methods that did not rely on prior knowledge 
and the choice of prior distributions. In 1922,  
Ronald Alymer Fisher’s paper “On the Mathematical 
Foundations of Theoretical Statistics,” which introduced 
the idea of likelihood and maximum likelihood esti-
mates, revolutionized modern statistical thinking. Jerzy 
Neyman and Egon Pearson extended Fisher’s work by 
adding the ideas of hypothesis testing and confidence 
intervals. Eventually the collective work of Fisher, 
Neyman, and Pearson became known as frequentist 
methods. From the 1920s to the 1950s, frequentist meth-
ods displaced inverse probability as the primary methods 
used by researchers to make statistical inferences.

Do n
ot c

opy
, po

st, 
or d

istr
ibu

te

Copyright ©2022 by SAGE Publications, Inc. 
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.



85Bayes’s Theorem

Interest in using Bayesian methods for statistical 
inference revived in the 1950s, inspired by Leonard 
Jimmie Savage’s 1954 book The Foundations of 
Statistics. Savage’s work built on previous work of sev-
eral earlier authors exploring the idea of subjective prob-
ability, in particular the work of Bruno de Finetti. It was 
during this time that the terms Bayesian and frequentist 
began to be used to refer to the two statistical inference 
camps. The number of papers and authors using Bayesian 
statistics continued to grow in the 1960s. Examples of 
Bayesian research from this period include an investiga-
tion by Frederick Mosteller and David Wallace into the 
authorship of several of the Federalist papers and the use 
of Bayesian methods to estimate the parameters of time-
series models. The introduction of Monte Carlo Markov 
chain (MCMC) methods to the Bayesian world in the 
late 1980s made computations that were impractical or 
impossible earlier realistic and relatively easy. The result 
has been a resurgence of interest in the use of Bayesian 
methods to draw statistical inferences.

Publishing of Bayes’s Theorem
Bayes never published his mathematical papers, and 
therein lies a mystery. Some suggest his theological con-
cerns with modesty might have played a role in his deci-
sion. However, after Bayes’s death, his family asked 
Richard Price to examine Bayes’s work. Price was 
responsible for the communication of Bayes’s essay on 
probability and chance to the Royal Society. Although 
Price was making Bayes’s work known, he was occa-
sionally mistaken for the author of the essays and for a 
time received credit for them. In fact, Price only added 
introductions and appendixes to works he had pub-
lished for Bayes, although he would eventually write a 
follow-up paper to Bayes’s work.

The present form of Bayes’s theorem was actually 
derived not by Bayes but by Laplace. Laplace used the 
information provided by Bayes to construct the theorem 
in 1774. Only in later papers did Laplace acknowledge 
Bayes’s work.

Inspiration of Bayes’s Theorem
In “An Essay Towards Solving a Problem in the Doctrine 
of Chances,” Bayes posed a problem to be solved: 
“Given the number of times in which an unknown 
event has happened and failed: Required the chance 
that the probability of its happening in a single trial lies 
somewhere between any two degrees of probability that 
can be named.” Bayes’s reasoning began with the idea of 
conditional probability:

If P B( ) 0> , the conditional probability of A given  
B, denoted by P A B( | ), is

=
∩

P A B
P A B

P B
P AB
P B

( | )
( )

( )
or

( )
( )

.

Bayes’s main focus then became defining P B A( | ) in 
terms of P A B( | ).

A key component that Bayes needed was the law of 
total probability. Sometimes it is not possible to calcu-
late the probability of the occurrence of an event A. 
However, it is possible to find P A B( | ) and P A B( | )c  for 
some event B where Bc  is the complement of B. The 
weighted average, P A( ), of the probability of A given 
that B has occurred and the probability of A given that 
B has not occurred can be defined as follows:

Let B be an event with P B( ) > 0  and P B( ) > 0c . Then 
for any event A,

P A P A B P B P A B P B( ) ( | ) ( ) ( | ) ( ).c c= +

If there are k events, B B, , ,k1 …  that form a partition 
of the sample space, and A is another event in the 
sample space, then the events B A B A B A, , , k1 2 …  will 
form a partition of A. Thus, the law of total probability 
can be extended as follows:

Let Bj be an event with P Bj( ) 0>  for j k1, , .= …  
Then for any event A,

P A P B P A B( ) ( ) ( | ).j j
j

k

1
∑=

=

These basic rules of probability served as the inspira-
tion for Bayes’s theorem.

Bayes’s Theorem
Bayes’s theorem allows for a reduction in uncertainty by 
considering events that have occurred. The theorem is 
applicable as long as the probability of the more recent 
event (given an earlier event) is known. With this theo-
rem, one can find the probability of the earlier event, 
given the more recent event that has occurred. The ear-
lier event is known as the prior probability. The primary 
focus is on the probability of the earlier event given the 
more recent event that has occurred (called the poste-
rior probability). The theorem can be described in the 
following manner:

Let Bj  be an event with P B( ) 0j >  for j k1, ,= …  and 
forming a partition of the sample space. Furthermore, 
let A be an event such that P A( ) 0.>  Then for i k1, , ,= …

P B A
P B P A B

P B P A B
( | )

( ) ( | )

( ) ( | )
i

i i

j j
j

k

1
∑

=

=

.

( )P Bi  is the prior probability and the probability of 
the earlier event. P A B( | )i  is the probability of the more 
recent event given the prior has occurred and is referred 
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to as the likelihood. P B A( | )i  is what one is solving for 
and is the probability of the earlier event given that the 
recent event has occurred (the posterior probability). 
There is also a version of Bayes’s theorem based on a 
secondary event C:

P B AC
P B C P A BC

P B C P A B C
( | )

( | ) ( | )

( | ) ( | )
.i

i i

j j
j

k

1
∑

=

=

Example

A box contains 7 red and 13 blue balls. Two balls are 
selected at random and are discarded without their col-
ors being seen. If a third ball is drawn randomly and 
observed to be red, what is the probability that both of 
the discarded balls were blue?

Let BB, BR, and RR represent the events that the dis-
carded balls are blue and blue, blue and red, and red and 
red, respectively. Let R represent the event that the third 
ball chosen is red. Solve for the posterior probability 
P(BB|R).

P BB R( | ) =
P R BB P BB

P R BB P BB P R BR P BR P R RR P RR
( | ) ( )

( | ) ( ) ( | ) ( ) ( | ) ( )+ +

The probability that the first two balls drawn were 
blue, red, or blue and red are 39/95, 21/190, and 
91/190, in that order. Now,

P BB R( | )

7
18

*
39
95

7
18

*
39
95

6
18

*
91

190
5

18
*

21
190

0.46=
+ +

≈

The probability that the first two balls chosen were 
blue given the third ball selected was red is approxi-
mately 46%.

Bayes’s theorem can be applied to the real world to 
make appropriate estimations of probability in a given 
situation. Diagnostic testing is one example in which the 
theorem is a useful tool. Diagnostic testing identifies 
whether a person has a particular disease. However, 
these tests contain error. Thus, a person can test positive 
for the disease and in actuality not be carrying the dis-
ease. Bayes’s theorem can be used to estimate the prob-
ability that a person truly has the disease given that the 
person tests positive. As an illustration of this, suppose 
that a particular cancer is found for every 1 person in 
2,000. Furthermore, if a person has the disease, there is 
a 90% chance the diagnostic procedure will result in a 
positive identification. If a person does not have the dis-
ease, the test will give a false positive 1% of the time. 
Using Bayes’s theorem, the probability that a person 
with a positive test result actually has the cancer (C), is

P C P( | )

1
2000

(.90)

1
2000

(0.90)
1999
2000

(0.01)
0.043.=

+
≈

If a person tests positive for the cancer test, there is 
only a 4% chance that the person has the cancer. 
Consequently, follow-up tests are almost always necessary 
to verify a positive finding with medical screening tests.

Bayes’s theorem has also been used in psychometrics 
to make a classification scale rather than an ability scale 
in the classroom. A simple example of classification is 
dividing a population into two categories of mastery 
and nonmastery of a subject. A test would be devised to 
determine whether a person falls in the mastery or the 
nonmastery category. The posterior probabilities for dif-
ferent skills can be collected, and the results would 
show mastered skills and nonmastered skills that need 
attention. The test may even allow for new posterior 
probabilities to be computed after each question.

The two examples presented above are just a small 
sample of the applications in which Bayes’s theorem has 
been useful. While certain academic fields concentrate 
on its use more than others do, the theorem has far-
reaching influence in business, medicine, education, 
psychology, and so on.

Bayesian Statistical Inference
Bayes’s theorem provides a foundation for Bayesian 
statistical inference. However, the approach to inference 
is different from that of a traditional (frequentist) point 
of view. With Bayes’s theorem, inference is dynamic. 
That is, a Bayesian approach uses evidence about a phe-
nomenon to update knowledge of prior beliefs.

There are two popular ways to approach inference. 
The traditional way is the frequentist approach, in 
which the probability P  of an uncertain event A, writ-
ten P A( ), is defined by the frequency of that event, based 
on previous observations. In general, population param-
eters are considered as fixed effects and do not have 
distributional form. The frequentist approach to defin-
ing the probability of an uncertain event is sufficient, 
provided that one has been able to record accurate 
information about many past instances of the event. 
However, if no such historical database exists, then a 
different approach must be considered.

Bayesian inference is an approach that allows one to 
reason about beliefs under conditions of uncertainty. 
Different people may have different beliefs about the 
probability of a prior event, depending on their specific 
knowledge of factors that might affect its likelihood. 
Thus, Bayesian inference has no one correct probability 
or approach. Bayesian inference is dependent on both 
prior and observed data.

Do n
ot c

opy
, po

st, 
or d

istr
ibu

te

Copyright ©2022 by SAGE Publications, Inc. 
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.



87Bayes’s Theorem

In a traditional hypothesis test, there are two com-
plementary hypotheses: H0, the status quo hypothesis, 
and H1, the hypothesis of change. Letting D stand for 
the observed data, Bayes’s theorem applied to the 
hypotheses becomes

P H D
P H P D H

P H P D H P H P D H
( | )

( ) ( | )
( ) ( | ) ( ) ( | )0

0 0

0 0 1 1

=
+

and

P H D
P H P D H

P H P D H P H P D H
( | )

( ) ( | )
( ) ( | ) ( ) ( | )

.1
1 1

0 0 1 1

=
+

The P H D( | )0  and P H D( | )1  are posterior probabilities 
(i.e., the probability that the null is true given the data and 
the probability that the alternative is true given the data, 
respectively). The P H( )0  and P H( )1  are prior probabilities 
(i.e., the probability that the null or the alternative is true 
prior to considering the new data, respectively).

In frequentist hypothesis testing, one considers only 
P D H( | )0 , which is called the p value. If the p value is 
smaller than a predetermined significance level, then one 
rejects the null hypothesis and asserts the alternative 
hypothesis. One common mistake is to interpret the p 
value as the probability that the null hypothesis is true, 
given the observed data. This interpretation is a Bayesian 
one. From a Bayesian perspective, one may obtain 
P H D( | )0 , and if that probability is sufficiently small, then 
one rejects the null hypothesis in favor of the alternative 
hypothesis. In addition, with a Bayesian approach, several 
alternative hypotheses can be considered at one time.

As with traditional frequentist confidence intervals, 
a credible interval can be computed in Bayesian statis-
tics. This credible interval is defined as the posterior 
probability interval and is used in ways similar to the 
uses of confidence intervals in frequentist statistics. For 
example, a 95% credible interval means that the poste-
rior probability of the parameter lying in the given 
range is 0.95. A frequentist 95% confidence interval 
means that with a large number of repeated samples, 
95% of the calculated confidence intervals would 
include the true value of the parameter; yet the proba-
bility that the parameter is inside the actual calculated 
confidence interval is either 0 or 1. In general, Bayesian 
credible intervals do not match a frequentist confidence 
interval, since the credible interval incorporates infor-
mation from the prior distribution whereas confidence 
intervals are based only on the data.

Modern Applications
In Bayesian statistics, information about the data and a 
priori information are combined to estimate the poste-
rior distribution of the parameters. This posterior distri-
bution is used to infer the values of the parameters, 

along with the associated uncertainty. Multiple tests and 
predictions can be performed simultaneously and 
flexibly. Quantities of interest that are functions of the 
parameters are straightforward to estimate, again 
including the uncertainty. Posterior inferences can be 
updated as more data are obtained, so study design is 
more flexible than for frequentist methods.

Bayesian inference is possible in a number of con-
texts in which frequentist methods are deficient. For 
instance, Bayesian inference can be performed with 
small data sets. More broadly, Bayesian statistics is use-
ful when the data set may be large but when few data 
points are associated with a particular treatment. In 
such situations standard frequentist estimators can be 
inappropriate because the likelihood may not be well 
approximated by a normal distribution. The use of 
Bayesian statistics also allows for the incorporation of 
prior information and for simultaneous inference using 
data from multiple studies. Inference is also possible for 
complex hierarchical models.

Lately, computation for Bayesian models is most 
often done via MCMC techniques, which obtain depen-
dent samples from the posterior distribution of the 
parameters. In MCMC, a set of initial parameter values 
is chosen. These parameter values are then iteratively 
updated via a specially constructed Markovian transi-
tion. In the limit of the number of iterations, the param-
eter values are distributed according to the posterior 
distribution. In practice, after approximate convergence 
of the Markov chain, the time series of sets of parameter 
values can be stored and then used for inference via 
empirical averaging (i.e., Monte Carlo). The accuracy of 
this empirical averaging depends on the effective sample 
size of the stored parameter values, that is, the number 
of iterations of the chain after convergence, adjusted for 
the autocorrelation of the chain. One method of specify-
ing the Markovian transition is via Metropolis–Hastings, 
which proposes a change in the parameters, often 
according to a random walk (the assumption that many 
unpredictable small fluctuations will occur in a chain of 
events), and then accepts or rejects that move with a 
probability that is dependent on the current and pro-
posed state.

In order to perform valid inference, the Markov chain 
must have approximately converged to the posterior 
distribution before the samples are stored and used for 
inference. In addition, enough samples must be stored 
after convergence to have a large effective sample size; if 
the autocorrelation of the chain is high, then the number 
of samples needs to be large. Lack of convergence or 
high autocorrelation of the chain is detected via conver-
gence diagnostics, which include autocorrelation and 
trace plots, as well as Geweke, Gelman–Rubin, and 
Heidelberger–Welch diagnostics. Software for MCMC 
can also be validated by a distinct set of techniques. 
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These techniques compare the posterior samples drawn 
by the software with samples from the prior and the 
data model, thereby validating the joint distribution of 
the data and parameters as estimated by the software.

Brandon K. Vaughn and Daniel L. Murphy

See also Estimation; Hypothesis; Inference: Deductive and 
Inductive; Parametric Statistics; Probability, Laws of
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Bayesian Adaptive Randomization 
Design

The Bayesian adaptive randomization design is an 
extension of adaptive research designs, which modify 
the randomization ratio during a study in order to 
maximize individual participant outcomes. Bayesian 
adaptive randomization designs use Bayesian data 

analysis to estimate the probability that each interven-
tion maximizes the outcome of interest, and the ran-
domization ratio is adjusted according to these 
estimates. In adjusting the randomization ratio based 
on which intervention is estimated to produce the most 
favorable outcome, Bayesian adaptive randomization 
designs maximize the likelihood of participants experi-
encing positive outcomes and minimize the likelihood 
of participants experiencing poor outcomes.

Bayesian adaptive randomization designs follow a 
four-step procedure. In Step 1, participants are ran-
domly allocated to one of the interventions with the 
probability of allocation into each intervention being 
specified by the randomization ratio. In Step 2, partici-
pants’ outcome data are collected. In Step 3, the prob-
ability that each intervention produces the most 
favorable outcome is estimated with Bayesian data 
analysis. In Step 4, the randomization ratio is updated. 
Steps 1–4 are then repeated until either the desired num-
ber of participants has been recruited or one of the 
interventions has shown convincing evidence of produc-
ing the most favorable outcome.

This entry goes on to provide an examination of adap-
tive randomization ratios, two primary assumptions made 
by Bayesian adaptive randomization design, and logical 
considerations. Various types of data used in Bayesian 
data analysis are introduced, and the steps of early and 
late randomizations are then explained. The entry con-
cludes by listing some advantages and limitations of 
Bayesian adaptive randomization design, followed by an 
example of a hypothetical study implementing a two-
group Bayesian adaptive randomization design.

Adaptive Randomization Ratios
Most randomized study designs use a fixed randomiza-
tion ratio, but Bayesian adaptive randomization designs 
implement an adaptive randomization ratio. A random-
ization ratio is defined as a ratio of the probabilities of 
being randomly allocated to each of the interventions. A 
fixed randomization ratio is held constant throughout 
the study, but an adaptive randomization ratio can 
change during the study.

To better understand randomization ratios—both 
fixed and adaptive—consider a two-group study. In this 
example and throughout the remainder of this entry, it 
is assumed that each group is implementing a different 
intervention. Researchers may consider a research 
design using a 1:1 fixed randomization ratio, which 
indicates a 50% chance a participant is allocated into 
the first group and a 50% chance a participant is allo-
cated into the second group. Researchers may also con-
sider a research design using an adaptive randomization 
ratio. The adaptive randomization ratio may be 1:1 
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during the early stages of the study, but the randomiza-
tion ratio could change during the course of the study if 
collected data indicate one of the groups’ interventions 
produces better outcomes.

Assumptions
Bayesian adaptive randomization designs make two 
primary assumptions. First, the randomization of par-
ticipants must be dispersed throughout the course of the 
study, such that the outcome data collection for some 
participants occurs before the randomization of other 
participants. Because Bayesian adaptive randomization 
designs use participants’ results to inform future ran-
domizations, some participants must be randomized 
after collecting data from previous participants to 
maximize individual participant outcomes. If all the 
participants are randomized simultaneously, Bayesian 
adaptive randomization designs replicate fixed random-
ization designs, which would likely fail to maximize 
individual participant outcomes.

Second, the time between randomizing a participant 
into one of the groups and obtaining outcome data 
must be reasonably quick. Since participants’ outcomes 
influence future participants’ randomizations, long peri-
ods between randomization and outcome data collec-
tion force researchers to either slow recruitment so that 
previous participants’ outcomes can be collected prior 
to randomizing new participants or randomizing new 
participants without incorporating data from some of 
the previously randomized participants.

Logistical Considerations
The randomization ratios in Bayesian adaptive ran-
domization designs can be updated after each partici-
pant’s outcome data are collected, although this may 
often be unrealistic. The problem with updating the 
randomization ratio after collecting each participant’s 
data is that the amount of time, funding, and compu-
tational resources needed may not be feasible. For 
example, collecting a participant’s outcome data in 
the morning prior to a participant’s randomization in 
the afternoon would require dedicating time and 
effort to entering the outcome data immediately after 
collecting the data as well as having enough computa-
tional power to calculate the updated randomization 
ratio before the randomization. This also does not 
address concerns with multisite studies, which would 
need to maintain a centralized database with partici-
pant outcomes and the updated randomization ratio 
for the study teams at each site when there may be 
numerous data collections and randomizations hap-
pening each day.

To address these issues, block stratification can be 
used to improve the feasibility of Bayesian adaptive 
randomization designs. Block stratification is a strategy 
for updating the adaptive randomization ratio at pre-
specified intervals, which might be after every n partici-
pants have been randomized or after every n weeks. In 
practice, this might entail updating the randomization 
ratio after every 10 participants have been randomized 
or after every 4 weeks (i.e., monthly).

Data
Bayesian adaptive randomization designs utilize 
Bayesian data analysis to examine between-group dif-
ferences in order to adjust the randomization ratio. 
Therefore, Bayesian adaptive randomization designs 
incorporate data from the prior distribution and the 
likelihood to estimate the posterior distribution, which 
models the probability that one of the treatment groups 
produces the most favorable outcome.

Prior Distribution

The prior distribution models the a priori belief 
regarding the probability that one of the groups pro-
duces the most favorable outcome. For two-group 
Bayesian adaptive randomization designs, a single prior 
distribution can fully reflect the probability that each 
group produces the most favorable outcome, since 
knowing the probability that one group produces the 
most favorable outcome allows for the probability the 
second group produces the most favorable outcome to 
be calculated. For more complex designs with three or 
more groups, a prior distribution for each group is 
needed to estimate the probability that each group pro-
duces the most favorable outcome. As is the case in 
Bayesian data analysis, the prior distribution can be 
based on the findings of previous studies or on theory. 
It should be noted, however, that the choice of the prior 
distribution can bias the findings if the chosen prior 
distribution is not reflective of the data collected in the 
study. It should also be noted that the confidence in the 
prior is reflected by the variance of the prior distribu-
tion, and the confidence in the prior impacts how much 
data in the likelihood are needed to produce findings 
contrary to the prior.

To give a brief example of how a prior distribution 
is incorporated into a Bayesian adaptive randomized 
design, consider a two-group study in which researchers 
begin with an assumption that the two groups will pro-
duce similar outcomes. Because the prior distribution is 
modeling probabilities, the prior distribution ranges 
from 0 to 1. Since the researchers believe the two groups 
will perform similarly, the mode of the prior distribution 
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is located at 0.50, and the prior distribution is symmet-
ric. Put simply, the mode of the prior distribution 
implies there is a 50% chance that each group produces 
the most favorable outcome, and the symmetry of the 
prior distribution ensures both groups have the same 
probability of producing the most favorable outcome.

Likelihood

The likelihood models the probability that one of the 
treatment groups produces the most favorable outcome 
based on the collected data. As the collected data 
increase, the variance of the likelihood should decrease, 
resulting in a more precise estimation of the probability 
that one of the treatment groups produces the most 
favorable outcome based on the collected data.

Posterior Distribution

The posterior distribution synthesizes the prior dis-
tribution and the likelihood to model the probability 
that one of the treatment groups produces the most 
favorable outcome. The mode is often used to generate 
a point estimate for the probability that one of the 
treatment groups produces the most favorable out-
come. A 95% highest density interval, which includes 
the 95% of the outcomes that are most likely, is often 
used to estimate the certainty of the posterior distribu-
tion. As more data are collected, the width of the 95% 
highest density interval often decreases, which reflects 
a more precise estimate of the probability that one of 
the treatment groups produces the most favorable 
outcome.

Early Randomizations
When planning a study using a Bayesian adaptive random-
ization design, researchers must take special care to plan 
how the first participants will be randomized. Bayesian 
adaptive randomization designs use Bayesian data analysis 
to estimate the probability that each of the groups is pro-
ducing the most favorable outcome. Consequently, factors 
impacting the estimation of the posterior distribution may 
bias the randomization ratio used in a Bayesian adaptive 
randomization design. Specifically, unstable posterior dis-
tributions due to small sample sizes in the early stages of a 
study are perhaps the largest threat to a Bayesian adaptive 
randomization design.

There are two primary methods for a study using a 
Bayesian adaptive randomization design to stabilize 
the posterior distribution for early randomizations. 
First, researchers can utilize a burn-in stage, which is 
defined as a period where the study implements a fixed 
randomization ratio to allow for a sizable number of 

participants to be assigned to all the study groups 
prior to switching to an adaptive randomization ratio. 
In practice, this might mean randomizing the first 50 
or 100 participants at a 1:1 fixed randomization ratio 
in a two-group study. Second, researchers can utilize a 
tuning factor, which weights the obtained outcome 
data so that studies using a Bayesian adaptive 
randomized design essentially use a fixed randomization 
ratio for early randomizations and gradually shift 
toward an adaptive randomization ratio as more data 
are collected.

Late Randomizations
In contrast to a fixed randomization design, Bayesian 
adaptive randomized designs have reduced statistical 
power because participant allocations and outcomes in 
Bayesian adaptive randomized designs are correlated. 
This correlation increases the variance of the outcomes, 
which makes it harder to distinguish whether there are 
statistical between-group differences in terms of inter-
vention effectiveness. Hence, more participants are 
needed in a Bayesian adaptive randomized design to 
achieve the same level of statistical precision as a fixed 
randomization design.

To compensate for the reduced statistical power 
in a Bayesian adaptive randomization design, 
researchers will often implement early stopping 
rules. Early stopping rules are defined as a priori 
conditions for terminating the study based on the 
magnitude of the probability that one group pro-
duces superior outcomes as estimated in the poste-
rior distribution. In practice, researchers may decide 
to conclude the study if one treatment group has a 
posterior probability greater than .95 that the treat-
ment is superior to the other treatment(s). It should 
be noted, however, that there are no defined stan-
dards for what constitutes an appropriate early stop-
ping rule. Consequently, the early stopping rules 
used in practice are variable.

Advantages
Maximizing Individual Participant Outcomes

Bayesian adaptive randomization designs seek to 
provide the best outcome to each of the individuals 
participating in the study. Bayesian adaptive random-
ized designs use empirical evidence regarding the effec-
tiveness of the treatment interventions to adjust the 
randomization ratio. Consequently, Bayesian adaptive 
randomized designs are maximizing the likelihood of 
participants experiencing a positive outcome. At the 
same time, Bayesian adaptive randomized designs are 
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minimizing the likelihood of participants experiencing a 
poor outcome, which is critical in fields such as cancer 
research.

Incorporating Previous Findings

To better maximize the likelihood of participants 
experiencing a positive outcome, Bayesian adaptive ran-
domized designs can also incorporate the findings from 
previous studies. By appropriately incorporating previ-
ous findings, the prior distribution used in a Bayesian 
adaptive randomization design should cause more par-
ticipants to be allocated into the most effective interven-
tion in the early stages of the study, which should 
maximize the likelihood of participants experiencing a 
positive outcome. While there are no guidelines of how 
similar the previous studies and the current study should 
be, substantial differences between previous studies and 
the current study may lead the prior distribution to be a 
poor reflection of the data collected in the study, which 
may decrease the likelihood of participants experiencing 
a positive outcome. Thus, care should be taken in choos-
ing studies to inform the prior distribution.

Limitations
Threats to Internal Validity

Because Bayesian adaptive randomized designs rely 
on sequential randomization, participants may be dif-
ferentially affected by threats to internal validity (e.g., 
history effect, maturation). For example, a study imple-
menting a Bayesian adaptive randomization design for 
an intervention designed to improve reading compre-
hension for elementary school students may have 
reduced internal validity, since the elementary students 
are experiencing developmental changes during the 
intervention that could impact the effectiveness of the 
intervention.

Equally Effective Interventions

Bayesian adaptive randomization designs were cre-
ated with the intention of maximizing the likelihood of 
positive outcomes for participants. However, this 
assumes the superiority of one of the implemented 
interventions. In studies where there is no superior 
intervention, the randomization ratio will replicate the 
fixed randomization ratio used in a traditional ran-
domized design. In such cases, the reduced statistical 
power of Bayesian adaptive randomization designs 
dictates that more participants must be randomized to 
achieve the same level of statistical precision as a fixed 
randomization design.

Example
Having gone through the characteristics of Bayesian 
adaptive randomization designs, an example of a study 
implementing a two-group Bayesian adaptive random-
ization design will be provided. To preserve the general-
ity of the example for a variety of readers, the 
interventions will not be described in detail. Rather, they 
will simply be described as Intervention A and 
Intervention B, which are associated with Group A and 
Group B, respectively.

In this hypothetical study, an uninformative prior 
distribution with a mode of 0.5 will be used, which 
implies neither intervention is superior. This study will 
recruit 300 participants, will set the burn-in stage to be 
50 participants, will establish an early stopping rule of 
.95, and will not use block stratification. Of note, this 
study will use a fixed 1:1 randomization ratio for the 50 
participants randomized during the burn-in stage.

When beginning this study, the first 50 participants 
will be randomized similar to any fixed randomiza-
tion design, and the outcomes for these 50 partici-
pants will be collected. Because the randomization 
ratio for the first 50 participants is 1:1, there should 
be approximately 25 participants allocated into each 
group at this point, although the exact numbers may 
differ slightly. With approximately 25 participants per 
group, there should be enough data collected from 
both groups to obtain stable posterior distribution 
estimates.

After collecting the outcome data for the 50th ran-
domized participant, the between-group difference in 
intervention effectiveness is estimated using Bayesian 
data analysis. For purposes of this example, the pro-
cess for conducting this Bayesian data analysis will not 
be presented. Instead, consider the case where there is 
a 65% chance that Intervention A is more effective 
than Intervention B, and the randomization ratio 
adapts to 0.65. Thus, there is a 65% chance the next 
participant will be allocated into Group A and a 35% 
chance the next participant will be allocated into 
Group B.

Continuing the example, the 51st participant is sub-
sequently allocated into Group B, and the outcome for 
the 51st participant is positive. Consequently, the prob-
ability that Group A produces superior outcomes 
decreases. For the purpose of demonstration, consider 
the case where there is now a 63% chance that 
Intervention A is more effective than Intervention B, 
and the randomization ratio adapts to 0.63. Thus, there 
is now a 63% chance that the 52nd participant will be 
randomized into Group A.

Assume the 52nd participant is allocated into Group 
A, and the outcome for the 52nd participant is positive. 
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The probability that Group A produces superior out-
comes increases. Because more data have been accumu-
lated, the changes in the probability of a group producing 
a superior outcome, and thus changes in the randomiza-
tion ratio, will be less with each allocated participant. 
There is now a 64% chance that Intervention A is more 
effective than Intervention B, and the randomization ratio 
adapts to 0.64. Thus, there is now a 64% chance that the 
53rd participant will be randomized into Group A.

Continuing the example, the 53rd participant is allo-
cated into Group B, and the outcome for the 53rd par-
ticipant is negative. Therefore, the probability that Group 
A produces superior outcomes increases. There is now a 
65% chance that Intervention A is more effective than 
Intervention B, which causes the randomization ratio to 
adapt to 0.65. Thus, there is now a 65% chance that the 
54th participant will be randomized into Group A.

This process will continue with the probability of 
one group producing superior outcomes being esti-
mated after each participant’s data are collected until 
either (1) the outcome data for the 300th participant is 
collected or (2) the posterior probability that one of the 
interventions produces superior outcomes exceeds the 
early stopping rule of .95.

Jeffrey C. Hoover

See also Adaptive Designs in Clinical Trials; Bayesian Data 
Analysis; Distribution; Posterior Distribution; Random 
Assignment; Research Design Principles; Risk (in Human 
Subjects Research)
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Bayesian Data Analysis

Bayesian data analysis is an umbrella term that 
encompasses different data analysis approaches that 
have in common the use of Bayes’s rule as a guiding 
principle, and the goal of quantifying evidence in 
favor of possible parameter values, models, or hypoth-
eses, rather than making a decision on whether a 
parameter value is different than a specific value (e.g., 
zero) or not. This entry describes two approaches in 
detail—Bayesian parameter estimation and Bayesian 
hypothesis testing—and briefly describes two other 
approaches: Bayesian model comparison and hierar-
chical Bayesian models.

Bayesian Parameter Estimation
The goal of Bayesian parameter estimation is the same 
as the traditional frequentist parameter estimation: to 
make an estimation of the value of a population param-
eter such as a mean, a difference between two means, a 
correlation between two variables, or a regression coef-
ficient. The difference between the two approaches is 
that in the traditional approach the estimation consists 
of providing a point estimate and a confidence interval, 
typically a 95% confidence interval, whereas in the 
Bayesian approach the estimation consists of providing 
a posterior distribution, which could be summarized, 
for instance, with the mean of the distribution and its 
2.5th and the 97.5th percentiles (i.e., a 95% credible 
interval or the 95% high-density interval). 

The advantage of the 95% credible (or high density) 
interval in Bayesian parameter estimation is that it pro-
vides the information that researchers are typically 
interested in. It indicates that the probability that the 
actual value of the parameter of interest (e.g., the popu-
lation mean of a variable) is within the interval is 95%. 
In other words, the researcher can be 95% confident 
that the actual parameter value is in the interval. The 
traditional 95% confidence interval is more difficult to 
interpret: It is the interval generated by a procedure that 
provides confidence intervals that include the actual 
parameter value 95% of the times the procedure is used. 
The process to obtain a posterior distribution of a 
parameter of interest consists of four steps: choice of 
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distribution to create the likelihood function, choice of 
prior distribution, data collection and obtention of rel-
evant statistics, and obtention of posterior distribution.

Choice of Distribution to  
Create the Likelihood Function

Let’s consider the case in which a researcher aims to 
estimate the proportion of people who are currently 
experiencing anxiety in a specific city by administering 
an anxiety scale to 200 people in that city; that scale 
determines whether the person is experiencing anxiety 
(1) or not (0). The distribution to create the likelihood 
function has a resemblance with the sampling distribu-
tion in the traditional approach. In this case, the binomial 
distribution is the most appropriate distribution to con-
struct the likelihood function. The binomial distribution 
provides the probability of obtaining a specific number 
of people with anxiety in the sample of 200 participants 
given that the proportion of people of anxiety in the 
population (denoted by π) is a determined value. For 
example, if π = 0.50, the most probable value in the 
sample is 100 people with anxiety, while 99 and 101 
being the second most probable values, 98 and 102 fol-
lowing in probability, and so forth, with values close to 0 
and 200 having an extremely low probability of occur-
rence. The binomial distribution is then used to construct 
a likelihood function over parameter values once the 
data are observed. The likelihood function will come into 
play again when this function is combined with the prior 
distribution to produce the posterior distribution. 

Choice of Prior Distribution

In Bayesian parameter estimation, the prior distribu-
tion is the credibility for each possible parameter value 
given by a researcher before observing new data. The 
researcher declares what credibility they give to each 
possible parameter value by using a probability distri-
bution. This distribution is known as the prior distribu-
tion (or just the prior). That is, the Bayesian researcher 
makes explicit their knowledge about the parameter 
values before collecting the data. There are two main 
approaches to choose the prior distribution. In the first 
approach, the researcher declares to be ignorant regard-
ing the possible parameter values, and this ignorance is 
expressed by choosing a probability distribution in 
which all the possible parameter values are equally 
likely. Given that π can be any value between 0 and 1, a 
continuous uniform distribution with range 0 to 1 
would be appropriate. However, for reasons that will be 
clear later, a beta distribution is typically used for pro-
portions. A beta distribution with parameters α = 1 and 
β = 1 is equivalent to the continuous uniform distribution 

over the range 0 to 1. This type of prior distribution is 
typically called uninformed prior.

In the second approach, the researcher uses their 
actual knowledge of the parameter values and expresses 
it in the prior distribution. Suppose the researcher knows 
of a previous study measuring anxiety in the same city 
with 50 participants, in which 20 of them had anxiety 
and 30 did not have anxiety. They can express this 
knowledge with a beta prior distribution with parame-
ters α = 20 and β = 30. In that distribution the most 
probable value is 0.40, and the lower bound and upper 
bound of the 95% credible interval of the distributions 
are 0.27 and 0.58, respectively. This type of prior distri-
bution is typically referred to as informed prior.

Data Collection and  
Obtention of Relevant Statistic

Once the binomial distribution is chosen to construct 
the likelihood function and the beta distribution is cho-
sen as prior distribution, it is time to collect the data (in 
this case, the administration of an anxiety scale to 200 
participants) and obtain the value of the statistic of inter-
est, that is, the number of people with anxiety. Assume 
that the results indicate that 40 participants have anxiety 
and 160 participants do not have anxiety.

Obtention of Posterior Distribution

The posterior distribution is obtained by using the 
Bayes’s rule as guiding principle:

P d
P d P

P d
  |

( | )
,θ

θ θ) )( (
)(=

×

which in English can be expressed as:

Posterior distribution 
Likelihood  Prior distribution 

Marginal likelihood
,=

×

where θ denotes any parameter value in a generic 
way. When referring to specific parameters, a different 
Greek letter takes the place of θ. For example, π is used 
for population proportions, µ is used for population 
means, σ is used for population standard deviations, ρ 
is used for population correlation, and β is used for 
population regression slopes. In this case, θ represents 
the proportion of persons with anxiety in the popula-
tion; thus, in this explanation π and θ are used inter-
changeably. Note that we do not know the actual value 
of θ, so we must consider all the possible values between 
0 and 1. P ( )θ  is the prior distribution, which in the 
example is either a beta distribution with parameters 
α = 1 and β = 1 for the uninformed prior or a beta dis-
tribution with parameter α = 20 and parameter β = 30 
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for the informed prior. P d( | )θ  is the probability of the 
observed data (d) given each possible parameter value, 
also known as the likelihood of the possible parameter 
values. Some authors use the notation L d( | )θ , which is 
very useful because it identifies that, as the prior and 
posterior distributions, we are dealing with a function 
that assigns a number to all the possible parameter val-
ues. It is not strictly a probability distribution because it 
does not add to 1 as discrete probability distributions 
do or it does not integrate to 1 as continuous probabil-
ity distributions do. However, it works as a probability 
distribution in the sense that somehow indicates how 
likely each parameter value is. 

The construction of the likelihood function is rather 
artificial; here is an example to explain the process.  
After observing that the data are 40 people with anxi-
ety out of 200, we use the binomial distribution to 
determine the probability of obtaining 40 successful 
outcomes out of 200 trials for all possible values of π. 
For clarity of explanation, only four possible values of 
π are considered, but it should be considered that π can 
acquire infinite number of values in the range 0 to 1. 
(Note that we are now using as π instead of θ.)

L d P dπ 0.15| 40 40|π 0.15 0.0115( ) ( )= = = = = =

L d P dπ 0.20| 40 40|π 0.20 0.0704( ) ( )= = = = = =

L d P dπ 0.25| 40 40|π 0.25 0.0173( ) ( )= = = = = =

L d P dπ 0.30| 40 40|π 0.30 0.0041( ) ( )= = = = = =

The first line should be interpreted as the likelihood 
of the parameter π to be the value 0.15 in the popula-
tion (i.e., the city of interest) given that we observed 40 
out of 200 people with anxiety in the sample. This is 
calculated by using the binomial distribution and deter-
mining the probability of observing 40 out of 200 suc-
cesses given that the probability of success in each trial 
(i.e., π) is 0.15. That probability is 0.0115. The second 
line indicates how likely is for π to be 0.20, the third 
how likely is for π to be 0.25, and the fourth line indi-
cates how likely is for π to be 0.30. In this set of values, 
the most likely value is 0.20 with a probability of 
0.0704. We can keep adding parameter values in the 
range 0 to 1 and obtaining the likelihood for each of 
them, and eventually we will obtain a function that 
resembles a probability distribution.

To calculate the posterior distribution, we need to 
follow three more steps. The first one is to follow the 
numerator of Bayes’s rule and, for each parameter 
value, to obtain the product of its likelihood and its 
prior probability. This new set of values gives us a good 
idea of the plausibility of each parameter value after 

observing the data and taking into account previous 
knowledge; however, it is not a probability distribution 
because it does not add or integrate to 1. We can obtain 
a proper posterior distribution if there is a way of cal-
culating the marginal likelihood [i.e., P d( )], which is a 
single number obtained with the following integral:

P d P( | )  d ,∫ ( )θ × θ θ
θ

where the d in θd  does not refer to data, rather it 
indicates the integration is over all possible values of θ
. Calculating this integral is not always feasible, and 
when this is the case, Monte Carlo simulation methods 
are used to approximate it, methods that are explained 
in this entry. In this example, the choice of the beta 
distribution as prior and the binomial distribution for 
constructing the likelihood was not coincidental. These 
two distributions have the property of conjunction, 
which means that there is a way of combining them to 
easily come up with a new probability distribution. 
When conjunction is possible, the posterior distribu-
tion can be obtained without calculating the marginal 
likelihood. 

For the uninformed prior, the beta distribution with 
α = 1 and β = 1 combined with the binomial with 40 
success (and 160 failures), the posterior distribution is 
a beta distribution with α = 41 (40 + 1) and β = 161 
(160 + 1). In this case, the posterior distribution has 
exactly the same shape as the likelihood function, 
which makes sense because the prior represented the 
ignorance of the researcher, thus the information about 
the parameter value in the posterior distribution is 
entirely provided by the new observed data, which is 
captured by the likelihood function. For the informed 
prior, the posterior distribution becomes a beta distri-
bution with α = 60 (40 + 20) and β = 190 (160 + 30). 
In this posterior distribution, the mean is 0.24 and the 
95% high-density interval is (0.189, 0.295). Note that 
the prior probability distribution was centered on 0.40 
and that the likelihood was centered on 0.20 and the 
posterior distribution is centered on 0.24. The center of 
the posterior distribution is closer to that of the likeli-
hood than that of the prior because the prior only 
incorporated knowledge of a sample of 50 participants, 
whereas the likelihood provided information over 200 
participants; therefore, the latter has more weighting in 
the posterior distribution.

Practical Issues

Bayesian parameter estimation forms part of all the 
other approaches, but John Kruschke has been a  
strong proponent of Bayesian parameter estimation as a 
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stand-alone procedure. Kruschke’s website (https://jkkweb 
.sitehost.iu.edu/index.html) provides a number of useful 
resources for conducting parameter estimation. The R 
packages rstan and rjags afford the possibility to conduct 
Bayesian parameter estimation with limited coding knowl-
edge. The user friendly and free software JASP was built 
with the purpose of conducting Bayesian hypothesis test-
ing, but it also provides posterior distributions with cred-
ible intervals.

Bayesian Hypothesis Testing
Bayesian hypothesis testing is an approach to compare 
a null hypothesis with an alternative hypothesis. There 
are a few differences between the Bayesian and the 
traditional hypothesis testing approaches. First, in the 
Bayesian approach, there is a model for the null 
hypothesis and a model for the alternative hypothesis, 
unlike the traditional approach in which only a model 
for the null hypothesis is specified. This allows the 
Bayesian approach to quantify the evidence in favor or 
against the alternative hypothesis relative to the null 
hypothesis and vice versa. Second, the Bayesian 
approach uses Bayes factors, not p values as in the tra-
ditional approach. Third, the Bayes factor quantifies 
the relative evidence in favor or against the hypotheses, 
it does not make a binary decision (reject or not reject) 
regarding the null hypothesis.

The process for conducting Bayesian hypothesis 
testing involves specifying two models and comparing 
them. Let’s consider a case in which a t-test is used in 
the traditional approach. A sample of 80 participants 
was randomly allocated to two conditions to perform 
a memory task: fast presentation of stimulus (40 par-
ticipants) or slow presentation of stimulus (40 partici-
pants). The mean percentage of correct answers was 
obtained for each group, and the goal of the study was 
to test the null hypothesis that there are no differences 
in performance in this memory task between the two 
groups. The mean percentage items correctly recalled in 
the group that was presented stimuli at a fast pace was 
50.15 and SD = 16.4 and that of the group that was 
presented stimuli at a slow pace was 61.18, SD = 15.2. 
The mean difference is −11.03. The pooled SD is 15.8; 
therefore, the effect size in the sample is: −11.03/15.8 = 
−0.698.

Specification of Priors  
Over Parameter Values and Models

In Bayesian parameter estimation, one only con-
siders one model at a time, whereas in Bayesian null 
hypothesis testing, two models are compared. One 
must both specify a prior distribution over parameter 

values for each of the models and also specify the 
prior distribution over the models. 

Regarding the prior distribution of parameters, the 
parameter of interest is the difference between means in 
memory performance in a hypothetical population of 
people exposed to slow presentation of stimuli 
compared to one in which people are exposed to fast 
presentation of stimuli. For practical reasons, a 
standardized effect size is used for this parameter, and 
it is denoted by δ , which is calculated by δ  = difference 
between population means/combined standard 
deviation in the population. 

The prior distribution over the possible parameter 
values for the model of the null hypothesis is: 

H0 : 0.δ =

This means that for the model of the null hypothesis, 
the whole probability is given to the parameter value 0, 
values different than 0 are impossible, and are given a 
probability of 0. For the alternative hypothesis, there 
are many options for prior distribution. In this example, 
we will use a normal distribution centered on 0.

H1:   ~ Normal  0, 1 .( )δ π = σ =

In this model of the alternative hypothesis, the prior 
distribution for the difference between means gives the 
value 0 the highest probability, given that the mean (π) 
of a normal distribution is its most probable value, and 
values higher and smaller than 0 that are close to 0 are 
highly probable whereas values far away from zero are 
less probable. The spread of the normal distribution is 
determined by its standard deviation (σ). There is an 
extensive literature on determining default values for 
parameters such as σ, which will not be discussed here. 
Suffice it to say that in experimental research in social 
sciences, large differences between means are unlikely, 
so the default value of σ should reflect this fact; in this 
case, 1σ =  was chosen. If the researcher has the knowl-
edge or expectation that one of the groups will have 
higher performance than the other group, they may 
express that by using a half-normal distribution, that is, 
a normal distribution centered on 0, but with the left 
side of the distribution removed, making explicit the 
assumption that the value of δ  in the population is 
higher than zero. This is equivalent to a directional 
hypothesis in traditional null hypothesis testing.

Regarding the prior distribution over models, the 
default distribution is the following:

P H0 0.5,( ) = P H1 0.5.( ) =
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This uniform distribution is equivalent to the 
uninformed prior explained in the parameter estima-
tion section. In this case, the researcher makes 
explicit that they do not have previous knowledge on 
which hypothesis is more plausible or they prefer not 
to use any previous knowledge for hypothesis test-
ing. There are situations in which a researcher may 
decide to be conservative and assign H0 a higher 
prior probability than that for H1. For example, if 
H1 involves showing that telepathy exists, because it 
involves violating well established laws of physics, a 
researcher may assign a lower prior probability to 
H1 and only favor H1 over H0 if the data provide 
extraordinary evidence in favor of H1.

Specification of Likelihood

The specification of likelihood over parameter values 
is the same as in Bayesian parameter estimation. Again, 
there are a few distributions that can be used to con-
struct the likelihood such as a t distribution centered on 
any possible parameter value. For simplicity, assume a 
normal distribution. The rationale is the following: If in 
the population 0δ = , in the sample used in the study one 
would expect the difference in memory performance 
between the two groups to be 0 or close to 0, with values 
far away from 0 being very unlikely. Likewise, if 8.5δ =
, then one would expect the difference between means in 
the sample to be 8.5 or values close to 8.5, with values 
far from 8.5 being very implausible. Please refer to the 
likelihood in Bayesian parameter estimation to see how 
the likelihood is constructed after this step.

Bayes’s Rule

In hypothesis testing, we need to use two versions of 
Bayes’s rule. First, a version with a posterior distribu-
tion over parameter δ :

P d
P d P

P d
PH0 :   | ,  H0

( | ,H0) ( | H0)
( | H0)

H0 ,( ) ( )δ =
δ × δ

×

P d
P d P

P d
PH1:   | ,  H1

( | ,H1) ( | H1)
( | H1)

H1 ,( ) ( )δ =
δ × δ

×

where P H0 P H1 0.5( ) ( )= =  are the priors for the 
hypotheses, P | H0( )δ  is the prior of δ  for the null 
hypothesis (i.e., 0δ = ), P | H1( )δ  is the prior of δ  for the 
alternative hypothesis (i.e., a normal distribution with µ 
= 0 and σ = 1), and P d( | ,H0)δ  and P d| ,H1( )δ  denote 
the likelihoods over parameter values for the models of 
the null and the alternative hypotheses, which in both 
cases are obtained via a normal distribution. 

Given that the observed standardized difference 
between means in our sample of 80 participants is 
−0.698, the likelihood in the model of the null hypoth-
esis is the probability of observing that value given that 

0δ = , whereas in the model of the alternative hypoth-
esis the likelihood includes the probability of observing 
−0.698, given all possible values of δ . As in parameter 
estimation, the marginal likelihoods P d( | H0) and 
P d( | H1) are calculated with the integrals

P d P( | ,H0) ( | H0) d∫ δ × δ δ
δ

and

P d P( | ,H1) ( | H1) d ,∫ δ × δ δ
δ

respectively.
The second version of Bayes’s rule contains a poste-

rior over models, not parameter values, denoted by the 
following equations:

P d
P d

P d
P  H0|

( | H0)
H0 ,( ) ( ) ( )= ×

P d
P d

P d
P  H1|

( | H1)
H1 .( ) ( ) ( )= ×

These versions of the Bayes’s rule show the posterior 
of the models for the null and the alternative hypotheses, 
which are calculated with the likelihood of the hypothesis 
given the data [L d P d(H0 | ) ( | H0) =  and 
L d P d(H0 | ) ( | H0)= , respectively], the priors of the 
hypotheses [P H0( ) and P H1( ), respectively], and the 
probability of the data [P d ]( ) . Note that the likelihoods 
in this version of the Bayes’s rule are equivalent to the 
marginal likelihoods in the previous version, and they 
denote how plausible is the observed effect size of −0.698 
given the prior distribution assigned over δ in each model. 
In the current version, the probability of the data P d( ) 
represents how plausible is to observe −0.698, for a model 
that combines the model of H0 and the model of H1.

Bayes Factor

The Bayes factor is a ratio. In this instance, the ratio 
between the marginal likelihood under the model of 
the null hypothesis and the marginal likelihood under the 
model of the alternative hypothesis. Obtain the Bayes fac-
tor by obtaining the ratio of the two previous equations: 

P d
P d

P d P P d

P d P P d
(H0 | )
(H1 | )

|H0   H0 /

|H1 H1 /
,

( ) ( )
( ) ( )

( )
( )=

×
×
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The probability of the data [P d( )] is the same value 
for both models; therefore, this value can be simplified 
from the equation and obtain:

P d
P d

P d

P d

P

P
(H0 | )
(H1 | )

|H0  

|H1

H0

H1
( )
( )

( )
( )= ×

which can be expressed in English as:

Posterior odds Bayes factor Prior odds= ×

That is, 
P d

P d
Bayes  factor

|H0

|H1
( )
( )= .

The Bayes factor must be interpreted as how plausi-
ble the data are under a model (i.e., the model of the null 
hypothesis) relative to how plausible the data are under 
another model (i.e., the model of the alternative hypoth-
esis). This ratio is named as Bayes factor 01. Using JASP, 
the Bayes factor 01 returns the value 0.0574. When the 
Bayes factor 01 is a number below 1, it is more useful to 
calculate the Bayes factor 10, that is, the ratio between 
the marginal likelihood of the model of the alternative 
hypothesis and that of the model of the null hypothesis. 
Alternatively, the same value can be achieved by Bayes 
factor 10 = 1/Bayes factor 01. The corresponding value 
is 17.4245, indicating that the data are more than 17 
times more likely under the alternative hypothesis than 
under the null hypothesis. This quantification of the 
evidence in favor of the alternative hypothesis relative to 
the null hypothesis is the end of the analysis, unlike in 
the traditional approach in which a binary decision on 
whether to reject the null hypothesis is carried out.

Practical Issues

The use of Bayes factor to evaluate hypotheses was 
introduced by Robert E. Kass and Adrian E. Raftery in 
1995. More recently, it has been popularized by psy-
chologist Eric-Jan Wagenmakers, who has been devel-
oping a free and easy to use statistical software, JASP, 
with emphasis on Bayesian hypothesis testing, which 
can be downloaded for free from jasp-stats.org. This 
software builds on the work of other researchers, who 
developed default priors to test null hypotheses via 
Bayes factor to replace traditional tests such as t test, 
analysis of variance, regression, correlation, binomial 
test, and chi-squared test, among others.

Other Bayesian Approaches
Another important approach is Bayesian model com-
parison. The Bayesian model comparison approach 
also uses Bayes factor, but instead of comparing a null 

hypothesis with an alternative hypothesis, it compares 
any two models that aim at explaining the data. Model 
comparison can occur between nested models, such as 
a regression model with one intercept and one slope 
compared to a regression model with those parameters 
plus an additional slope parameter, and non-nested 
models such as one that explains the outcome variable 
with one predictor variable with another that does so 
with a completely different predictor variable. Models 
that have the same predictor variables but differ in the 
function that relates the predictor variable with the 
outcome variables can also be compared, such as a 
linear model with a quadratic model. Finally, an inter-
esting feature of the Bayesian model comparison 
approach is that it can compare models that have the 
same predictor variables and functions linking them to 
the outcome variables but differ in their prior probabil-
ity distribution for possible parameter values. Andrew 
Gelman has introduced these models to social sciences, 
and Richard McElreath’s book, Statistical Rethinking, 
presents multiple examples of this approach in a 
didactic way.

The final approach is hierarchical Bayesian models. 
These models possess multiple prior distributions and 
at different levels; they have characteristics of tradi-
tional structural equation models because they have 
multiple variables and pathways connecting them, 
multilevel models because they have parameters at dif-
ferent levels (e.g., a parameter can vary among indi-
viduals or it is fixed for all the individuals, another 
may vary or be fixed among trials, and so forth), and 
directed acyclical graphs because they share the graph-
ical representation with those models. An innovative 
feature of hierarchical Bayesian models is the use of 
plates, a graphical device to represent whether a 
parameter is fixed or varies among individuals, trials, 
or time, for example. 

Final Thoughts
Bayesian data analysis approaches, as indicated earlier, 
share the use of Bayes’s rule as a guiding principle for 
data analysis. They also share another unique feature: 
They explicitly manifest the knowledge the researcher 
has before observing new data, and that knowledge is 
updated after observing new data. This feature dovetails 
with the cumulative and collaborative nature of the 
scientific endeavor. Strong conclusions based on single 
studies are discouraged and the cumulative quantifica-
tion of evidence is encouraged.

Guillermo Campitelli

See also Posterior Distribution
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Bayesian Information 
Criterion

Bayesian (or Bayes) information criterion (BIC), also 
referred to as Schwarz Bayes information criterion, is 
one of the information criteria for selecting statistical 
models. BIC, as its name tells, is based on the asymp-
totic behavior of Bayes estimators under a class of pri-
ors. It is defined mathematically as L2 − rlog(N), in 
which N is the total sample size and r is the number of 
degrees of freedom after model fitting. 

History of BIC
BIC was first proposed by Gideon E. Schwarz in his 
1978 paper, “Estimating the Dimension of a Model,” 
published in the Annals of Statistics, based on a 
Bayesian approach to hypothesis testing developed by 
Harold Jeffreys in 1961. According to Schwarz, using 
the maximum likelihood principle to choose the 
appropriate model is problematic because this princi-
ple results in the highest possible dimension rather 
than the right dimension. The approach based on 
Bayes estimator assumes that observations are relative 
to some fixed measure on the sample space with some 
density. When the asymptotes of Bayes are fitted, 
researchers need not know the specification of a priori 
distribution on the parameters. Furthermore, it is 
assumed that there is a fixed penalty for estimating 
the wrong model, regardless of the sample size, 
because the Bayes solution selects a most probable a 
posteriori model based on the a priori distribution. 

Therefore, a model is considered true when it has the 
highest posterior probability, without specifying a 
prior distribution. 

Although Schwartz was the first person who pro-
posed BIC, his work was not paid attention to until 
Adrian E. Raftery used the BIC in a wide range of mod-
els and strongly advocated for its usefulness in his two 
papers published in 1986: one was “Choosing Models 
for Cross-Classifications” in American Sociological 
Review and the other was “A Note on Bayes Factors for 
Log-linear Contingency Table Models With Vague Prior 
Information” in Journal of the Royal Statistical Society. 
He argued that the Bayesian approach is better for 
hypothesis testing especially with a larger sample size 
and it can also account for model uncertainty with the 
use of priors.  

Variants of BIC
Besides the original form of BIC, there are other 
revised forms or variants of BIC, including Kashyap 
Bayesian information criterion (KBIC) developed by 
Rangasami L. Kashyap in 1982, adjusted Bayesian 
information criterion (ABIC) developed by Stanley  
L. Sclove in 1987, the Haughton Bayesian informa-
tion criterion (HBIC) developed by Dominique  
M. A. Haughton in 1988, the distributed Bayesian 
information criterion (DBIC) developed by David 
Draper in 1995, as well as the information matrix-
based Bayesian information criterion (IBIC) and the 
scaled unit information proper Bayesian information 
criterion (SPBIC) developed by Kenneth A. Bollen and 
colleagues in 2012. 

More specifically, KBIC selects a time-series model in 
BIC equation. ABIC focuses on the shortest description 
length in model selection and keeps a balance between 
model fit and complexity. It is also known as the 
sample-size-adjusted BIC. HBIC extends BIC’s focus on 
linear models to curve models and reduces the penalty 
in BIC. DBIC adds a term to BIC equation that has bet-
ter results with small to moderate sample sizes. IBIC 
adds two terms into the original equation of BIC, and 
SPBIC uses scaled unit information prior rather than 
unit information prior in the original form of BIC.  

Use of BIC
BIC is used as a criterion of model selection and can be 
applied in many models, such as log linear, logits, cova-
riance structure models, and linear regression. It includes 
an adjustment for sample size and has consistency prop-
erty, which suggests that, when sample size increases 
and approaches infinity, the BIC selects the fitted mode 
with probability close to 1. This makes BIC useful 
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especially when researchers are building theories based 
on data because they assume that they can collect data, 
fit the model based on BIC, and select the true model as 
the sample size increases. Researchers need to compute 
the BIC for each model and select the model with the 
smallest criterion value. In this sense, BIC focuses on 
parsimony of the model. 

Although BIC and other information criterion mea-
sures are not used as popularly as other fit indices in 
fields such as structural equation modeling (SEM), they 
outperform other fit indices in moderate to large sam-
ples and in models that have extra parameters. When 
the SEM model includes real-world criterion, or crite-
rion that is measurable, BIC is probably the most effec-
tive for model accuracy and parsimony. Among variants 
of BIC, ABIC has a better performance than original 
BIC in selecting numbers of factors and latent classes. 
DBIC has an improved performance in model selection 
for real problems. HBIC improves BIC’s performance 
particularly in confirmatory factor analysis models. It, 
along with SPBIC, performs the best in the selection of 
true models and has the highest accuracy ratios in 
model fitting. 

Limitations of BIC
Despite its overall superior performance in model selec-
tion, BIC has its own limitations. For instance, because 
Bayes factors are sensitive to differences existing in 
prior beliefs, they are not always the same as the Bayes 
factor implied by prior beliefs. Furthermore, the advan-
tages of including total sample size in the BIC makes it 
harder to discriminate between null and alternative 
hypotheses based only on sample size. When testing the 
difference between two group means, a sample of 1,000 
participants in each group is more informative than a 
sample of 200 participants in one group and 1,800 in 
the other. Because the BIC uses the total sample size in 
the study, the difference between the samples in the two 
situations is not obvious and the use of prior beliefs in 
the BIC is difficult to justify. In addition, BIC seems too 
conservative in model selection.

Haiying Long

See also Bayes’s Theorem; Model Fit
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Bayesian Networks

Bayesian networks are probabilistic graphical models 
depicting the relations within a potentially large set of 
variables. Commonly, Bayesian networks show the 
conditional dependencies, information that cannot eas-
ily be derived from, for example, a correlation table. 
Thus, these networks are a versatile tool for exploring 
and studying relations in large data sets and are used in 
many branches of science.

Graphical Model
In its essence, Bayesian network models are graphical 
visualizations of variables and their relations, whereby 
the values of their relations depend on random varia-
tion. Just as in structural equation models and factor 
models, for example, these visualizations show each 
variable as an ellipse, called a node, and the relations 
are depicted by arrows, called edges or ties, between 
variables. 

The graph satisfies the formal requirements of 
Bayesian networks if it is a so-called directed acyclic 
graph (DAG). In a directed graph, all connections are 
arrows—usually indicating causal relations—and there 
are no cycles in the graph. No cycles implies that if there 
is a directed path from node A to node B, there cannot 
be a path from node B to node A.

Many studies focus on correlational relations rather 
than causal relations. A variant of the Bayesian net-
works, where directed arrows are replaced by undi-
rected lines, is useful in this context. Although technically 
not a Bayesian network, these graphs are also com-
monly referred to as Bayesian networks.

Figure 1 displays the Bayesian network for a ficti-
tious example. For 300 primary school children, three 
variables are recorded: age (X1), their shoe size (X2), and 
their numeracy level, based on some arithmetic test 
(X3). These nodes are depicted as ellipses, with the rela-
tions as arrows. In this example, the direction of the 
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causal arrows is clear: one’s feet grow with age, and so 
does one’s arithmetic skills. 

Perhaps the most interesting thing about Figure 1 is 
the lack of edge between X2 and X3. This does not imply 
that these two variables are unrelated. In fact, they are 
probably strongly correlated: kids with large feet tend 
to also be the kids with better arithmetic skills, as these 
children are the older ones in the sample. Variables X2 
and X3 have no edge as these are conditionally indepen-
dent: given the value for X3, the two variables are unre-
lated. In other words, for children of the same age, there 
is no relation between shoe size and numeracy.

Formally, variables A and B are independent condi-
tional on variables C1, …, Ck if

A BC C AC C BC CP , , P , , P , , .k k k1 1 1∩ … = … × …        

As this notation relies on conditional probabilities, 
Bayes’s theorem is required, hence the name Bayesian 
network. The notation for this is A||B|C1, …, Ck. The 
conditional independence property of DAGs is what 
makes the Bayesian network so useful in practice. This 
is especially the case when working with a large number 
of variables. By conditioning on certain nodes, sets of 
other nodes can become independent, which is of great 
help in interpreting the results.

Gaussian Graphical Model
A common type of Bayesian network model is the 
Gaussian graphical model (GGM). This model assumes 
that the joint distribution of all variables is multivariate 
normal: X~Nμ,Σ. In this case, the inverse of the vari-
ance/covariance matrix Σ immediately provides the 
values for the edges of the network. Where Σ itself is 
used to compute the correlations between variables, 
Σ − 1 is used to compute the so-called partial correla-
tions. The normality assumption of the GGM can be 
checked in a similar way as checking this assumption 
for standard linear regression models. 

There are two methods for visualizing the edges of a 
graph: (1) lines and arrows are either present or absent, 

denoting the presence or absence of a relation, or 
(2) lines and arrows vary in thickness, denoting the 
strength of the relation, with another property (different 
line color or using dashed lines) to indicate when rela-
tions are negative. As partial correlations in practice 
never are exactly zero, raw visualizations of a GGM can 
yield visual overload: when all edges are drawn, it is 
difficult to assess where the interesting edges are. A 
straightforward solution to this is called thresholding: 
visualize only those partial correlations that, in absolute 
value, exceed some threshold (e.g., 0.2). Correlations 
smaller than this threshold are deemed to be of too little 
interest. More sophisticated solutions, such as the 
graphical lasso, might provide a more elegant graph.

Bayesian Networks  
in the Social Sciences

Within the social sciences, Bayesian networks occur in 
two classes: social networks and psychological networks. 
In social network analysis, the nodes represent entities, 
such as Facebook users, and the edges represent 0/1 vari-
ables, such as indicating whether or not two Facebook 
users are (mutual) friends. The interest does not lie in 
specific individuals in the network but on the behavior of 
the network as a whole. Relevant concepts in this field 
include density (how many edges are there, relative to the 
possible number of edges) and centrality (which nodes are 
most connected, who are the key influencers).

Psychological network analysis has a different focus. 
Here, the nodes concern psychological variables, such as 
symptoms of anxiety disorder, and the edges represent 
the partial correlations. Thus, the values of the edges are 
now realizations of a random process, rather than 
observed 0/1 scores. One of the main aims in this branch 
of network analysis is to find pathways connecting one 
symptom to another. By intervening on one of the symp-
toms on this path, and thus keeping this constant, one 
hopes to avoid having other symptoms worsen.

Especially thanks to recent innovations in software 
for network analysis, the use of network models has 
increased rapidly since the first decade of the 21st cen-
tury.

Casper J. Albers

See also Bayes’s Theorem; Network Analysis; Network 
Visualization
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Figure 1  Example of a Bayesian Network
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Behavior Analysis Design

Behavior analysis is a specific scientific approach to 
studying behavior that evolved from John Watson’s 
behaviorism and the operant research model popular-
ized by B. F. Skinner during the middle of the 20th 
century. This approach stresses direct experimentation 
and measurement of observable behavior. A basic 
assumption of behavior analysis is that behavior is 
malleable and controlled primarily by consequences. 
B. F. Skinner described the basic unit of behavior as an 
operant, a behavior emitted to operate on the environ-
ment. Additionally, he proposed that the response rate 
of the operant serve as the basic datum of the scientific 
study of behavior. An operant is characterized by a 
response that occurs within a specific environment 
and produces a specific consequence. According to the 
principles of operant conditioning, behavior is a func-
tion of three interactive components, illustrated by the 
three-term contingency: context, response, and conse-
quences of behavior. The relationship between these 
three variables forms the basis of all behavioral 
research. Within this framework, individual compo-
nents of the three-term contingency can be studied by 
manipulating experimental context, response require-
ments, or consequences of behavior. A change in any 
one of these components often changes the overall 
function of behavior, resulting in a change in future 
behavior. If the consequence strengthens future behav-
ior, the process is called reinforcement. If future 
behavior is weakened or eliminated as a result of 

changing the consequence of behavior, the process is 
called punishment.

Behavior analysis encompasses two types of 
research: the experimental analysis of behavior, con-
sisting of research to discover basic underlying behav-
ioral principles, and applied behavior analysis, 
involving research implementing basic principles in 
real-world situations. Researchers in this field are 
often referred to as behavior analysts, and their 
research can take place in both laboratory and natu-
ralistic settings and with animals and humans. Basic 
behavioral processes can be studied in any species, 
and the findings may be applied to other species. 
Therefore, researchers can use animals for experimen-
tation, which can increase experimental control by 
eliminating or reducing confounding variables. Since 
it is important to verify that findings generalize across 
species, experiments are often replicated with other 
animals and with humans. Applied behavior analysis 
strives to develop empirically based interventions 
rooted in principles discovered through basic research. 
Many empirically based treatments have been devel-
oped with participants ranging from children with 
autism to corporate executives and to students and 
substance abusers. Contributions have been made in 
developmental disabilities, intellectual developmental 
disorders, rehabilitation, delinquency, mental health, 
counseling, education and teaching, business and 
industry, and substance abuse and addiction, with 
potential in many other areas of social significance. 
Similar designs are employed in both basic and 
applied research, but they differ with regard to sub-
jects studied, experimental settings, and degree of 
environmental control.

Regardless of the subject matter, a primary feature 
of behavior analytic research is that the behavior of 
individual organisms is examined under conditions 
that are rigorously controlled. One subject can provide 
a representative sample, and studying an individual 
subject thoroughly can sometimes provide more infor-
mation than can studying many subjects because each 
subject’s data are considered an independent replica-
tion. Behavior analysts demonstrate the reliable manip-
ulation of behavior by changing the environment. 
Manipulating the environment allows researchers to 
discover the relationships between behavior and envi-
ronment. This method is referred to as single-subject or 
within-subject research and requires unique designs, 
which have been outlined by James Johnston and 
Hank Pennypacker. Consequently, this method takes 
an approach to the collection, validity, analysis, and 
generality of data that is different from approaches 
that primarily use group designs and inferential statis-
tics to study behavior.
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Measurement Considerations
Defining Response Classes

Measurement in single-subject design is objective 
and restricted to observable phenomena. Measurement 
considerations can contribute to behavioral variability 
that can obscure experimental effects, so care must be 
taken to avoid potential confounding variables. 
Measurement focuses on targeting a response class, 
which is any set of responses that result in the same 
environmental change. Response classes are typically 
defined by function rather than topography. This 
means that the form of the responses may vary consid-
erably but produce the same result. For example, a 
button can be pressed several ways, with one finger, 
with the palm, with the toe, or with several fingers. 
The exact method of action is unimportant, but any 
behavior resulting in button depression is part of a 
response class. Topographical definitions are likely to 
result in classes that include some or all of several 
functional response classes, which can produce 
unwanted variability. Researchers try to arrange the 
environment to minimize variability within a clearly 
defined response class.

There are many ways to quantify the occurrence of 
a response class member. The characteristics of the 
behavior captured in its definition must suit the needs 
of the experiment, be able to address the experimen-
tal question, and meet practical limits for observa-
tion. In animal studies, a response is typically defined 
as the closing of a circuit in an experimental chamber 
by depressing a lever or pushing a key or button. With 
this type of response, the frequency and duration that 
a circuit is closed can be recorded. Conditions can be 
arranged to measure the force used to push the button 
or lever, the amount of time that occurs between 
responses, and the latency and accuracy of respond-
ing in relation to some experimentally arranged 
stimulus. These measurements serve as dependent 
variables. In human studies, the response is typically 
more broadly defined and may be highly individual-
ized. For example, self-injurious behavior in a child 
with autism may include many forms that meet a 
common definition of minimum force that leaves a 
mark. Just as in basic research, a variety of behavioral 
measurements can be used as dependent variables. 
The response class must be sensitive to the influence 
of the independent variable (IV) without being 
affected by extraneous variables so that effects can be 
detected. The response class must be defined in such 
a way that researchers can clearly observe and record 
behavior.

Observation and Recording

Once researchers define a response class, the meth-
ods of observation and recording are important in order 
to obtain a complete and accurate record of the sub-
ject’s behavior. Measurement is direct when the focus of 
the experiment is the same as the phenomenon being 
measured. Indirect measurement is typically avoided in 
behavioral research because it undermines experimental 
control. Mechanical, electrical, or electronic devices can 
be used to record responses, or human observers can be 
selected and trained for data collection. Machine and 
human observations may be used together throughout 
an experiment. Behavior is continuous, so observational 
procedures must be designed to detect and record each 
response within the targeted response class.

Experimental Design and  
Demonstration of Experimental Effects

Experimental Arrangements

The most basic single-subject experimental design 
is the baseline–treatment sequence, the AB design. 
This procedure cannot account for certain confounds, 
such as maturation, environmental history, or 
unknown extraneous variables. Replicating compo-
nents of the AB design provide additional evidence 
that the IV is the source of any change in the depen-
dent measure. Replication designs consist of a base-
line or control condition (A), followed by one or more 
experimental or treatment conditions (B), with addi-
tional conditions indicated by successive letters. 
Subjects experience both the control and the experi-
mental conditions, often in sequence and perhaps 
more than once. An ABA design replicates the original 
baseline, while an ABAB design replicates the baseline 
and the experimental conditions, allowing researchers 
to infer causal relationships between variables. These 
designs can be compared with a light switch. The first 
time one moves the switch from the on position to the 
off position, one cannot be completely certain that 
one’s behavior was responsible for the change in light-
ing conditions. One cannot be sure the light bulb did 
not burn out at that exact moment or the electricity 
did not shut off coincidentally. Confidence is bol-
stered when one pushes the switch back to the on 
position and the lights turn back on. With a replica-
tion of moving the switch to off again, one has total 
confidence that the switch is controlling the light.

Single-subject research determines the effectiveness 
of the IV by eliminating or holding constant any poten-
tial confounding sources of variability. One or more 
behavioral measures are used as dependent variables so 
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that data comparisons are made from one condition to 
another. Any change in behavior between the control 
and the experimental conditions is attributed to the 
effects of the IV. The outcome provides a detailed inter-
pretation of the effects of an IV on the behavior of the 
subject.

Replication designs work only in cases in which 
effects are reversible. Sequence effects can occur when 
experience in one experimental condition affects a sub-
ject’s behavior in subsequent conditions. The researcher 
must be careful to ensure consistent experimental con-
ditions over replications. Multiple-baseline designs with 
multiple individuals, multiple behaviors, or multiple 
settings can be used in circumstances in which sequence 
effects occur, or as a variation on the AB design. Results 
are compared across control and experimental condi-
tions, and factors such as irreversibility of effects, matu-
ration of the subject, and sequence effect can be 
examined.

Behavioral Variability

Variability in single-subject design refers both to 
variations in features of responding within a single 
response class and to variations in summary measures 
of that class, which researchers may be examining 
across sessions or entire phases of the experiment. The 
causes of variability can often be identified and system-
atically evaluated. Behavior analysts have demonstrated 
that frequently changing the environment results in 
greater degrees of variability. Inversely, holding the envi-
ronment constant for a time allows behavior to stabilize 
and minimizes variability. Murray Sidman has offered 
several suggestions for decreasing variability, including 
strengthening the variables that directly maintain the 
behavior of interest, such as increasing deprivation, 
increasing the intensity of the consequences, making 
stimuli more detectable, or providing feedback to the 
subject. If these changes do not immediately affect vari-
ability, it could be that behavior requires exposure to 
the condition for a longer duration. Employing these 
strategies to control variability increases the likelihood 
that results can be interpreted and replicated.

Reduction of Confounding Variables

Extraneous, or confounding, variables affect the detec-
tion of behavioral change due to the IV. Only by eliminat-
ing or minimizing external sources of variability can data 
be judged as accurately reflecting performance. Subjects 
should be selected that are similar along extra-experimen-
tal dimensions in order to reduce extraneous sources of 
variability. For example, it is common practice to use 

animals from the same litter or to select human partici-
pants on the basis of age, level of education, or socioeco-
nomic status. Environmental history of an organism can 
also influence the target behavior; therefore, subject selec-
tion methods should attempt to minimize differences 
between subjects. Some types of confounding variables 
cannot be removed, and the researcher must design an 
experiment to minimize their effects.

Steady State Behavior

Single-subject designs rely on the collection of steady 
state baseline data prior to the administration of the IV. 
Steady states are obtained by exposing the subject to 
only one condition consistently until behavior stabilizes 
over time. Stabilization is determined by graphically 
examining the variability in behavior. Stability can be 
defined as a pattern of responding that exhibits rela-
tively little variation in its measured dimensional quan-
tities over time.

Stability criteria specify the standards for evaluating 
steady states. Dimensions of behavior such as duration, 
latency, rate, and intensity can be judged as stable or 
variable during the course of experimental study, with 
rate most commonly used to determine behavioral sta-
bility. Stability criteria must set limits on two types of 
variability over time. The first is systematic increases 
and decreases of behavior, or trend, and the second is 
unsystematic changes in behavior, or bounce. Only 
when behavior is stable, without trend or bounce, 
should the next condition be introduced. Specific stabil-
ity criteria include time, visual inspection of graphical 
data, and simple statistics. Time criteria can designate 
the number of experimental sessions or discrete period 
in which behavior stabilizes. The time criterion chosen 
must encompass even the slowest subject. A time crite-
rion allowing for longer exposure to the condition may 
needlessly lengthen the experiment if stability occurs 
rapidly; on the other hand, behavior might still be 
unstable, necessitating experience and good judgment 
when a time criterion is used. A comparison of steady 
state behavior under baseline and different experimen-
tal conditions allows researchers to examine the effects 
of the IV.

Scientific Discovery  
Through Data Analysis

Single-subject designs use visual comparison of steady 
state responding between conditions as the primary 
method of data analysis. Visual analysis usually 
involves the assessment of several variables evident in 
graphed data. These variables include upward or 
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downward trend, the amount of variability within and 
across conditions, and differences in means and stabil-
ity both within and across conditions. Continuous 
data are displayed against the smallest unit of time 
that is likely to show systematic variability. Cumulative 
graphs provide the greatest level of detail by showing 
the distribution of individual responses over time and 
across various stimulus conditions. Data can be sum-
marized with less precision by the use of descriptive 
statistics such as measures of central tendency (mean 
and median), variation (interquartile range and stan-
dard deviation), and association (correlation and lin-
ear regression). These methods obscure individual 
response variability but can highlight the effects of the 
experimental conditions on responding, thus promot-
ing steady states. Responding summarized across indi-
vidual sessions represents some combination of 
individual responses across a group of sessions, such 
as mean response rate during baseline conditions. This 
method should not be the only means of analysis but 
is useful when one is looking for differences among 
sets of sessions sharing common characteristics.

Single-subject design uses ongoing behavioral data 
to establish steady states and make decisions about 
the experimental conditions. Graphical analysis is 
completed throughout the experiment, so any prob-
lems with the design or measurement can be uncov-
ered immediately and corrected. However, graphical 
analysis is not without criticism. Some have found 
that visual inspection can be insensitive to small but 
potentially important differences of graphic data. 
When evaluating the significance of data from this 
perspective, one must take into account the magnitude 
of the effect, variability in data, adequacy of experi-
mental design, value of misses and false alarms, social 
significance, durability of behavior change, and num-
ber and kinds of subjects. The best approach to analy-
sis of behavioral data probably uses some combination 
of both graphical and statistical methods because each 
approach has relative advantages and disadvantages.

Judging Significance

Changes in level, trend, variability, and serial depen-
dency must be detected in order for one to evaluate 
behavioral data. Level refers to the general magnitude of 
behavior for some specific dimension. For example, 40 
responses per minute is a lower level than 100 responses 
per minute. Trend refers to the increasing or decreasing 
nature of behavior change. Variability refers to changes 
in behavior from measurement to measurement. Serial 
dependency occurs when a measurement obtained dur-
ing one time period is related to a value obtained earlier.

Several features of graphs are important, such as 
trend lines, axis units, number of data points, and con-
dition demarcation. Trend lines are lines that fit the data 
best within a condition. These lines allow for discrimi-
nation of level and may assist in discrimination of 
behavioral trends. The axis serves as an anchor for data, 
and data points near the bottom of a graph are easier to 
interpret than data in the middle of a graph. The num-
ber of data points also seems to affect decisions, with 
fewer points per phase improving accuracy.

Generality
Generality, or how the results of an individual experi-
ment apply in a broader context outside the laboratory, 
is essential to advancing science. The dimensions of gen-
erality include subjects, response classes, settings, species, 
variables, methods, and processes. Single-subject designs 
typically involve a small number of subjects that are 
evaluated numerous times, permitting in-depth analysis 
of these individuals and the phenomenon in question, 
while providing systematic replication. Systematic repli-
cation enhances generality of findings to other popula-
tions or conditions and increases internal validity. The 
internal validity of an experiment is demonstrated when 
additional subjects demonstrate similar behavior under 
similar conditions; although the absolute level of behav-
ior may vary among subjects, the relationship between 
the IV and the relative effect on behavior has been reli-
ably demonstrated, illustrating generalization.

Jennifer L. Bredthauer and Wendy  
D. Donlin-Washington

See also Animal Research; Applied Research; Experimental 
Design; Graphical Display of Data; Independent Variable; 
Research Design Principles; Single-Subject Design; Trend 
Analysis; Within-Subjects Design
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Behrens–Fisher t' Statistic

The Behrens–Fisher t  ′ statistic can be employed when 
one seeks to make inferences about the means of two 
normal populations without assuming the variances are 
equal. The statistic was offered first by W. U. Behrens in 
1929 and reformulated by Ronald A. Fisher in 1939:

′t =
x1 − x2( ) − µ1 − µ2( )
s1

2 n1 + s2
2 n2  

= t1sinθ − t2cosθ ,

where sample mean x1 and sample variance s1
2 are 

obtained from the random sample of size n1 from 
the  normal distribution with mean µ1  and variance  

1
2σ , t1 = x1 − µ1( ) / s1

2  n1  has a t  distribution with 
n 11 1ν = −  degrees of freedom, the respective quantities 

with subscript 2 are defined similarly, and θ θ( )( ) ( ) ( )= = 





−s n s n s n s ntan / / or tan / / / .1 1 2 2
1

1 1 2 2

θ θ( )( ) ( ) ( )= = 





−s n s n s n s ntan / / or tan / / / .1 1 2 2
1

1 1 2 2  
The distribution of t  ′ is the Behrens–Fisher distribution. 
It is, hence, a mixture of the two t  distributions. The 
problem arising when one tries to test the normal popu-
lation means without making any assumptions about 
their variances is referred to as the Behrens–Fisher prob-
lem or as the two means problem.

Under the usual null hypothesis of H0 : µ1 = µ2, the 
test statistic t  ′ can be obtained and compared with the 
percentage points of the Behrens–Fisher distribution. 
Tables for the Behrens–Fisher distribution are available, 
and the table entries are prepared on the basis of the 
four numbers n 11 1ν = − , n 12 2ν = − , θ , and the Type I 
error rate α . For example, Ronald A. Fisher and Frank 
Yates in 1957 presented significance points of the 
Behrens–Fisher distribution in two tables, one for 1ν  
and 6,8,12,24, ;2ν = ∞  0 ,θ = °  15 ,30 ,45 ,60 ,75 ,90 ;° ° ° ° ° °  
and = .05, .01,α  and the other for 1ν  that is greater than 

1,2,3,4,5,6,7; 0 ,15 ,30 ,45 ,60 ,75 , 902ν θ= = ° ° ° ° ° ° °  and 
.10, .05, .02, .01.α =  Seock-Ho Kim and Allan S. Cohen 

in 1998 presented significance points of the Behrens–
Fisher distribution for 1ν  that is greater than 

2,4,6,8,10,12;2ν =  0 ,15 ,30 ,45 ,60 ,75 ,90 ;θ = ° ° ° ° ° ° °  

and .10,  .05, .02, .01α = , and also offered computer 
programs for obtaining tail areas and percentage values 
of the Behrens–Fisher distribution.

Using the Behrens–Fisher distribution, one can con-
struct the 100(1 )%α−  interval that contains µ1− µ2  with

x x t s n s n( , , ) / / ,1 2 /2 1 2 1
2

1 2
2

2ν ν θ− ± ′ +α

where the probability that t t ( , , )/2 1 2ν ν θ′ > ′α  is / 2α  or, 
equivalently, t tPr ( , , ) / 2./2 1 2ν ν θ α[ ]′ > ′ =α

This entry first illustrates the statistic with an 
example. Then related methods are presented, and the 
methods are compared.

Example
Driving times from a person’s house to work were mea-
sured for two different routes with n 51 =  and n 11.2 =  
The ordered data from the first route are 6.5, 6.8, 7.1, 
7.3, 10.2, yielding x 7.5801 =  and s 2.2371

2 = , and the 
data from the second route are 5.8, 5.8, 5.9, 6.0, 6.0, 
6.0, 6.3, 6.3, 6.4, 6.5, 6.5, yielding x 6.1362 =  and 
s 0.0732

2 = . It is assumed that the two independent 
samples were drawn from two normal distributions 
having means µ1 and µ 2  and variances 1

2σ  and ,2
2σ  

respectively. A researcher wants to know whether the 
average driving times differed for the two routes.

The test statistic under the null hypothesis of equal 
population means is t 2.143′ =  with 41ν = , 10,2ν =  
and 83.078.θ =  From the computer program, 

tPr( 2.143) .049,′ > =  indicating the null hypothesis 
cannot be rejected at .05α =  when the alternative 
hypothesis is nondirectional, Ha : µ1 ≠ µ2 , because 
p .098= . The corresponding 95% interval for the 
population mean difference is [ 0.421, 3.308]− .

Related Methods
The Student’s t test for independent means can be used 
when the two population variances are assumed to be 
equal and 1

2
2
2 2σ σ σ= = :

μ μ( ) ( )
=

− − −

+
t

x x

s n s n/ /
,

p p

1 2 1 2

2
1

2
2

where the pooled variance that provides the estimate 
of the common population variance 2σ  is defined as 
sp

2 = n1 −1( )s12 + n2 −1( )s2
2⎡⎣ ⎤⎦  / n1 + n2 − 2( ). It has a t  

distribution with n n 21 2ν = + −  degrees of freedom. 
The example data yield the Student’s t 3.220= , 14,ν =  
the two-tailed p .006= , and the 95% confidence 
interval of [0.482, 2.405]. The null hypothesis of equal 

Do n
ot c

opy
, po

st, 
or d

istr
ibu

te

Copyright ©2022 by SAGE Publications, Inc. 
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.



106 Behrens–Fisher t' Statistic

population means is rejected at the nominal α = .05, and 
the confidence interval does not contain 0.

When the two variances cannot be assumed to be the 
same, one of the solutions is to use the Behrens–Fisher t  ′ 
statistic. There are several alternative solutions. One sim-
ple way to solve the two means problem, called the 
smaller degrees of freedom t test, is to use the same t  ′ 
statistic that has a t distribution with different degrees of 
freedom

′t ~  t min v1,ν2( )⎡⎣ ⎤⎦ ,

where the degrees of freedom is the smaller value of 
or1 2ν ν . Note that this method should be used only if no 

statistical software is available because it yields a 
conservative test result and a wider confidence interval. 
The example data yield t  ′ = 2.143, 4ν = , the two-tailed  
p = .099, and the 95% confidence interval of [–0.427, 
3.314]. The null hypothesis of equal population means is 
not rejected at α = .05, and the confidence interval con-
tains 0.

B. L. Welch in 1938 presented an approximate t test. 
It uses the same t  ′ statistic that has a t distribution with 
the approximate degrees of freedom ν  ′:

t t~ ,ν )(′ ′

Where ′ν = 1 / c2 /ν1 + 1− c( )2  /ν2  ⎡⎣ ⎤⎦   with 

c = (s1
2 n1) / s1

2 n1( ) + s2
2 n2( )⎡⎣ ⎤⎦. The approximation is 

accurate when both sample sizes are 5 or larger. 
Although there are other solutions, Welch’s approxi-
mate t  test might be the best practical solution to the 
Behrens–Fisher problem because of its availability from 
the popular statistical software, including SPSS (an IBM 
company, formerly called PASW® Statistics) and SAS. 
The example data yield t 2.143′ = , 4.118ν ′ = , the two-
tailed p .097= , and the 95% confidence interval of 
[ 0.406,3.293]−  The null hypothesis of equal population 
means is not rejected at .05α = , and the confidence 
interval contains 0.

In addition to the previous method, the Welch–Aspin 
t test employs an approximation of the distribution of 
t  ′ by the method of moments. The example data  
yield t 2.143′ = , and the critical value under the Welch–
Aspin t test for the two-tailed test is 2.715 at .05α = . 
The corresponding 95% confidence interval is 
[ 0.386, 3.273].−  Again, the null hypothesis of equal 
population means is not rejected at .05α = , and the 
confidence interval contains 0.

Comparison of Methods
The Behrens–Fisher t  ′ statistic and the Behrens–Fisher 
distribution are based on Fisher’s fiducial approach. The 

approach is to find a fiducial probability distribution 
that is a probability distribution of a parameter from 
observed data. Consequently, the interval that involves 
t ( , , )/2 1 2ν ν θ′α  is referred to as the 100 1 %α )( −  fiducial 
interval.

The Bayesian solution to the Behrens–Fisher problem 
was offered by Harold Jeffreys in 1940. When uninfor-
mative uniform priors are used for the population 
parameters, the Bayesian solution to the Behrens–Fisher 
problem is identical to that of Fisher’s in 1939. The 
Bayesian highest posterior density interval that contains 
the population mean difference with the probability of 
1 α−  is identical to the 100 1 %α )( −  fiducial interval.

There are many solutions to the Behrens–Fisher 
problem based on the frequentist approach of Jerzy 
Neyman and Egon S. Pearson’s sampling theory. Among 
the methods, Welch’s approximate t  test and the Welch–
Aspin t  test are the most important ones from the 
frequentist perspective. The critical values and the con-
fidence intervals from various methods under the fre-
quentist approach are in general different from those of 
either the fiducial or the Bayesian approach. For the 
one-sided alternative hypothesis, however, it is interest-
ing to note that the generalized extreme region to obtain 
the generalized p developed by Kam-Wah Tsui and 
Samaradasa Weerahandi in 1989 is identical to the 
extreme area from the Behrens–Fisher t  ′ statistic.

The critical values for the two-sided alternative 
hypothesis at .05α =  for the example data are 2.776 
for the smaller degrees of freedom t  test, 2.767 for the 
Behrens–Fisher t  ′ test, 2.745 for Welch’s approximate t  
test, 2.715 for the Welch–Aspin t  test, and 2.145 for the 
Student’s t  test. The respective 95% fiducial and confi-
dence intervals are [ 0.427, 3.314]−  for the smaller 
degrees of freedom test, [ 0.421, 3.308]−  for the 
Behrens–Fisher t  ′ test, [ 0.406, 3.293]−  for Welch’s 
approximate t  test, [ 0.386, 3.273]−  for the Welch–
Aspin t  test, and [0.482, 2.405] for the Student’s t  test. 
The smaller degrees of freedom t  test yielded the most 
conservative result with the largest critical value and the 
widest confidence interval. The Student’s t  test yielded 
the smallest critical value and the shortest confidence 
interval. All other intervals lie between these two inter-
vals. The differences between many solutions to the 
Behrens–Fisher problem might be less than their differ-
ences from the Student’s t  test when sample sizes are 
greater than 10.

The popular statistical software programs SPSS 
and SAS produce results from Welch’s approximate t  
test and the Student’s t  test, as well as the respective 
confidence intervals. It is essential to have a table that 
contains the percentage points of the Behrens–Fisher 
distribution or computer programs that can calculate 
the tail areas and percentage values in order to use the 
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Behrens–Fisher t  ′ test or to obtain the fiducial inter-
val. Note that Welch’s approximate t  test may not be 
as effective as the Welch–Aspin t  test. Note also that 
the sequential testing of the population means on the 
basis of the result from either Levene’s test of the 
equal population variances from SPSS or the folded F  
test from SAS is not recommended in general because 
of the complicated nature of control of the Type I 
error (rejecting a true null hypothesis) in the sequen-
tial testing.

Seock-Ho Kim

See also Mean Comparisons; Student’s t Test; t Test, Independent 
Samples
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Belmont Report

The Belmont Report is an authoritative document gov-
erning the ethical conduct of research involving human 
subjects. While it was originally conceived for bio-
medical and behavioral research, its principles have 
been employed and expanded on in other disciplinary 

fields such as philosophy, law, political science,  
sociology, and computer science. This entry presents  
an overview of the Belmont Report’s history, its three 
principles and their applications, and the issues that 
have been raised since its inception.

History
The Belmont Report was preceded by a number of 
other ethical codes developed since 1945 in order to 
protect human subjects against abuse. The Nuremberg 
Code, published in 1947 after the Nuremberg War 
Crime Trials revealed Nazi doctors’ exploitative 
experiments with concentration camp prisoners, offers 
a set of guidelines to safeguard human subjects’ phys-
ical and mental safety during clinical trials. The guide-
lines laid out by the Nuremberg Code were further 
expanded by the World Medical Association with the 
1964 Declaration of Helsinki, focusing on physicians’ 
ethical conduct when combining research and clinical 
practice.

A series of disreputable biomedical studies were also 
being conducted in the United States during the same 
period, yet not until 1978 did the public outcry become 
so overwhelming as to warrant congressional action. In 
the 1950s, a controversial hepatitis study was con-
ducted among children with developmental disabilities 
attending the Willowbrook State School, deliberately 
infecting them with active hepatitis to examine the 
transmission of the disease. That same decade, pregnant 
women unknowingly participated in an experimental 
study of a new drug—thalidomide—to treat nausea, 
which was subsequently proven to cause birth defects. 
Other dubious biomedical studies followed suit, includ-
ing an investigation into the spread of cancer by inject-
ing live cancer cells into ailing elderly patients at the 
Jewish Chronic Disease Hospital in the 1960s and the 
study of contraceptive pills’ efficacy involving unaware 
and poverty-stricken women in San Antonio, TX, in  
the 1970s.

The most infamous of the series of unethical medical 
studies in the United States was the Tuskegee syphilis 
study, whereby African American male farmers with 
syphilis were observed, tested, and left untreated 
between 1932 and 1972 to understand the natural pro-
gression of a disease that was known to affect a wider 
population. The human subjects were promised free 
medical care while being subjected to placebo treat-
ments without their knowledge. Upon the revelation of 
the study’s methods, the U.S. Congress enacted the 
National Research Act (Pub. L. 93–348) in 1974, stan-
dardizing institutional review boards’ ethical oversight 
of studies with a research component involving human 
subjects. Additionally, it authorized the appointment of 
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the National Commission for the Protection of Human 
Subjects of Biomedical and Behavioral Research involv-
ing 11 members representing civil society and profes-
sionals from the fields of medicine, law, psychology, 
and ethics.

Following monthly public consultations over a 
period of 4 years, including intensive deliberations at 
the Belmont Conference Center in February 1976, the 
commission formally issued The Belmont Report: 
Ethical Principles and Guidelines for the Protection of 
Human Subjects of Research on September 30, 1978. It 
formally appeared in the Federal Register on April 18, 
1979. The document begins by making the distinction 
between medical practice and research. Whereas the 
former alludes to the application of widely accepted 
interventions with reasonable expectations of enhanc-
ing health and well-being, the latter is mainly geared 
toward hypothesis testing and the production of gener-
alizable knowledge. In situations where clinical practice 
involves an element that can be considered as research, 
such as when new techniques need to be assessed for 
safety and efficacy, the Belmont Report requires ethical 
review and approval. The remaining sections of the 
report discuss the principles for ethical research involv-
ing human subjects and their applications.

Core Principles
The 5,500-word Belmont Report identifies three core 
principles for the conduct of ethically sound research 
involving human participants: respect for persons, 
beneficence, and justice.

Respect for Persons

Respect for persons in the Belmont Report is essen-
tially framed as acknowledging the autonomy of 
human subjects. Under this principle, human subjects 
should be treated as autonomous agents capable of 
making self-directed choices when it comes to their 
participation in research. Consequently, when their 
capacity for self-determination is diminished due to 
immaturity, illness, mental or physical disability, or 
social disadvantage, additional measures should be 
taken for their protection.

The direct application of this principle involves secur-
ing informed consent. All relevant information regarding 
the study’s purposes, procedures, and associated benefits 
and risks must be disclosed to human subjects. Respect 
entails that subjects be allowed to freely ask questions 
and withdraw from the study without reprisal, and their 
full understanding of the conditions surrounding 
their  participation must be guaranteed by presenting 
information in a manner that is clear, organized, and 

undemanding. Consent must also be given voluntarily 
and not out of compliance, fear, or manipulation by 
offering inappropriate or disproportionate rewards. 
While autonomous decision-making must be assumed 
and granted to the fullest extent possible, this principle 
indicates that special measures may be warranted when 
subjects’ capacities for comprehension are restricted or 
impaired by immaturity, mental or physical afflictions, 
or language limitations. Such a situation justifies the 
involvement of authorized third parties to exercise dis-
cretion and act in the human subject’s best interest.

Beneficence

The Belmont Report’s principle of beneficence 
involves two main dimensions: not doing harm and 
maximizing possible benefits while minimizing possible 
harms. This principle invokes the conduct of a risk–
benefit analysis. This will allow researchers to make 
judgments on whether it is appropriate to renounce a 
potentially beneficial course of action when the harm it 
may generate outweighs its conceivable benefits. The 
nature and magnitude of risks and benefits will naturally 
differ when evaluated at the individual and social level 
in either the short term or the long term. For instance, 
study findings may benefit the wider society in the long 
term in the absence of direct advantages to the research 
subjects. In such situations, the Belmont Report suggests 
a systematic and rigorous examination of the nature, 
probability, and severity of harms and benefits arising 
from the study. To make such judgments as precise and 
accurate as possible, the analysis must include clear and 
explicit descriptions of the study’s implications on the 
subject’s psychological, physical, legal, social, and eco-
nomic well-being. Additionally, there must be a con-
scious and thorough effort to consider possible 
alternatives offering comparable benefits while generat-
ing the least likelihood and magnitude of risks.

Justice

The Belmont Report conceptualizes justice as the fair 
distribution of the risks of research across society. It 
dictates that the benefits generated by publicly funded 
research must be shared equally among society regard-
less of wealth or financial status and that the involve-
ment of subjects who are unable to benefit from the 
outcomes of research be avoided as much as possible.

As a matter of application, this principle manifests as 
fairness in the procedures and outcomes of selecting 
research subjects. Justice operates at two levels: individ-
ual and social. Individual justice requires researchers to 
act objectively when choosing subjects for high-risk 
research, avoiding social, racial, sexual, and cultural  
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biases. Consequently, this also implies the need for 
researchers to ensure that the recipients of beneficial 
studies are not limited to groups that are already privi-
leged. Social justice, on the other hand, avoids the sys-
tematic recruitment of vulnerable populations in 
risk-laden research. The involvement of specific groups 
such as racial minorities or the underprivileged must be 
based on the relevance of their demographic character-
istics to the problem or condition being studied—not 
due to their accessibility or likelihood of being coerced 
to participate. As such, the Belmont Report recom-
mends an order of preference when recruiting subjects 
for research purposes (such as considering adults before 
children) and keeping the involvement of vulnerable 
populations to a minimum, only involving them when 
the nature of the condition or treatment being examined 
so requires.

Issues and  
Contemporary Reinterpretations

The Belmont Report is a critical document that has 
revolutionized the conduct of research both within 
and beyond the medical sciences. Its enduring quality 
can be attributed to its clarity and succinctness, 
although several issues have been raised since its 
inception regarding its capacity to comprehensively 
address the dilemmas arising from human research. 
Some authors argue that the principles of respect for 
persons, beneficience, and justice can be applied more 
broadly than what was stipulated in the Belmont 
Report. For instance, respect for persons does not 
only involve securing informed consent prior to 
research implementation but also ensuring that the 
participants are treated with dignity and fairness in all 
phases of the study and throughout the duration of 
their participation.

The biomedical and behavioral focus of the Belmont 
Report also limits its scope outside these disciplines. 
This was acknowledged by the Belmont Report’s 
authors themselves in a footnote within the document 
and is a limitation that proves particularly salient in 
community-based research. Participatory methodolo-
gies, which are now widely employed in the health and 
social sciences, employ the term participants as 
opposed to the Belmont Report’s human subjects to 
more appropriately capture the nature of the research 
relationship.

One of Belmont Report’s more prominent criti-
cisms is the protective stance it espouses and its nega-
tive implications. Categorical declarations of 
vulnerability are argued to generate unintended harms 
by promoting paternalism, perpetuating stereotypes, 
and conflating vulnerability with a lack of autonomy. 

They are also viewed to lead to undue and unneces-
sary exclusion of those who would otherwise be inter-
ested in participating in research. Current debates on 
ethical research have evolved from protecting disen-
franchised individuals from exploitative biomedical 
experiments into avoiding subtle or hidden forms of 
oppression and systemic exclusion as well as enhanc-
ing the inclusion and participation of disadvantaged 
or marginalized populations. Discounting the partici-
pation of vulnerable groups, even when well-intended, 
can also lead to harmful deprivation of data and  
findings that could otherwise improve existing inter-
ventions and services.

While the Belmont Report reflects a necessary 
response to the social, cultural, and political climate of 
its time, recent developments have cast doubt on some 
of its premises in light of contemporary challenges. 
The processes of globalization and digitalization have 
brought forth a new set of ethical dilemmas and theo-
retical tools that challenge the concepts it laid out. The 
spread of feminist and non-Western bioethical per-
spectives have broadened the notions of harm and 
justice, revealing power hierarchies and various forms 
of bias (gender, ethnic, and cultural, among others) 
not addressed in the Belmont Report. These alterna-
tive paradigms have introduced additional dimensions 
to existing formulations of ethical and responsible 
research, including cultural sensitivity, respect for 
diversity, and epistemic justice. Contemporary ethi-
cists also juxtapose the Belmont Report’s individual-
ism against a collectivist position that considers 
research’s risks and benefits to relationships and com-
munal life.

The practice of clinical medicine is also changing in 
ways that challenge the report’s distinction between 
medical practice as standard treatment with a reason-
able expectation of improving health on the one hand 
and medical research as the systematic process of gener-
ating generalizable knowledge on the other. Increasingly, 
learning, data collection, and research are seen as essen-
tial processes of quality service delivery. Given that the 
Belmont Report stipulates ethical review and oversight 
for all research-related activity, the question arises 
whether this should be applied in an all-encompassing 
way or whether exceptions should be made for learning 
activities presenting minimal risks. Additionally, some 
authors have pointed out how nonmaleficence is 
invoked implicitly in the Belmont Report, arguing for a 
deliberate inclusion of this principle.

More recently, the emergence of internet and data 
technologies as a research tool and space has generated 
possibilities and concerns not anticipated by the Belmont 
Report. Digital platforms now allow consent to be sought 
and secured by ticking a box in an online form and 

Do n
ot c

opy
, po

st, 
or d

istr
ibu

te

Copyright ©2022 by SAGE Publications, Inc. 
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.



110 Beneficence

adding a digital signature. While convenient, this raises 
concerns regarding the extent and depth of the respon-
dent’s understanding of the conditions surrounding his or 
her participation. Digital settings are also particularly 
susceptible to data breach and misuse, giving rise to 
harmful outcomes such as reputational damage and pri-
vacy infringement that can further result in psychological 
or social distress. The intense connectivity enabled by 
online platforms and internet technologies has amassed 
huge swaths of data that can feed beneficial research, yet 
it has also led to concerns about surveillance and a lack 
of transparency as to how these data are accessed and 
used. For this, additional measures have been recom-
mended especially with regard to anonymization and the 
protection of participants’ personal information during 
data collection, archiving, and dissemination. Further 
operationalizing the Belmont Report in the context of 
digital research, The Menlo Report: Ethical Principles 
Guiding Information and Communication Technology 
Research was published in 2012, adding respect for law 
and public interest as a fourth principle to specifically 
tackle issues of transparency and accountability.

Notwithstanding these limitations, the suite of ethi-
cal guidelines and frameworks that branched out from 
the Belmont Report is a testament to its legacy in ethical 
decision-making. It remains to be seen how these prin-
ciples will continue to be applied and developed in the 
name of ethical and responsible research.

Icy F. Anabo, Iciar Elexpuru-Albizuri, and  
Lourdes Villardón-Gallego

 See also Beneficence; Declaration of Helsinki; Ethics in the 
Research Process; Informed Consent; Justice and Social 
Science Research; Nuremberg Code; Respect for Persons; 
Risk in Human Subjects Research
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Beneficence

This entry presents the principle of beneficence in research 
involving humans. The concept is most concrete as used 
in medical research, which is the focus of this entry, but 
the concept is also central to social science research ethics. 
Beneficence is usefully detailed in the ethical theory of 
American ethicists Tom L. Beauchamp and James  
F. Childress. Their theory has been dominant worldwide 
for 40 years and has continued to develop in the eight 
editions of their book Principles of Biomedical Ethics.

Protection of Human Subjects in 
Biomedical Research—the Belmont Report

Experimental research on human beings attracted notori-
ety during the 1946–1947 Doctors’ Trial in Nuremberg, 
Germany, on war crimes in concentration camps. The 
resulting Nuremberg Code (1947) influenced the Helsinki 
Declaration (1964), and together these documents offer a 
basis for the ethical obligations in biomedical research of 
free and informed consent, risk–benefit analysis, and 
review by independent committees (Briggle & Mitcham, 
2018, pp. 134–138).

In the United States, however, it was the Tuskegee 
syphilis study in Alabama from 1932 to 1974 that did 
most to promote public awareness of ethical perspectives 
in biomedical experiments on human subjects. In that 
study, poor African American men suffering from syphilis 
received free medical examinations and food in exchange 
for participation but were not informed that they were 
enrolled in an experiment or even that they had syphilis, 
and they were deprived of effective treatment when peni-
cillin became available in the 1940s (Briggle & Mitcham, 
2018, pp. 140–143). Their low socioeconomic status 
made them vulnerable to manipulation and exploitation. 
Ethical obligations regarding free and informed consent, 
not causing harm, and promoting welfare were not met.
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After public outrage over the Tuskegee syphilis study, 
the National Commission for the Protection of Human 
Subjects of Biomedical and Behavioral Research published 
the Belmont Report (1979), providing a general frame-
work of three basic ethical principles for biomedical 
research: respect for persons, beneficence, and justice 
(Beauchamp, 2010a, pp. 18–21). Beauchamp joined the 
employees of the commission in 1976 with the task to 
draft the report, expressing the views of the commission-
ers. The report presents a universal perspective on basic 
ethical principles (Beauchamp, 2010a, pp. 3, 6–9). Respect 
for persons relates to informed consent and means “that 
individuals should be treated as autonomous agents” and 
“that persons with diminished autonomy are entitled to 
protection” (National Commission for the Protection of 
Human Subjects of Biomedical and Behavioral Research, 
1979. Part B, 1). Beneficence is an obligation to “do not 
harm” and “maximize possible benefits and minimize pos-
sible harms” (National Commission for the Protection of 
Human Subjects of Biomedical and Behavioral Research, 
1979. Part B, 2, Part C, 2), which means it relates to risk–
benefit assessment (Beauchamp, 2010a, pp. 21–22). Justice 
is an obligation of fairness in distribution of the benefits 
and burdens of research (National Commission for the 
Protection of Human Subjects of Biomedical and 
Behavioral Research, 1979. Part B, 3, Part C, 3), relates to 
the selection of research subjects, and “requires special 
levels of protection for vulnerable and disadvantaged par-
ties” (Beauchamp, 2010a, p. 22).

The Belmont Report says that research involving 
human subjects is often justified by the principle of benef-
icence but states that considerations of informed consent, 
fairness in recruitment of research subjects, and risk 
assessment should set limits for social utility (National 
Commission for the Protection of Human Subjects of 
Biomedical and Behavioral Research, 1979. Part B, 2, Part 
C, 2), which means that the interests of research subjects 
outweigh those of the benefit to science and society. In his 
essay “Codes, Declarations, and Other Ethical Guidance 
for Human Subjects Research: The Belmont Report,” 
Beauchamp writes “it is doubtful that the question of how 
best to control utilitarian balancing was ever resolved by 
the National Commission” (2010a, pp. 25–26). 
Furthermore, he and Childress both argued that there 
were clear boundaries that the commission did not make 
between the principles of beneficence, nonmaleficence, 
and respect for autonomy. According to Beauchamp, 
many writers wrongly presume that the Belmont Report 
forms the foundation of his and Childress’s book Principles 
of Biomedical Ethics, first published in 1979. These two 
works were written at the same time and affected each 
other to the benefit of both (Beauchamp, 2010b, pp. 6–7). 
Beauchamp states that “Principles of Biomedical Ethics 

became the sole work expressing my deepest philosophical 
convictions about principles” (Beauchamp, 2010b, p. 7).

The Four Principles of Biomedical Ethics
Unlike the Belmont Report, Beauchamp and Childress 
treat the principle of nonmaleficence as a separate prin-
ciple not included in the principle of beneficence. They 
present a general moral framework of four principles for 
biomedical ethics: beneficence, nonmaleficence, justice, 
and respect for autonomy. As in the Belmont Report, these 
principles are not limited to the domain of biomedical 
ethics but are generally acknowledged as part of a com-
mon universal morality (Beauchamp & Childress, 2019, 
pp. 3–5). The four principles are equally important and 
presented as prima facie binding (Beauchamp & Childress, 
2019, pp. ix, 15). As Beauchamp and Childress (2019, 
p. 15) write, “A prima facie obligation must be fulfilled 
unless it conflicts with an equal or stronger obligation.”

When competing moral considerations conflict in 
biomedical practice, the principles are specified, weighted, 
and balanced depending on the particular context in 
which they are applied (Beauchamp & Childress, 2019, 
pp. 15–24). Respect for autonomy is an obligation to 
respect and support autonomous decisions. Insufficiently 
autonomous persons are protected by the principles of 
nonmaleficence, beneficence, and justice. Nonmaleficence 
is an obligation to avoid causing physical and mental 
harm. Beneficence is an obligation to promote the good, 
hinder and remove harm and pain, and balance benefits 
against risks and costs. Justice is an obligation of fairness 
in the distribution of benefits, risks, and costs (Beauchamp 
& Childress, 2019, pp. 13, 156–159).

The Principle of Beneficence
The Belmont Report and Beauchamp and Childress’s 
theory both stress that the utilitarian social beneficence 
of biomedical experimentation should be limited by 
considerations of informed consent, fairness in recruit-
ment of research subjects, and risk assessment. 
Beauchamp and Childress analyze two principles of 
beneficence: utility and positive beneficence (Beauchamp 
& Childress, 2019, p. 217).

Beauchamp and Childress’ principle of utility differs 
from the classical utilitarian principle of utility, which is 
an absolute principle. Instead, Beauchamp and Childress 
defend a principle of utility “as one among a number of 
equally important prima facie principles” (Beauchamp 
& Childress, 2019, p. 218). The principle of utility as a 
prima facie binding principle “can be applied to health 
policies through tools that analyze and assess benefits 
relative to costs and risks” (Beauchamp & Childress, 
2019, p. 243). These tools are commonly referred to as 
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112 Bernoulli Distribution

cost-effectiveness analysis and cost-benefit analysis 
(Beauchamp & Childress, 2019, p. 251).

Beauchamp and Childress state that morality requires 
that we take positive steps to contribute to people’s 
welfare (positive beneficence) and not merely abstain 
from harming them (nonmaleficence; Beauchamp & 
Childress, 2019, p. 217). They write, “In our view, conflat-
ing nonmaleficence and beneficence into a single principle 
obscures critical moral distinctions as well as different 
types of moral theory” (Beauchamp & Childress, 2019, 
p.  156). Positive beneficence requires preventing or 
removing evil or harm by doing or promoting good, 
whereas nonmaleficence only requires avoiding intention-
ally inflicting evil or harm (Beauchamp & Childress, 
2019, p. 157). The principle of beneficence therefore 
requires taking the positive step of performing risk–
benefit analysis on biomedical experiments, with the 
risk–benefit relationship viewed “in terms of a ratio 
between the probability and magnitude of an anticipated 
benefit and the probability and magnitude of an antici-
pated harm” (Beauchamp & Childress, 2019, p. 244).

Mette Ebbesen

See also Belmont Report; Declaration of Helsinki; Ethics in the 
Research Process
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Bernoulli Distribution

The Bernoulli distribution is a discrete probability dis-
tribution for a random variable that takes only two 
possible values, 0 and 1. Examples of events that lead to 

such a random variable include coin tossing (heads or 
tails), answers to a test item (correct or incorrect), out-
comes of a medical treatment (recovered or not recov-
ered), and so on. Although it is the simplest probability 
distribution, it provides a basis for other important 
probability distributions, such as the binomial distribu-
tion and the negative binomial distribution.

Definition and Properties
An experiment of chance whose result has only two pos-
sibilities is called a Bernoulli trial (or Bernoulli experi-
ment). Let p denote the probability of success in a 
Bernoulli trial p(0 1)< < . Then, a random variable X that 
assigns value 1 for a success with probability p and value 
0 for a failure with probability p1−  is called a Bernoulli 
random variable, and it follows the Bernoulli distribution 
with probability p, which is denoted by X p~ Ber( ). The 
probability mass function of Ber(p) is given by

P X x p p x( ) (1 ) , 0,1.x x1= = − =−

The mean of X  is p, and the variance is p p(1 )− . Figure 
1 shows the probability mass function of Ber(.7). The 
horizontal axis represents values of X, and the vertical 
axis represents the corresponding probabilities. Thus, 
the height is .7 at X 1= , and .3 for X 0= . The mean of 
Ber(0.7) is 0.7, and the variance is .21.

Suppose that a Bernoulli trial with probability p is 
independently repeated for n times, and we obtain a 
random sample X X X, , , .n1 2 …  Then, the number of 
successes Y X X Xn1 2= + + +  follows the binomial 
distribution with probability p and the number of trials 
n, which is denoted by Y n p~ Bin( , ). Stated in the oppo-
site way, the Bernoulli distribution is a special case of the 
binomial distribution in which the number of trials n is 
1. The probability mass function of Bin(n,p) is given by

P Y y
n

y n y
p p

y n

( )
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!( )!
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Figure 1 � Probability Mass Function of the Bernoulli 
Distribution With p = .7
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113Bernoulli Distribution

where n! is the factorial of n, which equals the prod-
uct n n 1 2 1)( − ⋅ . The mean of Y is np, and the vari-
ance is np(1 − p). Figure 2 shows the probability mass 
function of Bin(10, .7), which is obtained as the distribu-
tion of the sum of 10 independent random variables, 
each of which follows Ber(.7). The height of each bar 
represents the probability that Y takes the corresponding 
value; for example, the probability of Y = 7 is about .27. 
The mean is 7 and the variance is 2.1. In general, the 
distribution is skewed to the right when p < .5, skewed 
to the left when p > .5, and symmetric when p = .5.

Relationship to Other  
Probability Distributions

The Bernoulli distribution is a basis for many probabil-
ity distributions, as well as for the binomial distribution. 
The number of failures before observing a success t 
times in independent Bernoulli trials follows the nega-
tive binomial distribution with probability p and the 
number of successes t. The geometric distribution is a 
special case of the negative binomial distribution in 
which the number of failures is counted before observ-
ing the first success (i.e., t = 1).

Assume a finite Bernoulli population in which indi-
vidual members are denoted by either 0 or 1. If sam-
pling is done by randomly selecting one member at each 
time with replacement (i.e., each selected member is 
returned to the population before the next selection is 
made), then the resulting sequence constitutes indepen-
dent Bernoulli trials, and the number of successes fol-
lows the binomial distribution. If sampling is done at 
random but without replacement, then each of the 
individual selections is still a Bernoulli trial, but they are 
no longer independent of each other. In this case, the 
number of successes follows the hypergeometric distri-
bution, which is specified by the population probability 
p, the number of trials n, and the population size m.

Various approximations are available for the bino-
mial distribution. These approximations are extremely 
useful when n is large because in that case the factorials 
in the binomial probability mass function become pro-
hibitively large and make probability calculations 
tedious. For example, by the central limit theorem, 
Z Y np np p( ) / (1 )= − −  approximately follows the 
standard normal distribution N(0, 1) when Y ~ Bin(n,p). 
The constant 0.5 is often added to the denominator to 
improve the approximation (called continuity correc-
tion). As a rule of thumb, the normal approximation 
works well when either (a) np(1 − p) > 9 or (b) np > 9 
for 0 < p ≤ .5. The Poisson distribution with parameter 
np also well approximates Bin(n,p) when n is large and 
p is small. The Poisson approximation works well if 
n0.31p > .47; for example, p > .19, .14, and .11 when  

n = 20, 50, and 100, respectively. If n0.31p ≥ .47, then the 
normal distribution gives better approximations.

Estimation
Inferences regarding the population proportion p can be 
made from a random sample X1, X2, ..., Xn from Ber(p), 
whose sum follows Bin(n,p). The population propor-
tion p can be estimated by the sample mean (or the 
sample proportion) p X X nˆ /ii

n

1∑= =
=

, which is an 
unbiased estimator of p.

Interval estimation is usually made by the normal 
approximation. If n is large enough (e.g., n > 100), a 
100(1 − α)% confidence interval is given by

p
p p

z
n

ˆ
ˆ (1 ˆ)

,/2± −
α

where p̂  is the sample proportion and zα/2 is the 
value of the standard normal variable that gives the 
probability α/2 in the right tail. For smaller ns, the qua-
dratic approximation gives better results:

1
1+ zα /2 / n p̂ + zα /2

2

2n
± zα /2

p̂(1− p̂)
n

+ zα /2
2

4n2

⎛
⎝⎜

⎞
⎠⎟
.

The quadratic approximation works well if .1 < p < .9 
and n is as large as 25.

There are often cases in which one is interested in 
comparing two population proportions. Suppose that 
we obtained sample proportions p̂1 and p̂2 with sample 
sizes n1 and n2, respectively. Then, the difference 
between the population proportions is estimated by the 
difference between the sample proportions p pˆ ˆ1 2− . Its 
standard error is given by

p p
p p p p

SE
n n

( ˆ ˆ )
ˆ ˆ ) ˆ ˆ )

1 2
1 1

1

2 2

2

− = (1− + (1−

Figure 2 � Probability Mass Function of the Binomial 
Distribution With p = 7 and n = 10
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114 Bernoulli Distribution

from which one can construct a 100(1 − α) confidence 
interval as

p p p pZ SE( ˆ ˆ ) ( ˆ ˆ ).1 2 /2 1 2− ± −α

Applications
Logistic Regression

Logistic regression is a regression model about the 
Bernoulli probability and used when the dependent 
variable takes only two possible values. Logistic regres-
sion models are formulated as generalized linear models 
in which the canonical link function is the logit link and 
the Bernoulli distribution is assumed for the dependent 
variable.

In the standard case in which there are K linear pre-
dictors x1, x2, ..., xK and the dependent variable Y, which 
represents a Bernoulli random variable (i.e., Y = 0, 1), the 
logistic regression model is expressed by the equation

b b x
p x

p x
b xln

1
     ,K K0 1 1

)
)

(
(−

= + + +

where ln is the natural logarithm, p(x) is the probability 
of Y = 1 (or the expected value of Y) given x1, x2, ..., xK, 
and b0, b1, ..., bK are the regression coefficients. The left-
hand side of the above equation is called the logit, or 
the log-odds ratio, of proportion p. The logit is sym-
metric about zero; it is positive (negative) if p > .5 (p < 
.5), and zero if p = .5. It approaches positive (negative) 
infinity as p approaches 1 (0). Another representation 
equivalent to the above is





p x
b b x

b b x
( )

b x
b x

=
exp( + )

1 exp( )
.K K

K K

0 1 1

0 1 1

+ +
+ + + +

The right-hand side is called the logistic regression 
function. In either case, the model states that the distri-
bution of Y given predictors x1, x2, ..., xK is Ber[p(x)], 
where the logit of p(x) is determined by a linear combi-
nation of predictors x1, x2, ..., xK. The regression coef-
ficients are estimated from N sets of observed data 
(Yi, xi1, xi2, ..., xiK), i = 1, 2, ..., N.

The Binomial Error Model

The binomial error model is one of the measurement 
models in the classical test theory. Suppose that there 
are n test items, each of which is scored either 1 (cor-
rect) or 0 (incorrect). The binomial error model assumes 
that the distribution of person i’s total score Xi given his 
or her “proportion-corrected” true score ζi(0 < ζi < 1) is 
Bin(n, ζi):

P X x i i i

n
x n x

x n

( | )
!

!( )!
(1 ) ,

0,1,..., .

x
i

n xζ ζ ζ= =
−

−

=

−

This model builds on a simple assumption that for 
all items, the probability of a correct response for a 
person with true score ζi is equal to ζi, but the error 
variance, nζi (1 − ζi), varies as a function of ζi unlike the 
standard classical test model.

The observed total score Xi = xi serves as an esti-
mate of nζi, and the associated error variance can also 
be estimated as x n nxˆ / 1i i

2
iσ )( )(= − − . Averaging this 

error variance over N persons gives the overall error 
variance x n x s nˆ / 12 2σ ) )( (= − −



 




− , where x  is the 
sample mean of observed total scores over the 
N persons and s2 is the sample variance. It turns out 
that by substituting ˆ 2σ  and s2 in the definition of reli-
ability, the reliability of the n-item test equals the 
Kuder–Richardson formula 21 under the binomial 
error model.

History
The name Bernoulli was taken from Jakob Bernoulli, 
a Swiss mathematician in the 17th century. He made 
many contributions to mathematics, especially in cal-
culus and probability theory. He is the first person 
who expressed the idea of the law of large numbers, 
along with its mathematical proof (thus, the law is 
also called Bernoulli’s theorem). Bernoulli derived the 
binomial distribution in the case in which the proba-
bility p is a rational number, and his result was pub-
lished in 1713. Later in the 18th century, Thomas 
Bayes generalized Bernoulli’s binomial distribution by 
removing its rational restriction on p in his formula-
tion of a statistical theory that is now known as 
Bayesian statistics.

Kentaro Kato and William M. Bart

See also Logistic Regression; Normal Distribution; Odds Ratio; 
Poisson Distribution; Probability, Laws of
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Beta

Beta ( )β  refers to the probability of Type II error in a 
statistical hypothesis test. Frequently, the power of a 
test, equal to 1 β−  rather than β  itself, is referred to as 
a measure of quality for a hypothesis test. This entry 
discusses the role of β  in hypothesis testing and its 
relationship with significance ( )α .

Hypothesis Testing and Beta
Hypothesis testing is a very important part of statistical 
inference: the formal process of deciding whether a par-
ticular contention (called the null hypothesis) is sup-
ported by the data, or whether a second contention 
(called the alternative hypothesis) is preferred. In this 
context, one can represent the situation in a simple 2 2×  
decision table in which the columns reflect the true 
(unobservable) situation and the rows reflect the infer-
ence made based on a set of data:

Decision

Null 
Hypothesis Is 
True/Preferred

Alternative 
Hypothesis Is 
True/Preferred

Fail to reject 
null hypothesis

Correct 
decision

Type II error

Reject null 
hypothesis in 
favor of 
alternative 
hypothesis

Type I error Correct 
decision

The language used in the decision table is subtle but 
deliberate. Although people commonly speak of accept-
ing hypotheses, under the maxim that scientific theories 
are not so much proven as supported by evidence, we 
might more properly speak of failing to reject a hypoth-
esis rather than of accepting it. Note also that it may be 
the case that neither the null nor the alternative hypoth-
esis is, in fact, true, but generally we might think of one 
as preferable over the other on the basis of evidence. 
Semantics notwithstanding, the decision table makes 
clear that there exist two distinct possible types of error: 
that in which the null hypothesis is rejected when it is, 
in fact, true; and that in which the null hypothesis is not 
rejected when it is, in fact, false. A simple example that 
helps one in thinking about the difference between these 
two types of error is a criminal trial in the U.S. judicial 
system. In that system, there is an initial presumption of 
innocence (null hypothesis), and evidence is presented in 
order to reach a decision to convict (reject the null 

hypothesis) or acquit (fail to reject the null). In this con-
text, a Type I error is committed if an innocent person 
is convicted, while a Type II error is committed if a 
guilty person is acquitted. Clearly, both types of error 
cannot occur in a single trial; after all, a person cannot 
be both innocent and guilty of a particular crime. 
However, a priori we can conceive of the probability of 
each type of error, with the probability of a Type I error 
called the significance level of a test and denoted by α , 
and the probability of a Type II error denoted by β , 
with 1 β− , the probability of not committing a Type II 
error, called the power of the test.

Relationship With Significance
Just as it is impossible to realize both types of error in a 
single test, it is also not possible to minimize both α  
and β  in a particular experiment with fixed sample size. 
In this sense, in a given experiment, there is a trade-off 
between α  and β , meaning that both cannot be speci-
fied or guaranteed to be low. For example, a simple way 
to guarantee no chance of a Type I error would be to 
never reject the null hypothesis regardless of the data, 
but such a strategy would typically result in a very  
large β . Hence, it is common practice in statistical 
inference to fix the significance level at some nominal, 
low value (usually .05) and to compute and report β  in 
communicating the result of the test. Note the implied 
asymmetry between the two types of error possible 
from a hypothesis test: α  is held at some prespecified 
value, while β  is not constrained. The preference for 
controlling α  rather than β  also has an analogue in the 
judicial example above, in which the concept of 
“beyond reasonable doubt” captures the idea of setting 
α  at some low level, and where there is an oft-stated 
preference for setting a guilty person free over convict-
ing an innocent person, thereby preferring to commit a 
Type II error over a Type I error. The common choice of 
.05 for α  most likely stems from Sir Ronald Fisher’s 
1926 statement that he “prefers to set a low standard of 
significance at the 5% point, and ignore entirely all 
results that fail to reach that level.” He went on to say 
that “a scientific fact should be regarded as experimen-
tally established only if a properly designed experiment 
rarely fails to give this level of significance” (Fisher, 
1926, p. 504).

Although it is not generally possible to control both 
α  and β  for a test with a fixed sample size, it is typi-
cally possible to decrease β  while holding α  constant if 
the sample size is increased. As a result, a simple way to 
conduct tests with high power (low β ) is to select a 
sample size sufficiently large to guarantee a specified 
power for the test. Of course, such a sample size may be 
prohibitively large or even impossible, depending on the 
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116 Beta Distribution

nature and cost of the experiment. From a research 
design perspective, sample size is the most critical aspect 
of ensuring that a test has sufficient power, and a priori 
sample size calculations designed to produce a specified 
power level are common when designing an experiment 
or survey. For example, if one wished to test the null 
hypothesis that a mean μ was equal to µ0  versus the 
alternative that μ was equal to µ1> µ0 , the sample size 
required to ensure a Type II error of β  if .05α =  is 

σ β μ μΦΦ= − −−n { (1.645 ( )) / ( )}1
1 0

2 , where ΦΦ  is the 
standard normal cumulative distribution function and 
σ  is the underlying standard deviation, an estimate of 
which (usually the sample standard deviation) is used to 
compute the required sample size.

The value of β  for a test is also dependent on the effect 
size—that is, the measure of how different the null and 
alternative hypotheses are, or the size of the effect that the 
test is designed to detect. The larger the effect size, the 
lower β  will typically be at fixed sample size, or, in other 
words, the more easily the effect will be detected.

Michael A. Martin and Steven Roberts

See also Hypothesis; Power; p Value; Type I Error; Type II Error
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Beta Distribution

The beta distribution describes a probability distribu-
tion for a continuous random variable, say, X, that has 
the property 0 < X < 1. Thus, this distribution can be 
used for modeling proportions, percentages, and other 
doubly bounded continuous random variables that can 
be linearly transformed to the (0,1) interval.

Modeling doubly bounded variables requires a dis-
tribution that respects the variable’s bounds and is able 
to deal with the fact that central tendency and disper-
sion in such variables are not independent of each other. 
Moreover, the distribution shapes should include 
extreme skew and even bathtub shapes. The beta distri-
bution has only two parameters, but it is capable of 
modeling a considerable variety of distribution shapes. 
Its flexibility and straightforward interpretability have 

made the beta distribution the most widely used distri-
bution for modeling variables in (0,1).

This entry begins with definitions of the beta distri-
bution’s density and cumulative density functions, and a 
brief overview of its genesis and its connections with 
other well-known probability distributions. Properties 
of the beta distribution are then described, with an 
emphasis on its strengths and limitations for modeling 
doubly bounded variables. Thereafter, methods of 
parameter estimation are discussed, including model 
diagnostics such as residuals and influence statistics. 
The entry concludes with a brief overview of multivari-
ate distributions whose marginals are beta distributions.

Properties of the Beta Distribution
This section introduces the properties of the beta distri-
bution, including an alternative parameterization that is 
used in beta regression models. It also describes relevant 
relationships between the beta distribution and other 
distributions.

Distribution Function

The probability density function (PDF) of the beta 
(α, β) distribution is

	
f x x x( , , )

( )
( ) ( )

(1 ) ,1 1α β α β
α β

= Γ +
Γ Γ

−α β− −

�
(1)

where 0 < x < 1, α > 0, β > 0, and Γ denotes the 
gamma function. Equation 1 implies that a beta distri-
bution of 1 − X mirror images the distribution of X, 
that is, f x f x(1 , , ) ( , , )α β β α− = .

The mean of a beta(α, β) distribution is

	 μ α α β= +( ).� (2)

The variance of a beta distribution is

σ 2 = αβ α + β( )2⎡⎣ ⎤⎦ α + β +1( ) = µ 1− µ( ) α + β +1( ),  (3)

which suggests a popular alternative parameterization 
of the beta distribution, namely a mean, μ, and a preci-
sion, φ = α + β. From Equation 3, we can see that φ is in 
the denominator of the variance and so larger φ implies 
lower σ2. This parameterization is the one most often 
used in generalized linear models (GLMs) for beta-
distributed dependent variables.

The beta(α, β) distribution can assume a wide variety 
of shapes. When it has a mode or antimode, this occurs 
at x ( 1) ( 2)α α β= − + − . When α < 1 and β < 1, it has a 
U-shape with modes at 0 and 1 and an antimode. When 
α = 1 and β = 1, it is flat (the uniform distribution). 
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When (α − 1)(β − 1) < 0, the distribution is  
J- or  reverse-J-shaped with no mode or antimode.  
When α > 1 and β > 1, it has a unimodal shape; and if 
α = β, it is symmetric.

The variance, σ2, of a beta(α, β) variable is less than 
1/4 for any α and β. To see this, recall that in Equation 
3, the largest possible value of μ(1 − μ) is 1/4 (when μ 
= 1/2), and the denominator in Equation 3 must be >1. 
The variance has additional constraints. If α > 1 and 
β > 1, then σ2 < 1/12; and if α < 1 and β < 1, then 1/12 
< σ2 < 1/4.

Relations With Other Distributions

While there is no general agreement about the pro-
cesses generating continuous random variables in (0,1), 
the beta distribution has direct links to other kinds of 
random variables whose geneses have widely agreed-on 
accounts. Two of these that are relevant to the human 
sciences are as follows:

(1) � If Y1 and Y2 are gamma-distributed random 
variables with PDFs g1(α, δ) and g2(β, δ), for δ > 0, 
then X = Y1/(Y1 + Y2) has a beta(α, β) distribution.

(2) � If W1 and W2 are χ2-distributed random variables 
with PDFs q1(γ) and q2(η), for γ > 0 and η > 0, 
then X = W1/(W1 + W2) has a beta(γ/2, η/2) 
distribution. If one or both of W1 and W2 are 
noncentral χ2 variables, then X follows a 
noncentral beta distribution whose parameters 
include the noncentrality parameter(s).

Several other relationships between the beta and 
other distributions also are relevant for applications in 
the human sciences:

(1) � If X has a beta(1, β) distribution, then it has a 
Kumaraswamy(1, β) distribution; and if X has a 
beta(α, 1) distribution, then it has a 
Kumaraswamy(α, 1) distribution. The 
Kumaraswamy distribution often is applied to 
modeling quantiles of X.

(2) � If X has a beta(α, β) distribution, then α X/(β(1 − X)) 
has a F(2α, 2β) distribution.

(3) � If X has a beta(α, 1) distribution, then −ln(X) has an 
exponential(α) distribution. There also is an 
extensive literature on X = ln(Y) when X has a 
beta(α, β) distribution.

Parameter Estimation and Applications
This section begins by describing methods for estimat-
ing the parameters of the beta distribution and exam-
ples of its application. It then moves on to considerations 

about estimation bias, model checking, and limitations 
of the beta distribution.

Parameter Estimation

The beta distribution’s parameters may be esti-
mated by method of moments or by maximum likeli-
hood techniques. The latter is favored for GLMs with 
covariates predicting either or both of the parameters. 
Several authors such as Paolino (2001), Ferrari and 
Cribari-Neto (2004), and Smithson and Verkuilen 
(2006) present beta GLMs using the mean-precision 
parameterization described in Equations 2 and 3. 
Taking into account that the precision is negatively 
associated with dispersion, the beta GLM is a location–
dispersion model in the sense of Smyth (1989). There 
are two submodels, typically using the following link 
functions:

	





μ μ β

φ δ

( )( )
( )

− =

=

x

w

log 1

log
,

i i i

i i
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where x and w are vectors of covariates and β and δ 
are vectors of coefficients. The two sets of covariates 
may or may not overlap. Other link functions could be 
used (e.g., the cauchit or probit for the mean), but the 
logit and log link functions are the ones implemented in 
available software at the time this is written.

Applications

Early use of the beta distribution was primarily 
either as a means to form conjugate priors for bino-
mial random variables or for theoretical purposes, 
such as its relationship with the F distribution. Only 
since 1993 has it been used for statistical modeling, as 
in GLMs.

Doubly bounded random variables occur through-
out psychology and cognate areas such as political 
science, economics, and biology. The most common-
place examples in psychology include proportions 
and percentages, such as probability judgments, the 
proportion of the brain’s volume occupied by a spe-
cific part of the brain, and the proportion of a period 
of time spent on an activity. Examples from econom-
ics include rates such as fractional repayments on 
debts, market shares, and capital structure. Many 
psychological scales are doubly bounded, and in some 
applications, it is sensible to treat the bounds as true 
scores (rather than as censored scores). Examples of 
this kind include analyses of Likert-type scale data 
and some kinds of summative scales (e.g., a quality of 
life index).
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Model Checking and Extensions

Maximum likelihood estimation seems to work well 
for GLMs using the beta distribution, despite the fact 
that standard GLM regularity conditions do not apply to 
the beta distribution because it is not a member of the 
exponential family. There is some evidence that this may 
also hold for random-effects as well as fixed-effects 
models. Daniel Zimprich (2010) fitted a mixed-effects 
beta GLM, and Jay Verkuilen and Michael Smithson 
(2012) examined such models in some depth, along with 
Bayesian Markov chain Monte Carlo estimation 
approaches. Likewise, Yvonnick Nöel and Bruno Dauvier 
(2007) developed item-response models for doubly 
bounded continuous scale items using the beta distribu-
tion, which Nöel (2014) extended to unfolding models.

That said, there is some evidence of estimation bias, 
especially in the precision parameter submodel when 
sample sizes are small. Bias correction methods sug-
gested by Ioannis Kosmidis and David Firth (2010) 
have been implemented in some software packages for 
beta GLMs such as the betareg package in R (Grün, 
Kosmidis, & Zeileis, 2012).

Model checking in beta GLMs has proved somewhat 
less straightforward, although dfbetas as influence sta-
tistics seem to work reasonably well and conventional 
residuals such as the Pearson also can be helpful. 
Espinheira, Ferrari, and Cribari-Neto (2008a, 2008b) 
discuss issues regarding the uses of influence statistics 
and residuals for model checking in beta GLMs. At the 
time of this writing, there is no agreed-on residual for 
beta GLMs, although several alternatives have been 
investigated.

Flexible though it is, the beta distribution is limited 
in its ability to capture some kinds of distribution 
shapes such as heavy-tailed or bimodal distributions. 
Some attempts have been made to extend beta GLMs 
for greater flexibility. Most of these have focused on 
mixture distribution models. Smithson and Segale 
(2009) and Smithson, Merkle, and Verkuilen (2011) 
employed mixture models for analyzing experimental 
data where they could assume that for at least one com-
ponent distribution, the location parameter is known a 
priori. More generally, Hahn (2008) introduced the beta 
rectangular distribution, a mixture of a uniform and a 
beta distribution; and Migliorati, Di Brisco, and Ongaro 
(2018) presented a mixture of two beta distributions 
with arbitrary means but common variance. These mix-
ture distributions yield identifiable GLMs with bounded 
likelihoods that have a greater variety of density shapes 
than the beta, especially in tail behavior and bimodality.

A major limitation of the beta distribution in appli-
cations to real data is the fact that its density is not 
defined at 0 or at 1. In applications where the data 
contain 0s and 1s, this limitation has been problematic. 

One solution is a so-called 0-1-inflated model (Ospina 
& Ferrari, 2012). Technically, this is a hurdle model, a 
mixture distribution with degenerate probability masses 
at 0 and 1 and the beta distribution for modeling data 
in the (0,1) interval.

Multivariate Extensions
There are two types of multidimensional extension of 
the beta distribution (i.e., multivariate distributions 
with beta marginals): compositional, where the vari-
ables must sum to 1 across dimensions, and noncompo-
sitional. The classic compositional distribution with 
beta marginals is the Dirichlet:
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The marginal PDFs for the Dirichlet distribution are 

beta , ,k k0η η η )( −  where k
k

K

0
1

∑η η=
=

. Dirichlet regression 

models have been proposed and implemented in 
software.

Noncompositional multivariate extensions of the 
beta distribution have been provided in two forms. One 
is the standard multilevel (or mixed) model approach, 
as described by Verkuilen and Smithson (2012). The 
other is to use copulas to model the dependency struc-
ture separately from the marginal PDFs. Copulas are 
multivariate cumulative distribution functions with 
uniform marginal distributions, so a copula model often 
is estimated in two stages. The marginal PDFs are mod-
eled and their parameter estimates are fed to their 
respective quantile functions, whose output then yields 
a multivariate distribution with uniform marginals. A 
copula model then is estimated using this multivariate 
distribution as input.

Michael Smithson

See also Distribution; Logistic Regression; Loglinear Models; 
Normal Distribution
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See Single-Case Research Design; Within-
Subjects Design

Bias

Bias is systematic error that occurs in the research 
enterprise. All research includes some forms of bias, 
and investigators are responsible for recognizing such 
potential when sharing their findings. Naming how dif-
ferent types of bias may or may not affect the quality 
of research conclusions is a central feature of the vali-
dation process. Consider, for example, what happens 
when comparing the behaviors of people who are clas-
sified into different groups and studied over time. If the 
groups are unequal at the beginning of a study, any 
subsequent variance between the groups cannot be 
explained using only the new research evidence. 
Uncontrolled and unnamed biases may be the cause of 
any differences between groups or changes that might 
occur over time. To minimize distortion in any research, 
it is incumbent on all investigators to define and 
explore the qualities and influence of bias.

When bias is not considered in the interpretation 
process, the credibility of conclusions is called into 
question. Thus, investigators within and across disci-
plines have collaborated to name the most common 
forms of biases they encounter. Studies of bias can be 
classified into one of three nested categories, each of 
which is explored by considering particular disciplinary 
assumptions and norms. Bias can be the result of distor-
tions in theoretical logic, the design of a study, and/or 
the measurement and evaluation of variables.

Theoretical Bias
Bias in the theoretical logic of a research program or 
study involves flaws in critical thinking and the inter-
pretation of evidence. This type of bias is commonly 
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detected by reviewing existing literature and looking for 
systematic flaws in the explicit and implicit assumptions 
generated as part of the research process. Advocates of 
a particular theory commonly evaluate the qualities of 
the arguments generated and the evidence used to sup-
port those arguments. Across theories, it is also possible 
to identify common argument forms and fallacies in 
how premises are generated and tested.

Generally speaking, arguments can take valid and 
invalid forms. Philosophers of science endeavor to distin-
guish between these types of arguments when naming 
bias. Pennock (2019), for example, described how the 
quest for truth simultaneously guides curiosity and gen-
erates moral norms that investigators are bound to imag-
ine when conducting research. Vaughn (2019) named 
some of the common fallacies that are found in research 
and described valid and invalid argument forms.

Valid research, in Vaughn’s model, systematically 
tests whether antecedent assumptions can be affirmed, 
whether consequences are explored well enough to dis-
prove them should they be untrue, and whether hypo-
thetical syllogisms comprised of two or more premises 
can be verified or refuted. Invalid research instigates bias 
when consequences are assumed to support an initial, 
unsubstantiated premise. Likewise, bias would be likely 
when consequences are assumed to be true even though 
initial antecedents are not supported. Starting a study 
with unequal groups, for example, could yield either of 
these two forms of argumentative bias if investigators 
did not find a way to control for such inequalities.

A second form of theoretical bias is apparent when 
the content of operating premises or assumptions is 
laden with fallacies. Fallacies in critical thinking are 
easy to overlook when investigators become too wed-
ded to a particular set of beliefs or premises. Some fal-
lacies are grounded in irrelevant premises (Vaughn, 
2019). For example, appeals to ignorance about a topic 
or to tradition introduce bias in any truth claims 
because they are grounded in a lack of evidence. 
Likewise, raising irrelevant issues or distorting, weaken-
ing, or oversimplifying a theoretical premise serve as 
distractions because supporting evidence is unavailable.

Other fallacies are grounded in unacceptable prem-
ises. Creating a false dilemma or using the conclusion of 
an argument as a premise are two ways in which inves-
tigators can add theoretical inaccuracies into a quest for 
truth. Similarly, slippery slope claims about undesirable 
consequences or hasty generalizations using an inade-
quate sample to support claims about an entire group 
are common forms of theoretical bias. Taken as a 
whole, these forms of bias are sometimes called experi-
menter expectancy effects or generalizability threats. 
Biases related to the era in which some studies are con-
ducted and/or to changes that may not be attributable 

to the research are additional threats to theoretical 
validity, so much so that entire disciplines have been 
formulated to better understand the consequences of 
these biases.

Bias in Research Design
Research designs, the relations between variables under 
investigation, can be biased to such an extent that they 
cannot yield valid results even when theoretical claims 
are sound. Two classic explorations of how to address 
biases in experimental and quasi-experimental research 
design illustrate how investigators control distortion 
(Campbell & Stanley, 1963; Cook & Campbell, 1979). 
Since then, there has been a proliferation of studies on 
the biases associated with a broad range of research 
designs. Naming and controlling for internal and exter-
nal biases that potentially distort research evidence 
strengthens the truth value of conclusions. Biases in 
research design, therefore, are commonly depicted as 
threats to internal and external validity.

Some of the most common sources of bias in research 
design proliferate from misunderstandings about the 
concept of randomization. Randomization, the reliance 
on chance-driven procedures when making decisions, is 
often used as a practical solution to bias that stems from 
uncontrollable error. In principle, when simple random 
sampling is repeated across multiple implementations of 
the same biased procedures, the repetition will result in 
a normal distribution of uncontrollable error. This pro-
cedure controls for bias when the same study is repeated 
often enough for normal distributions to emerge in the 
evidence. Yet, few studies are actually replicated often 
enough for simple random sampling to eliminate 
uncontrollable error from a research design.

Despite its usefulness in some situations, randomiza-
tion often results in unequal groups when used in isola-
tion, so much so that a number of design biases may be 
inferred. External to a study, for example, the partici-
pants selected for inclusion in one sample may not fully 
represent the distribution of members in the targeted 
population: Subsets of a population may be excluded or 
oversampled when participants are randomly selected. 
Names such as selection–treatment interaction as well 
as diffusion, compensatory equalization, or compensa-
tory rivalry of treatments have been used to depict some 
of these external biases.

Internal to a study, a second source of bias is likely 
when the members of any sample are randomly assigned 
to one group or another: Subsets of the sample may be 
missing from one group and overrepresented in another. 
When left uncontrolled, these decisions results in expo-
nential forms of error that can yield biased conclusions. 
Names such as selection–maturation interaction, 
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resentful demoralization, and experimental mortality 
have been used to depict some of these internal biases.

Investigators address both random selection and ran-
dom assignment biases by identifying those forms of 
distortion that might undermine their theoretical claims 
and adding controls for such distortion into their 
research designs. Studies of bias in research design differ 
in the extent to which they focus on interventions or 
descriptive depictions of the concepts and constructs and 
the settings in which such observations occur (Larzelere, 
Kuhn, & Johnson, 2004; Rosenthal, 2002). Ideally, 
choices for addressing biases in research design become 
progressively more sophisticated as solutions to research 
problems become more truthful, and as truthful premises 
are accurately distinguished from false premises.

Measurement and Evaluation Bias
A third category of bias focuses on the use of data to 
answer research questions. First, the instrumentation 
used to track, measure, and interpret key concepts, con-
structs, or variables includes bias. Second, the methods 
used to aggregate data, compare variables, and answer 
research questions include sources of bias that warrant 
consideration.

The detection of measurement and evaluation biases 
hinge on how a research program balances questions of 
objectivity, individuality, and solidarity when making 
decisions. Criteria for objectivity lead investigators to 
rely on standardized tools that will yield predictable out-
comes on repeated use, representing bias as any deviation 
from such standards. Criteria for individuality lead inves-
tigators to look for the relative uniqueness of each mea-
surement encounter, expressing bias as distortion in the 
description of such uniqueness. Criteria for solidarity 
lead investigators to look for commonalities across mea-
surement opportunities, depicting bias as inaccuracies in 
how such measurements are recorded and aggregated.

Investigators who endeavor to generate strong pre-
dictions or control outcomes place the strongest empha-
sis on objectivity when they construct measurement 
plans. They tend to rely on random sampling theory and 
address its concomitant forms of bias when determining 
what to measure and how to measure the ideas under 
investigation. Psychometric measurement approaches, 
for example, depend heavily on probability theory and 
randomization, drawing comparisons between hypo-
thetical true scores and biased observed scores. In such 
work, bias is defined as a combination of known error 
and unknown error. Biases that are salient in individuals’ 
reports of their own and others’ experience is perhaps 
the most frequently studied form of psychometric bias.

Developmental measurement and its corresponding 
bias account for change as it emerges in the structure and 

function of what is to be measured and/or in how people 
evolve over time. Individuality and solidarity are some-
times emphasized more than objectivity, but an ideal 
research plan balances all three concerns. Specialized 
applications of random sampling theory and its con-
comitant biases are used when the constructs can be 
defended and measured using standardized tools to track 
changes over time. Additional measurement approaches 
allow for the detection of structural changes in what is 
to be measured or to detect particular functions and 
change mechanisms, but each includes detectable biases. 
Detection of the physical and social-emotional changes 
that occur as adolescents progress through puberty, for 
example, requires respect for the highly individualized 
nature of hormonal change as well as aggregated evi-
dence depicting age-related commonalities. Bias prolifer-
ates when measures designed for one purpose are used 
for another but is addressed when the limits of each tool 
are considered when interpreting results.

Interpretive measurement occurs when investigators 
celebrate individuality and narrow forms of solidarity 
by investigating bias (Thorkildsen, 2005). Interpretive 
research focuses on rule-governed descriptions of every-
day events such as describing the world, challenging 
assumptions, discovering contrasting evidence, clarify-
ing the dimensions of particular constructs, and resist-
ing attempts to reify truth claims. Seeking dependable, 
credible evidence, investigators distinguish the respect-
able bias needed to place reasonable parameters on the 
scope of a research project and distorting bias that 
should be minimized. Recording observations with pre-
cision and relying on multiple methods of interpreting 
results help to restrict problematic bias.

The final source of bias emerges when investigators 
use statistical analyses and descriptive methods to 
report their findings. When tools of analysis do not 
align well with the instrumentation decisions, bias can 
yield invalid conclusions. When analytical tools align 
with the research questions and accommodate the types 
of biases embedded in the instrumentation process, 
truthful conclusions are likely.

Research as a Study of Bias
Depicting bias as systematic error places pressure on 
investigators to define truth as often as they offer claims 
about distortion. Disciplinary assumptions and the 
nature of the theories under consideration help investi-
gators identify the parameters for determining bias by 
evaluating the qualities of arguments for their relative 
truth-value. Thoughtful exploration of design limita-
tions and how well evidence yields informative truth 
places the study of bias at the heart of conducting 
strong research. Accepting that bias is a feature of all 
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research constrains curiosity and pressures investigators 
to consider the moral consequences of their claims.

Theresa A. Thorkildsen

See also Cluster Sampling; Experimenter Expectancy Effect; 
Response Bias; Sampling; Systematic Error; Validity of 
Measurement
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Biased Estimator

In many scientific research fields, statistical models are 
used to describe a system or a population, to interpret a 
phenomenon, or to investigate the relationship among 
various measurements. These statistical models often 
contain one or multiple components, called parameters, 
that are unknown and thus need to be estimated from 
the data (sometimes also called the sample). An estima-
tor, which is essentially a function of the observable 
data, is biased if its expectation does not equal the 
parameter to be estimated.

To formalize this concept, suppose θ  is the parameter 
of interest in a statistical model. Let θ̂  be its estimator 
based on an observed sample. Then θ̂  is a biased estima-
tor if E θ̂ θ)( ≠ , where E denotes the expectation opera-
tor. Similarly, one may say that θ̂  is an unbiased 
estimator if E θ̂ θ)( = . Some examples follow.

Example 1
Suppose an investigator wants to know the average 
amount of credit card debt of undergraduate students 
from a certain university. Then the population would be 

all undergraduate students currently enrolled in this 
university, and the population mean of the amount of 
credit card debt of these undergraduate students, 
denoted by θ , is the parameter of interest. To estimate 
θ , a random sample is collected from the university, and 
the sample mean of the amount of credit card debt is 
calculated. Denote this sample mean by 1̂θ . Then 
E 1̂θ θ)( = ; that is, 1̂θ  is an unbiased estimator. If the 
largest amount of credit card debt from the sample, call 
it ˆ

2θ , is used to estimate θ , then obviously ˆ
2θ  is biased. 

In other words, E ˆ
2θ θ)( ≠ .

Example 2
In this example a more abstract scenario is examined. 
Consider a statistical model in which a random variable 
X  follows a normal distribution with mean μ  and vari-
ance 2σ , and suppose a random sample X X, , n1 …  is 
observed. Let the parameter θ  be μ . It is seen in 

Example 1 that X
n

X
1
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i

n
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∑=

=

, the sample mean of 

X X, , n1 … , is an unbiased estimator for θ . But X2  is a 
biased estimator for μ2  (or 2θ ). This is because X  fol-
lows a normal distribution with mean μ  and variance 

n

2σ . Therefore, μ σ μ( ) = + ≠E X
n

2 2
2

2 .

Example 2 indicates that one should be careful about 
determining whether an estimator is biased. Specifically, 

although θ̂  is an unbiased estimator for θ , g θ̂( )  may be 
a biased estimator for g θ )(  if g  is a nonlinear function. 
In Example 2, g 2θ θ)( =  is such a function. However, 
when g  is a linear function, that is, g a bθ θ)( = +  where 
a and b are two constants, then g θ̂ )(  is always an unbi-
ased estimator for g θ )( .

Example 3
Let X X, , n1 …  be an observed sample from some distri-
bution (not necessarily normal) with mean μ  and vari-
ance 2σ . The sample variance S2 , which is defined as 

n
X X

1
1 i

i

n
2

1
∑ )(−

−
=

, is an unbiased estimator for 2σ , 

while the intuitive guess 
n

X X
1

i
i

n
2

1
∑ )( −

=

 would yield a 

biased estimator. A heuristic argument is given here. If 

μ  were known, ∑ μ( )−
=n

X
1

i
i

n
2

1

 could be calculated, 

which would be an unbiased estimator for 2σ . But since 
μ  is not known, it has to be replaced by X . This 
replacement actually makes the numerator smaller. That 

is, ∑ ∑ μ( ) ( )− ≤ −
= =

X X Xi
i

n

i
i

n
2

1

2

1
 regardless of the value of 

μ . Therefore, the denominator has to be reduced a little 
bit (from n to n 1− ) accordingly.
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123Binomial Distribution

A closely related concept is the bias of an estimator, 
which is defined as E θ̂ θ)( − . Therefore, an unbiased 
estimator can also be defined as an estimator whose 
bias is zero, while a biased estimator is one whose bias 
is nonzero. A biased estimator is said to underestimate 
the parameter if the bias is negative or overestimate the 
parameter if the bias is positive.

Biased estimators are usually not preferred in estima-
tion problems, because in the long run, they do not 
provide an accurate “guess” of the parameter. Sometimes, 
however, cleverly constructed biased estimators are use-
ful because although their expectation does not equal 
the parameter under estimation, they may have a small 
variance. To this end, a criterion that is quite commonly 
used in statistical science for judging the quality of an 
estimator needs to be introduced. The mean square 
error (MSE) of an estimator θ̂  for the parameter θ  is 

defined as E θ̂ −θ( )2⎡
⎣⎢

⎤
⎦⎥

. Apparently, one should seek 

estimators that make the MSE small, which means that 
θ̂  is “close” to θ . Notice that

E θ̂−θ( )2⎡
⎣
⎢

⎤
⎦
⎥ = E θ̂−E θ̂{ }( )

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+ E θ̂{ }−θ( )

2

=Var θ̂( )+Bias2,

meaning that the magnitude of the MSE, which is 
always nonnegative, is determined by two components: 
the variance and the bias of the estimator. Therefore, an 
unbiased estimator (for which the bias would be zero), 
if possessing a large variance, may be inferior to a 
biased estimator whose variance and bias are both 
small. One of the most prominent examples is the 
shrinkage estimator, in which a small amount of bias for 
the estimator gains a great reduction of variance. 
Example 4 is a more straightforward example of the 
usage of a biased estimator.

Example 4
Let X  be a Poisson random variable, that is, 

P X x
e

x!

xλ)( = =
λ−

, for x s s0, 1, 2,= …. Suppose the param-

eter e 2θ = λ− , which is essentially P X = 0( )⎡⎣ ⎤⎦
2
, is of inter-

est and needs to be estimated. If an unbiased estimator, 
say X1̂θ )( , for θ  is desired, then by the definition of 

unbiasedness, it must satisfy x
e

x
eˆ

!

x

x 10

2∑ θ λ)( =
λ

λ
−

=

∞ −  or, 

equivalently, 
x
x

e
ˆ

!

x

x

1
0∑ θ λ)( = λ

=

∞ −  for all positive values 

of λ . Clearly, the only solution is that xˆ 1 x
1θ ) )( (= − . But 

this unbiased estimator is rather absurd. For example, if 
X 10= , then the estimator 1̂θ  takes the value of 1, 
whereas if X 11= , then 1̂θ  is 1. As a matter of fact, a 

much more reasonable estimator would be X eˆ X
2

2θ )( = − , 
based on the maximum likelihood approach. This estima-
tor is biased but always has a smaller MSE than Xˆ .1θ )(

Zhigang Zhang and Qianxing Mo

See also Distribution; Estimation; Expected Value
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Binomial Distribution

The binomial distribution describes the results of 
repeated independent trials of an event for which the 
outcome space has two possible values (e.g., yes or no, 
true or false, heads or tails, success or failure), and each 
trial shares the same probability of success. The bino-
mial distribution represents the probability of different 
combinations of successes or failures when the experi-
ment is repeated n number of times, and Χ represents 
the number of successes in n trials. The probability that 
a single trial succeeds can be represented with param-
eter p. The probability that a single trial fails can be 
represented with parameter q. The sum of p and q must 
always equal 1. The mean of a binomial distribution is 
always μ = n × p, and the variance of Χ can be approx-
imated by n p q2σ = × × . Some statistical inference can 
be made using the binomial distribution in specific 
examples. This entry presents a description of the 
history of the binomial distribution as well as the appli-
cations for statistical inference and some specific 
examples where the binomial distribution can be used.

History
The desire to calculate probabilities in games of chance 
led to the first studies of binomial distribution. 
Essentially, mathematically inclined gamblers wanted to 
calculate their probability of winning on a certain num-
ber of dice rolls. In 1713, Jakob Bernoulli, a Swiss 
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124 Binomial Distribution

mathematician, published a proof that determined that 
the probability of Χ equaling a specified number, x, in n 
trials was equal to the xth term in the binomial expan-
sion of the expression (p + q)n, thus creating the bino-
mial distribution.

The binomial distribution was used in 1936 to pub-
lish evidence of possible scientific chicanery by Gregor 
Mendel in the famous 1866 pea genetics experiments. 
Ronald Fisher noted that the reported laws of inheri-
tance in peas would dictate that the number of certain 
colors of peas would have a binomial distribution, and 
the results reported by Mendel should have a probabil-
ity of only about .1.

Applications for Statistical Inference
Any experiment using the binomial distribution has two 
assumptions: identical trials and independent trials. 
Identical trials is the assumption that p and q take on 
the same probability value across n number of trials. 
The compound binomial distribution does not assume 
identical trials. Independent trials is the assumption that 
subsequent trials are not affected by previous outcomes, 
so in order for the binomial distribution to be used, 
sampling with replacement must occur.

When the random variable Χ has parameters n and 
p in the binomial distribution, it is mathematically rep-
resented as Χ~B(n, p). The probability that Χ is equal to 
a certain number, x, where x = 0, 1, 2, . . . , n, is given 
by the probability mass function:

f x P C x C p q ,x
n x n x) )( (= = = −

where Cx
n  is a mathematical combination, called the 

binomial coefficient, given by the equation:

C
n

x n x
!

! !
.x

n

)(=
−

The cumulative distribution function for the bino-
mial distribution is simply the sum of the probability 
mass function results for all applicable values. For 
example, the cumulative distribution function for the 
probability that Χ is less than or equal to a certain num-
ber, x, where x = 0, 1, 2, . . . , n, is given by

P C x C p q      ,
i

x

i
n i n i

0
∑)( ≤ =

=

−  

while the cumulative distribution function for the 
probability that Χ is greater than or equal to a certain 
number, x, where x = 0, 1, 2, . . . , n, is given by 

P C x C p q      .
i x

n

i
n i n i∑)( ≥ =

=

−  

Properties

When p represents the probability of a success in one 
trial and n represents the number of trials, the expected 
value or mean of the binomial distribution is μ = n × p 
and the variance is n p q2σ = × × , where q represents 
the probability of failure on one trial, or p1− . If p is 
unknown, p̂  can be estimated to represent p as an unbi-

ased estimator such that p
x
n

ˆ = , where x is the number 

of observed successes in n trials.
The mode of the binomial distribution is dependent 

on different cases of the distribution and can be calcu-
lated as

Mode =

Mode=

floor n+1( )p⎡⎣ ⎤⎦ if   n+1( )p  is 0  or a noninteger,

n+1( )p  and   n+1( )p−1 if   n+1( )p∈ 1,…,n{ },
n if   n+1( )p= n+1,

⎧

⎨

⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪

where floor() is the floor function indicating the 
lowest previous integer in a series. For example, if a fair 

six-sided die is rolled six times, n p6, 
1
6

= = , so the 

mode would be  floor 6+1( )1
6

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
, which is equal to 

floor
7
6

⎛
⎝
⎜⎜⎜
⎞
⎠
⎟⎟⎟ . When taking the lowest previous integer of 

7
6

,  

the result is that the mode equals 1.

The median of the binomial distribution does not 
have a single formula; however, the median conforms to 
several statements, including

(1) � The median, m, must lie within the interval 
np m npfloor ceiling) )( (≤ ≤  where floor() is the 

lowest previous integer in a series and ceiling() is the 
highest previous integer in a series.

(2) � The median must not be far from the mean such 
that

mnp p pmin ln2,max ,1 .{ })(≤ −

(3) � When p = .5 and n is odd, the median is a number in 
the interval:

n m n
1
2

1
1
2

1 .) )( (− ≤ ≤ +

(4) � When p = .5 and n is even, the median equals 
n
2

.

Confidence Intervals
A number of methods exist for determining a confi-
dence level for the probability of success in a binomial 
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125Binomial Distribution

distribution. The Wald method is the most commonly 
recommended method; other methods include the 
Clopper–Pearson interval, the Agresti–Coull method, 
and the Arcsine method.

The Clopper–Pearson method, sometimes known as 
the exact method, calculates a confidence interval based 
on the binomial distribution’s cumulative properties. 
When x is the number of successes observed in a bino-
mial sample with n trials, the Clopper–Pearson method 
interval is given by

+ − + ≤ ≤

+
−

+ +
−)

) )

) )(

( (

( (− + α

+ − α

+ − α
n x

x
F

p

x
n x

F

x
n x

F

1

1
1

1

1
1

.

n x x

x n x

x n x2        1 ,  2 ,  
2

2    1 , 2     ,
2

2    1 , 2     ,
2

For example, if in 10 trials there are three successes, 
the Clopper–Pearson method gives a 95% confidence 
interval of

1

1+ 10−3+1
3

F16,6,0.025

≤ p ≤

3+1
10−3

F8,  14, 0.025

1+ 3+1
10−3

F8, 14, 0.025

,

thus, .087 ≤ p ≤ .607.
Given that p̂  is the proportion of successes repre-

senting the estimate of p, and z is the quantile from the 
standard normal distribution that corresponds to the 
desired error rate, α, the Wald method for calculating a 

confidence interval is given by p z
p p

n
ˆ

ˆ 1 ˆ
.

)(
±

−
 In an 

attempt to reduce some of the bias as a result of the 
Wald method, the Agresti–Coull method modifies the 

estimate of p to be p
x z

n z

   
1
2

   

2

2=
+

+
 and modifies the cal-

culation of the confidence interval such that it is given 

by 
 

p z
p p

n z

1
.2

)(
±

−
+

Finally, the Arcsine method calculates the confidence 
interval through the use of the equation:

Sin2 arcsin p̂( )± z

2 n

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟.

Visualization
When visualizing the binomial distribution, a histogram 
like that shown in Figure 1 is constructed for each 
specific example. Number of successes, Χ, is plotted 
along the x-axis, while the probability of Χ is plotted 
along the y-axis according to the probability mass func-
tion results. As n increases, the binomial distribution 

will begin to look smoother. However, the binomial 
distribution does not have a set shape, as p and q 
change the mean of the distribution, and n, p, and q 
change the variance of the distribution. When n is large 
and p approaches .5, the binomial distribution 
approaches a bell-shaped curve. When p is smaller than 
.5, the visualization of the binomial distribution is right 
skewed. As p becomes smaller, the distribution becomes 
even more right skewed. When p is larger than .5, the 
visualization of the binomial distribution is left skewed. 
Again, as p becomes larger, the distribution is even more 
left skewed.

Examples
Example 1 shows an application of the binomial distri-
bution using the probability mass function. Example 2 
shows an application of the binomial distribution using 
the cumulative distribution function.

Example 1: Baseball Batting Percentage

One example of applying the binomial distribution 
can be seen by predicting the number of hits a baseball 
player will get in three at bats. A batting average is calcu-
lated by taking the number of times a player has gotten a 
hit divided by the number of times they have been at bat, 
minus the number of times they took a base on balls. So 
a batter’s probability of succeeding in getting a hit, p, can 
be represented by their batting average, usually some-
where around p = .3, and their probability of failing and 
getting an out, q, can be 1 minus batting average: q = .7. 
In three at bats, there are eight different patterns of out-
comes. With a hit represented as “H” and an out repre-

0.5

0.4

0.3

0.2

0.1

0.0

0 1 2 3

x

f(
x)

Figure 1  Binomial Distribution of Baseball Outcomes
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126 Binomial Distribution

sented at “O,” the possible outcomes include HHH, 
HHO, HOH, HOO, OHH, OHO, OOH, and OOO. 
However, each of these outcomes has its own probability 
of happening. To calculate the probability of a pattern, the 
probability of each individual event is multiplied. So, for 
example, the probability of HOH would be .3 × .7 × .3, 
which can be simplified to .3 .72 × . Table 1 provides the 
probabilities for all possible patterns of outcomes.

As Table 1 shows, one combination results in three 
hits, Χ = 3; three combinations result in two hits and 
one out, Χ = 2; three combinations result in one hit and 
two outs, Χ = 1; and one combination results in three 
outs, Χ = 0. Notice that each pattern that results in the 
same Χ value has the same probability value, regardless 
of what order the hits or outs happen in. This is pre-
cisely why the binomial coefficient is included in the 
probability mass function. Most of the time, a researcher 
would not ask what the probability of a certain pattern 
is; instead, a researcher would ask something like “what 
is the probability that the player gets two hits in three at 
bats.” In this example, it was fairly easy to calculate the 
probability of every possible pattern. However, that is 
not possible in most models, so the binomial coefficient 
calculates how many patterns result in the same number 
of successes or the same Χ value. Table 2 illustrates the 
frequency table for each Χ number of successes. The 
histogram shown in Figure 1 represents this example.

Example 2: Marathon Entry Percentage

Other applications of the binomial distribution need 
to use the cumulative distribution function rather than 
the probability mass function. For example, 70% of 
people who apply to run a local marathon are randomly 
drawn to receive entry into the race. If five friends all 
apply, what is the probability that at least four of them 

are accepted? In this case, at least four runners means 
that the probabilities of having 4 of 5 and 5 of 5 admit-
ted need to be summed. So the cumulative distribution 
function would be

P C≥4( )=
i=4

5

∑Ci
5  .7 i  .35 −  i ,

P C C C4    .7  .3  .7  .3 ,4
5 4 5 4

5
5 5 5 5)( ≥ = +− −

P C≥4( )= 5!
4!1!

.2401( ) .3( )
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟+

5!
5!0!

.16807( ) 1( )
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟,

P C 4 .52822.)( ≥ =

Thus, the probability of at least four of the runners 
being admitted is approximately .52822 or 52.82%.

Jessica Hess and Neal M. Kingston

See also Bernoulli Distribution; Beta Distribution; Mode; 
Normal Distribution; Poisson Distribution; Stochastic 
Processes; z Distribution
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X f(x)

0

1

2

3

.73

3(.3 ∙ .72)

3(.32 ∙ .7)

.33

=  .343

=  .441

=  .189

=  .027

Table 2 � Frequency Table of Number of Successes in 
Three at Bats

Table 1 � Probability for All Possible Patterns of at Bat 
Outcomes

Outcome Probability     X

HHH

HHO

HOH

HOO

OHH

OHO

OOH

OOO

.33

.32 ∙ .7

.32 ∙ .7

.3 ∙ .72

.32 . .7

.3 ∙ .72

.3 ∙ .72

.73

3

2

2

1

2

1

1

0
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Biological and Technical 
Replicates

Biological and technical replicates are two different 
approaches to making repeated measurements of an 
underlying biological phenomenon in biomedical 
research. It is generally a good practice to include both 
types of replicates in each experiment.

Broadly speaking, technical replicates are indepen-
dently repeated measurements of the same sample using 
the same procedure. As such, these replicates represent 
independent measures of the noise (typically random) 
associated with protocols or equipment: They help mea-
sure the reproducibility of an assay and not the repro-
ducibility of the underlying biological phenomenon. 
Biological replicates, on the other hand, are parallel 
measurements of biologically distinct samples. These 
replicates help capture the variation (random or other-
wise) of the biological phenomenon under study and 
help measure its reproducibility. The distinction between 
technical and biological replicates is a functional one, in 
that it depends on which type of data variability—
procedural or biological—they capture and not neces-
sarily on how the replicates are obtained.

There is no one-size-fits-all formula for designing 
replicates that are optimal for a given experiment. The 
optimal design, including the optimal mix of technical 
and biological replicates in a given experiment, depends 
on the potential sources and magnitudes of variability 
in a given experiment and the questions that the exper-
iment seeks to answer.

Historical Origins of  
the Replicate Nomenclature

Until the 1990s, much of the reproducibility testing in 
biomedical research, especially in the wet laboratory 
experimental sciences such as molecular and cellular 
biology, employed what would be considered technical 
replicates today. The push to systematically include bio-
logical replicates in experiments originated primarily in 
these fields in the 2000s with the widespread realization 
that biomedical research findings were not sufficiently 

reproducible, in large part because technical replicates 
by themselves did not properly account for the variabil-
ity of the underlying biological phenomena. Major 
funding agencies in these fields, such as the U.S. 
National Institutes of Health, spurred the widespread 
adoption of the current replicate nomenclature and 
practices of replicate design by incentivizing researchers 
to employ both biological and technical replicates in 
their research as a way of enhancing the reproducibility 
of the research findings.

While the practice of quantitative measurements and 
statistical testing was much better established in many 
other fields of biomedical research, such as epidemiol-
ogy, psychophysics, ecology and evolutionary biology, 
reproducibility of results was not necessarily commen-
surately better in these fields, arguably also because of 
poor replicate design.

Reproducibility Requires  
Representative Replicates

Research is primarily about learning general truths 
about the phenomenon under study. A set of findings is 
useful only to the extent that the same findings are 
obtained when the given experiment is independently 
but precisely repeated. The term reproducibility typi-
cally means this type of across-experiment reproduc-
ibility of the findings or conclusions and not of the 
measurements on which the conclusions are based. One 
accepts the mathematical reality that the measurements 
themselves will not be exactly reproducible from one 
instance to the next, be it within or across experiments, 
even as one expects the conclusions to be reproducible.

The only way one can draw reproducible conclusions 
based on inherently variable measurements is to use 
sound practices of statistical sampling and, where neces-
sary, statistical testing. To the extent that the empirical 
measurements are truly representative of the underlying 
phenomenon, one can have a quantifiable degree of con-
fidence, say 95%, that the conclusions will be repro-
duced when the experiment is exactly repeated. Thus, 
the key to obtaining reproducible results is to ensure that 
replicates as a group adequately represent the relevant 
statistical properties of the phenomenon of interest. This, 
in a nutshell, is the goal of replicate design: to ensure 
that the replicates are representative and that they ade-
quately capture the study-relevant statistical properties, 
including the variability, of the phenomenon.

In biology, the substrates of phenomena of interest 
tend to be highly variable. Therefore, ensuring that this 
biological variability is properly represented in the 
empirical measurements of a given phenomenon is a 
necessary and proper way of improving the reproduc-
ibility of the findings about the phenomenon. In other 
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words, it is usually a good idea to include biological 
replicates in an experiment because the underlying bio-
logical substrates are usually variable. It follows from 
the elementary principles of statistics that the greater 
the variability of the relevant biological substrates, the 
larger the number of replicates needed to adequately 
capture this variability.

Basic Principles of Replicate Design
Consider a simple hypothetical experiment to determine 
the levels of a blood component called albumin in adult 
Spraque Dawley laboratory rats 24 hours after skin 
injury. We induce injury in a designated spot, say a hind 
thigh, using standard procedures in one rat. We draw a 
vial of blood from this rat 24 hours after the procedure 
and measure the albumin levels using standard proce-
dures. We repeat this measurement twice more indepen-
dently using the same vial of blood. These constitute 
three technical replicates because they measure the 
reproducibility of the albumin assay (Figure 1A). From 
the three replicates, we determine the mean and the 
standard deviation of albumin levels.

Note, however, that these findings apply only to the 
particular vial of blood. We have no way of evaluating 
whether the results are likely to be reproducible across 
additional blood draws from the same mouse because we 
have not tested any additional blood draws. Obviously, 
this is not a useful outcome and reflects poor replicate 
design. To make the results more generalizable, we make 

three mutually independent blood draws from this rat and 
measure the albumin levels in each (Figure 1B). Although 
the sample size remains the same at three, these technical 
replicates are better designed because the albumin level 
estimate is likely to be better reproducible for this mouse.

It is desirable to have our findings apply to all 
Spraque Dawley rats and not just to the one rat we 
tested. We therefore repeat the experiment using three 
different rats, making one measurement each (Figure 
1C). These three biological replicates allow us to draw 
conclusions about the three rats in question. To the 
extent that these three rats are representative of all 
Spraque Dawley rats, the results should be reproducible 
across all rats of this strain when the experiment is 
exactly repeated.

In general, it is a good practice to include both tech-
nical and biological replicates (Figure 1D), since the two 
types of replicates measure different types of variability 
in the measurements, as noted earlier.

Additional Observations  
About Replicate Design

There are a few additional things we always wanted to 
know about replicate design but our mothers never 
told us. First, it ultimately does not matter whether a 
given replicate is designated a technical replicate or a 
biological replicate, as long as the sources of the repli-
cates are faithfully kept track of. For instance, if we 
arbitrarily shuffle the replicate designations of one or 

Figure 1  A Hypothetical Example That Illustrates the Distinction Between Technical and Biological Replicates

Note: In each case, rat blood is drawn and the concentration of albumin in the blood is measured. In each panel, dotted arrows 
at the top denote blood draws, and solid arrows at the bottom denote albumin measurements. (A) Repeated measurements from 
the same blood draw nominally represent technical replicates but reflect poor replicate design. (B) A better design for technical 
replicates is to make multiple independent blood draws and measure albumin level in each draw. (C) Biological replicates are 
those in which each blood draw is made from a different selected rat. (D) It is generally a good design practice to include both 
technical and biological replicates in an experiment and to adjust the relative proportions of the two types of replicates so that 
the replicates are representative of the phenomenon under study. Of the four replicate designs shown, the one in panel D is likely 
to yield the most reproducible results, even though the sample size (n = 3), and therefore the nominal statistical power, is the same 
in all cases. Note that statistically desirable values of n tend to be higher than 3 in actual experiments.
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129Biological and Technical Replicates

more replicates in Figure 1, it will not in any way affect 
the experimental findings, our observations as to which 
aspects of the experiments the findings apply to, or the 
reproducibility of the findings. Indeed, the technical 
replicates in the earlier example meet some of the crite-
ria of biological replicates, in that they capture some of 
the procedural variability with a biological basis, such 
as the variability in the induced injury across rats. In 
some cases, it can be difficult to decide whether a given 
replicate qualifies as either type of replicate or both. 
For instance, what constitutes a technical replicate in a 
study that seeks to determine whether home value 
appraisers estimate lower values for homes owned by 
African Americans than those owned by Caucasians? 
Moreover, there are vast areas of research where the 
phenomena of interest are not biological at all. For 
instance, what would constitute biological replicates in 
a study about the effect of ethanol on catalytic convert-
ers in cars? Yet, no one would dispute the importance 
of these research questions or of ensuring the reproduc-
ibility of the findings by designing the replicates prop-
erly. In thinking about these issues, it helps to keep in 
mind the aforementioned historical origins of the repli-
cate nomenclature and that while reproducibility is 
desirable in all research, not all research involves biol-
ogy or even experimentation.

Second, proper replicate design requires that the goals 
of the study and the planned data analyses be precisely 
specified beforehand. This is especially important when 
the underlying phenomena are complex, multivariate, 
and/or subject to dynamic change. For instance, in the 
case of the aforementioned rat experiment, we need to 
decide which aspects of the underlying phenomenon we 
want to draw conclusions about and how broadly we 
want to draw them: injury to which body regions, which 
types of the injury (e.g., abrasions, cuts, chemicals, or 
burns), which ages, and so forth. Specifying the research 
question has the effect of specifying which statistical prop-
erties are relevant to the study and which are not, thus 
making replicate design more tractable. Without specify-
ing the study parameters in this fashion, we would risk 
either having to obtain an unmanageably large number of 
replicates to try and capture all potential statistical vari-
ability of the underlying substrates or designing poor 
replicates that fail to capture the study-relevant variations 
of the phenomenon, and thereby reducing the reproduc-
ibility of the research findings. Specifying the planned tests 
is necessary for, among other things, planning the number 
of various replicates. For instance, in the aforementioned 
rat experiment, we planned no statistical tests because the 
goal of this simple experiment was to simply estimate the 
albumin levels, not to test any hypotheses. For a more 
complex experiment, in which we test the hypothesis that 
albumin levels in rats with skin injury are higher than in 

control rats that underwent a sham procedure, we would 
need to obtain replicates from both the treatment group 
and control group of rats. The numbers of the replicates 
do not necessarily have to be the same between the two 
groups. For instance, sham injury may be quite consistent 
from one rat to the next, so that fewer technical replicates 
might suffice for the control group.

Third, replicate design is closely related to, but not 
the same as, sample size calculation. A common, recom-
mended practice is to first perform power analyses 
based on the expected strength of the effect under study 
(estimated based on the best available information from 
published results or pilot data), planned statistical tests, 
and the desired level of statistical significance and sta-
tistical power. This will yield the required total number 
of replicates (or sample size n). The n value can then be 
broken down into the desired numbers of technical ver-
sus biological replicates based on the estimated variabil-
ity from various sources.

 A fourth, related principle is that it is the responsi-
bility of the researcher to report the replicate design, 
along with the rest of the study methods in sufficient 
detail as to enable other researchers to replicate the 
findings independently. Reporting a study poorly is tan-
tamount to designing it poorly.

Finally, there are many cases in which a statistically 
optimal replicate design is not possible, not desirable, 
or both. For instance, in invasive studies of neural 
activity in monkey brains, it is typical to use only two 
monkeys because using additional monkeys is inadvis-
able without a compelling reason. Instead, researchers 
typically study a large number of individual neurons in 
either monkey, which results in a statistically subopti-
mal nested replicate design. One can nonetheless draw 
the best possible reproducible conclusions from such 
nested data using commonly available statistical tools. 
In cases such as this, the imperatives of sound statistical 
design must be balanced against other principles of 
sound research, and reproducibility must be maximized 
using the best available alternative methods.

Jay Hegdé

See also Animal Research; Nested Sampling; Power Analysis; 
Replication; Sample Size
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Bivariate Regression

Regression is a statistical technique used to help investi-
gate how variation in one or more variables predicts or 
explains variation in another variable. This popular 
statistical technique is flexible in that it can be used to 
analyze experimental or nonexperimental data with 
multiple categorical and continuous independent vari-
ables. If only one variable is used to predict or explain 
the variation in another variable, the technique is 
referred to as bivariate regression. When more than one 
variable is used to predict or explain variation in 
another variable, the technique is referred to as multiple 
regression. Bivariate regression is the focus of this entry.

Various terms are used to describe the independent 
variable in regression, namely, predictor variable, explan-
atory variable, or presumed cause. The dependent vari-
able is often referred to as an outcome variable, criterion 
variable, or presumed effect. The choice of independent 
variable term will likely depend on the preference of the 
researcher or the purpose of the research. Bivariate 
regression may be used solely for predictive purposes. 
For example, do scores on a college entrance exam pre-
dict college grade point average? Or it may be used for 
explanation. Do differences in IQ scores explain 
differences in achievement scores? It is often the case 
that although the term predictor is used by researchers, 
the purpose of the research is, in fact, explanatory.

Suppose a researcher is interested in how well reading 
in first grade predicts or explains fifth-grade science 
achievement scores. The researcher hypothesizes that 
those who read well in first grade will also have high sci-
ence achievement in fifth grade. An example bivariate 
regression will be performed to test this hypothesis. The 
data used in this example are a random sample of students 
(10%) with first-grade reading and fifth-grade science 
scores and are taken from the Early Childhood 
Longitudinal Study public database. Variation in reading 
scores will be used to explain variation in science 

achievement scores, so first-grade reading achievement is 
the explanatory variable and fifth-grade science achieve-
ment is the outcome variable. Before the analysis is con-
ducted, however, it should be noted that bivariate 
regression is rarely used in published research. For exam-
ple, intelligence is likely an important common cause of 
both reading and science achievement. If a researcher was 
interested in explaining fifth-grade science achievement, 
then potential important common causes, such as intelli-
gence, would need to be included in the research.

Regression Equation
The simple equation for bivariate linear regression is 
Y a bX e.= + +  The science achievement score, Y , for a 
student equals the intercept or constant (a), plus the 
slope (b) times the reading score (X) for that student, 
plus error (e). Error, or the residual component (e), rep-
resents the error in prediction, or what is not explained 
in the outcome variable. The error term is not necessary 
and may be dropped so that the following equation is 
used: = +′ ′Y a bX Y.  is the expected (or predicted) 
score. The intercept is the predicted fifth-grade science 
score for someone whose first-grade reading score is 
zero. The slope (b, also referred to as the unstandard-
ized regression coefficient) represents the predicted unit 
increase in science scores associated with a one-unit 
increase in reading scores. X  is the observed score for 
that person. The two parameters (a  and b) that describe 
the linear relation between the predictor and outcome 
are thus the intercept and the regression coefficient. 
These parameters are often referred to as least squares 
estimators and will be estimated using the two sets of 
scores. That is, they represent the optimal estimates that 
will provide the least error in prediction.

Returning to the example, the data used in the analy-
sis were first-grade reading scores and fifth-grade science 
scores obtained from a sample of 1,027 school-age chil-
dren. T-scores, which have a mean of 50 and standard 
deviation of 10, were used. The means for the scores in 
the sample were 51.31 for reading and 51.83 for science.

Because science scores are the outcome, the science 
scores are regressed on first-grade reading scores. The 
easiest way to conduct such analysis is to use a statistical 
program. The estimates from the output may then be 
plugged into the equation. For these data, the prediction 
equation is Y X21.99 (.58) .= +′  Therefore, if a student’s 
first-grade reading score was 60, the predicted fifth-
grade science achievement score for that student would 
be 21.99 + (.58)60, which equals 56.79. One might ask, 
why even conduct a regression analysis to obtain a pre-
dicted science score when Johnny’s science score was 
already available? There are a few possible reasons. 
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First, perhaps a researcher wants to use the information 
to predict later science performance, either for a new 
group of students or for an individual student, based on 
current first-grade reading scores. Second, a researcher 
may want to know the relation between the two vari-
ables, and a regression provides a nice summary of the 
relation between the scores for all the students. For 
example, do those students who tend to do well in read-
ing in first grade also do well in science in fifth grade? 
Last, a researcher might be interested in different out-
comes related to early reading ability when considering 
the possibility of implementing an early reading inter-
vention program. Of course a bivariate relation is not 
very informative. A much more thoughtfully developed 
causal model would need to be developed if a researcher 
was serious about this type of research.

Scatterplot and Regression Line
The regression equation describes the linear relation 
between variables; more specifically, it describes science 
scores as a function of reading scores. A scatterplot 
could be used to represent the relation between these 
two variables, and the use of a scatterplot may assist 
one in understanding regression. In a scatterplot, the 
science scores (outcome variable) are on the y-axis, and 
the reading scores (explanatory variable) are on the 
x-axis.

A scatterplot is shown in Figure 1. Each person’s 
reading and science scores in the sample are plotted. The 
scores are clustered fairly closely together, and the 

general direction looks to be positive. Higher scores in 
reading are generally associated with higher scores in 
science. The next step is to fit a regression line. The 
regression line is plotted so that it minimizes errors in 
prediction, or simply, the regression line is the line that 
is closest to all the data points. The line is fitted auto-
matically in many computer programs, but information 
obtained in the regression analysis output can also be 
used to plot two data points that the line should be 
drawn through. For example, the intercept (where the 
line crosses the y-axis) represents the predicted science 
score when reading equals zero. Because the value of the 
intercept was 21.99, the first data point would be found 
at 0 on the x-axis and at 21.99 on the y-axis. The second 
point on the line may be located at the mean reading 
score (51.31) and mean science score (51.83). A line can 
then be drawn through those two points. The line is 
shown in Figure 1. Points that are found along this 
regression line represent the predicted science achieve-
ment score for Person A with a reading score of X.

Unstandardized and  
Standardized Coefficients

For a more thorough understanding of bivariate regres-
sion, it is useful to examine in more detail the output 
obtained after running the regression. First, the intercept 
has no important substantive meaning. It is unlikely that 
anyone would score a zero on the reading test, so it does 
not make much sense. It is useful in the unstandardized 
solution in that it is used to obtain predicted scores (it is 

Figure 1  Scatterplot and Regression Line
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a constant value added to everyone’s score), and as dem-
onstrated above, it is useful in plotting a regression line. 
The slope (b .58= ) is the unstandardized coefficient. It 
was statistically significant, indicating that reading has a 
statistically significant influence on fifth-grade science. A 
1-point T-score increase in reading is associated with a 
.58 T-score point increase in science scores. The bs are 
interpreted in the metric of the original variable. In the 
example, all the scores were T-scores. Unstandardized 
coefficients are especially useful for interpretation when 
the metric of the variables is meaningful. Sometimes, 
however, the metric of the variables is not meaningful.

Two equations were generated in the regression 
analysis. The first, as discussed in the example above, is 
referred to as the unstandardized solution. In addition 
to the unstandardized solution, there is a standardized 
solution. In this equation, the constant is dropped, and 
z scores (mean = 0, standard deviation = 1), rather than 
the T-scores (or raw scores), are used. The standardized 
regression coefficient is referred to as a beta weight ( )β . 
In the example, the beta weight was .56. Therefore, a 
one-standard-deviation increase in reading was associ-
ated with a .56-standard-deviation increase in science 
achievement. The unstandardized and standardized 
coefficients were similar in this example because 
T-scores are standardized scores, and the sample statis-
tics for the T-scores were fairly close to the population 
mean of 50 and standard deviation of 10.

It is easy to convert back and forth from standard-
ized to unstandardized regression coefficients:

β = b standard deviation of reading scores
standard deviation of science scores

⎛
⎝⎜

⎞
⎠⎟

or

b = β standard deviation of science scores
standard deviation of reading scores

⎛
⎝⎜

⎞
⎠⎟
.

From an interpretative standpoint, should someone 
interpret the unstandardized or the standardized coeffi-
cient? There is some debate over which one to use for 
interpretative statements, but in a bivariate regression, the 
easiest answer is that if both variables are in metrics that 
are easily interpretable, then it would make sense to use 
the unstandardized coefficients. If the metrics are not 
meaningful, then it may make more sense to use the stan-
dardized coefficient. Take, for example, number of books 
read per week. If number of books read per week was 
represented by the actual number of books read per week, 
the variable is in a meaningful metric. If the number of 
books read per week variable were coded so that 0 = no 
books read per week, 1 = one to three books read per 
week, and 2 = four or more books read per week, then the 
variable is not coded in a meaningful metric, and the stan-

dardized coefficient would be the better one to use for 
interpretation.

R and R2

In bivariate regression, typically the regression coeffi-
cient is of greatest interest. Additional information is 
provided in the output, however. R is used in multiple 
regression output and represents a multiple correlation. 
Because there is only one explanatory variable, R (.56) 
is equal to the correlation coefficient (r  = .56) between 
reading and science scores. Note that this value is also 
identical to the β . Although the values of β  and r are 
the same, the interpretation differs. The researcher is 
not proposing an agnostic relation between reading 
scores and science scores. Rather the researcher is posit-
ing that early reading explains later science achieve-
ment. Hence, there is a clear direction in the relation, 
and this direction is not specified in a correlation.

R2 is the variance in science scores explained by 
reading scores. In the current example, R 31.2 =  First-
grade reading scores explained 31% of the variance in 
fifth-grade science achievement scores.

Statistical Significance
R and R2 are typically used to evaluate the statistical 
significance of the overall regression equation (the tests 
for the two will result in the same answer). The null 
hypothesis is that R2 equals zero in the population. One 
way of calculating the statistical significance of the 
overall regression is to use an F test associated with the 
value obtained with the formula

R k
R N k

/
(1 ) / ( 1)

.
2

2− − −

In this formula, R2 equals the variance explained, 
R1 2−  is the variance unexplained, and k equals the 

degrees of freedom (df) for the regression (which is 1 
because one explanatory variable was used). With the 
numbers plugged in, the formula would look like

.31 / 1
.69 / (1027 1 1)− −

and results in F 462.17.=  An F  table indicates that 
reading did have a statistically significant effect on science 
achievement, R .312 = , = <F p(1,1025) 462.17, .01.  

In standard multiple regression, a researcher typi-
cally interprets the statistical significance of R2 (the 
statistical significance of the overall equation) and the 
statistical significance of the unique effects of each indi-
vidual explanatory variable. Because this is bivariate 
regression, however, the statistical significance test of 
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the overall regression and the regression coefficient (b) 
will yield the same results, and typically the statistical 
significance tests for each are not reported.

The statistical significance of the regression coeffi-
cient (b) is evaluated with a t test. The null hypothesis is 
that the slope equals zero, that is, the regression line is 
parallel with the x-axis. The t-value is obtained by

b
bstandard error of

.

In this example, b .58,=  and its associated standard 
error was .027. The t-value was 21.50. A t-table could 
be consulted to determine whether 21.50 is statistically 
significant. Or a rule of thumb may be used that given 
the large sample size and with a two-tailed significance 
test, a t-value greater than 2 will be statistically signifi-
cant at the p .05<  level. Clearly, the regression coeffi-
cient was statistically significant. Earlier it was 
mentioned that because this is a bivariate regression, the 
significance of the overall regression and b provide 
redundant information. The use of F  and t tests may 
thus be confusing, but note that F  (462.17) equals 
t (21.502 2) in this bivariate case. A word of caution: This 
finding does not generalize to multiple regression. In 
fact, in a multiple regression, the overall regression 
might be significant, and some of the bs may or may not 
be significant. In a multiple regression, both the overall 
regression equation and the individual coefficients are 
examined for statistical significance.

Residuals
Before completing this explanation of bivariate regres-
sion, it will be instructive to discuss a topic that has been 
for the most part avoided until now: the residuals. 
Earlier it was mentioned that e (residual) was also 
included in the regression equation. Remember that 
regression parameter estimates minimize the prediction 
errors, but the prediction is unlikely to be perfect. The 
residuals represent the error in prediction. Or the resid-
ual variance represents the variance that is left unex-
plained by the explanatory variable. Returning to the 
example, if reading scores were used to predict science 
scores for those 1,026 students, each student would have 
a prediction equation in which his or her reading score 
would be used to calculate a predicted science score. 
Because the actual score for each person is also known, 
the residual for each person would represent the 
observed fifth-grade science score minus the predicted 
score obtained from the regression equation. Residuals 
are thus observed scores minus predicted scores, or con-
ceptually they may be thought of as the fifth-grade sci-
ence scores with effects of first-grade reading removed.

Another way to think of the residuals is to revert 
back to the scatterplot in Figure 1. The x-axis represents 
the observed scores, and the y-axis represents the science 
scores. Both predicted and actual scores are already plot-
ted on this scatterplot. That is, the predicted scores are 
found on the regression line. If a person’s reading score 
was 40, the predicted science score may be obtained by 
first finding 40 on the x-axis, and then moving up in a 
straight line until reaching the regression line. The 
observed science scores for this sample are also shown 
on the plot, represented by the dots scattered about the 
regression line. Some are very close to the line whereas 
others are farther away. Each person’s residual is thus 
represented by the distance between the observed score 
and the regression line. Because the regression line rep-
resents the predicted scores, the residuals are the differ-
ence between predicted and observed scores. Again, the 
regression line minimizes the distance of these residuals 
from the regression line. Much as residuals are thought 
of as science scores with the effects of reading scores 
removed, the residual variance is the proportion of vari-
ance in science scores left unexplained by reading scores. 
In the example, the residual variance was .69, or R1 2− .

Regression Interpretation
An example interpretation for the reading and science 
example concludes this entry on bivariate regression. 
The purpose of this study was to determine how well 
first-grade science scores explained fifth-grade science 
achievement scores. The regression of fifth-grade science 
scores on first-grade reading scores was statistically sig-
nificant, R .312 = , F p(1,1025) 462.17, .01.= <  Reading 
accounted for 31% of the variance in science achieve-
ment. The unstandardized regression coefficient was .58, 
meaning that for each T-score point increase in reading, 
there was a .58 T-score increase in science achievement. 
Children who are better readers in first grade also tend 
to be higher achievers in fifth-grade science.

Matthew R. Reynolds

See also Correlation; Multiple Regression; Path Analysis; 
Scatterplot; Variance
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Block Design

Sir Ronald Fisher, the father of modern experimental 
design, extolled the advantages of block designs in his 
classic book, The Design of Experiments. He observed 
that block designs enable researchers to reduce error 
variation and thereby obtain more powerful tests of 
false null hypotheses. In the behavioral sciences, a sig-
nificant source of error variation is the nuisance vari-
able of individual differences. This nuisance variable 
can be isolated by assigning participants or experimen-
tal units to blocks so that at the beginning of an experi-
ment, the participants within a block are more 
homogeneous with respect to the dependent variable 
than are participants in different blocks. Three proce-
dures are used to form homogeneous blocks.

1.  Match participants on a variable that is correlated 
with the dependent variable. Each block consists of a 
set of matched participants.

2.  Observe each participant under all or a portion of the 
treatment levels or treatment combinations. Each 
block consists of a single participant who is observed 
two or more times. Depending on the nature of the 
treatment, a period of time between treatment level 
administrations may be necessary in order for the 
effects of one treatment level to dissipate before the 
participant is observed under other levels.

3.  Use identical twins or litter mates. Each block consists 
of participants who have identical or similar genetic 
characteristics.

Block designs also can be used to isolate other nui-
sance variables, such as the effects of administering 
treatments at different times of day, on different days of 
the week, or in different testing facilities. The salient fea-
tures of the five most often used block designs are 
described next.

Block Designs With One Treatment
Dependent Samples t-Statistic Design

The simplest block design is the randomization and 
analysis plan that is used with a t statistic for dependent 

samples. Consider an experiment to compare two ways 
of memorizing Spanish vocabulary. The dependent vari-
able is the number of trials required to learn the vocab-
ulary list to the criterion of three correct recitations. The 
null and alternative hypotheses for the experiment are, 
respectively,

H0: µ1 − µ2 = 0

and

H1: µ1 − µ2 ≠ 0,

where µ1 and µ2 denote the population means for the 
two memorization approaches. It is reasonable to 
believe that IQ is negatively correlated with the number 
of trials required to memorize Spanish vocabulary. To 
isolate this nuisance variable, n blocks of participants 
can be formed so that the two participants in each block 
have similar IQs. A simple way to form blocks of 
matched participants is to rank the participants in terms 
of IQ. The participants ranked 1 and 2 are assigned to 
Block 1, those ranked 3 and 4 are assigned to Block 2, 
and so on. Suppose that 20 participants have volun-
teered for the memorization experiment. In this case, 
n 10=  blocks of dependent samples can be formed. The 
two participants in each block are randomly assigned to 
the memorization approaches. The layout for the exper-
iment is shown in Figure 1.

The null hypothesis is tested using a t statistic for 
dependent samples. If the researcher’s hunch is correct—
that IQ is correlated with the number of trials to learn—
the design should result in a more powerful test of a 
false null hypothesis than would a t-statistic design for 
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Y.1 Y.2

.

Figure 1 � Layout for a Dependent Samples t-Statistic 
Design

Note: aj denotes a treatment level (Treat. Level); Yij denotes a 
measure of the dependent variable (Dep. Var.). Each block in 
the memorization experiment contains two matched partici-
pants. The participants in each block are randomly assigned 
to the treatment levels. The means of the treatments levels are 
denoted by Y .1  and Y .2.
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independent samples. The increased power results from 
isolating the nuisance variable of IQ so that it does not 
appear in the estimates of the error effects.

Randomized Block Design

The randomized block analysis of variance design can 
be thought of as an extension of a dependent samples 
t-statistic design for the case in which the treatment has 
two or more levels. The layout for a randomized block 
design with p 3=  levels of Treatment A and n 10=  
blocks is shown in Figure 2. A comparison of this layout 
with that in Figure 1 for the dependent samples t-statistic 
design reveals that the layouts are the same except that 
the randomized block design has three treatment levels.

In a randomized block design, a block might contain a 
single participant who is observed under all p  treatment 
levels or p  participants who are similar with respect to a 
variable that is correlated with the dependent variable. If 
each block contains one participant, the order in which 
the treatment levels are administered is randomized inde-
pendently for each block, assuming that the nature of the 
research hypothesis permits this. If a block contains 
p matched participants, the participants in each block are 
randomly assigned to the treatment levels.

The statistical analysis of the data is the same 
whether repeated measures or matched participants are 
used. However, the procedure used to form homoge-
neous blocks does affect the interpretation of the 
results. The results of an experiment with repeated mea-
sures generalize to a population of participants who 
have been exposed to all the treatment levels. The 
results of an experiment with matched participants gen-
eralize to a population of participants who have been 
exposed to only one treatment level.

The total sum of squares (SS) and total degrees of 
freedom for a randomized block design are partitioned 
as follows:

SSTOTAL= SSA+ SSBLOCKS+ SSRESIDUAL
np−1= (p−1)+ (n−1) + (n−1)(p−1),

where SSA denotes the Treatment A SS and 
SSBLOCKS denotes the blocks SS. The SSRESIDUAL 
is the interaction between Treatment A and blocks; it is 
used to estimate error effects. Many test statistics can be 
thought of as a ratio of error effects and treatment 
effects as follows:

=
+f f

f
Test statistic

(error effects) (treatment effects)
(error effects)

,

where f () denotes a function of the effects in paren-
theses. The use of a block design enables a researcher to 
isolate variation attributable to the blocks variable so 
that it does not appear in estimates of error effects. By 
removing this nuisance variable from the numerator 
and denominator of the test statistic, a researcher is 
rewarded with a more powerful test of a false null 
hypothesis.

Two null hypotheses can be tested in a random-
ized block design. One hypothesis concerns the 
equality of the Treatment A population means; the 
other hypothesis concerns the equality of the blocks 
population means. For this design and those described 
later, assume that the treatment represents a fixed 
effect and the nuisance variable, blocks, represents a 
random effect. For this mixed model, the null 
hypotheses are

Figure 2  Layout for a Randomized Block Design With p = 3 Treatment Levels and n = 10 Blocks

Note: aj denotes a treatment level (Treat. Level); Yij denotes a measure of the dependent variable (Dep. Var.). Each block 
contains three matched participants. The participants in each block are randomly assigned to the treatment levels. The means 
of Treatment A are denoted by Y .1  and Y .2 and Y .3 and the means of the blocks are denoted by Y Y, ...,.1 10. .
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μ μ μ= = =H

A

:

(treatment population means are equal)
p0 ·1 ·2 ·

σ =H : 0

(variance of the blocks,BL,population means is equal

to zero)

BL0
2

where µj denotes the population mean for the i th 
block and the j th level of treatment A.

The F  statistics for testing these hypotheses are

F
SSA p

SSRESIDUAL n p

MSA
MSRESIDUAL

/ ( 1)
/ [( 1)( 1)]

= −
− −

=

and

F
SSBL n

SSRESIDUAL n p

MSBL
MSRESIDUAL

/ ( 1)
/ [( 1)( 1)]

.

= −
− −

=

The test of the blocks null hypothesis is generally of 
little interest because the population means of the nui-
sance variable are expected to differ.

The advantages of the design are simplicity in the 
statistical analysis and the ability to isolate a nuisance 
variable so as to obtain greater power to reject a false 
null hypothesis. The disadvantages of the design include 
the difficulty of forming homogeneous blocks and of 
observing participants p times when p is large and the 
restrictive sphericity assumption of the design. This 
assumption states that in order for F  statistics to be 
distributed as central F  when the null hypothesis is true, 
the variances of the differences for all pairs of treatment 
levels must be homogeneous; that is,

j j2 for all and .Y Y j j jj

2 2 2
j j

σ σ σ σ= + −− ′ ′
′

′

Generalized Randomized Block Design

A generalized randomized block design is a variation 
of a randomized block design. Instead of having n blocks 
of p homogeneous participants, the generalized randomized 
block design has w groups of np homogeneous partici-
pants. The w groups, like the n blocks in a randomized 

Figure 3 � Generalized Randomized Block Design With N = 30 Participants, p = 3 Treatment Levels, and w = 5 Groups of 
np = (2) (3) = 6 Homogeneous Participants
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block design, represent a nuisance variable that a researcher 
wants to remove from the error effects. The generalized 
randomized block design can be used when a researcher is 
interested in one treatment with p 2≥  treatment levels 
and the researcher has sufficient participants to form w 
groups, each containing np homogeneous participants. 
The total number of participants in the design is N npw.=  
The layout for the design is shown in Figure 3.

In the memorization experiment described earlier, 
suppose that 30 volunteers are available. The 30 par-
ticipants are ranked with respect to IQ. The 
np (2)(3) 6= =  participants with the highest IQs are 
assigned to Group 1, the next 6 participants are 
assigned to Group 2, and so on. The np 6=  participants 
in each group are then randomly assigned to the p 3=  
treatment levels with the restriction that n 2=  partici-
pants are assigned to each level.

The total SS and total degrees of freedom are parti-
tioned as follows:

= + + × +
− = − + − + − − + −

SSTOTAL SSA SSG SSA G SSWCELL

npw p w p w pw n1 ( 1) ( 1) ( 1)( 1) ( 1),

where SSG denotes the groups SS and SSA G×  denotes 
the interaction of Treatment A and groups. The within-
cells SS, SSWCELL, is used to estimate error effects. 
Three null hypotheses can be tested:

1.		 = = =H µ µ µ: . .o p1 2

		 (Treatment A population means are equal),

2. H : 00 G
2σ =

		� (variance of the groups, G, population means is equal 
to zero),

3.		H : 00 A G
2σ =×

		 (variance of the A × G interaction is equal to zero),

where µjz denotes a population mean for the ith participant 
in the jth treatment level and zth group. The three null 
hypotheses are tested using the following F  statistics:

1. F
SSA p

SSWCELL pw n
MSA

MSWCELL
/ ( 1)
/ [ ( 1)]

,= −
−

=

2. F
SSG w

SSWCELL pw n
MSG

MSWCELL
/ ( 1)

/ [ ( 1)]
= −

−
= ,

3. =
× − −

−
=

×
F

SSA G p w
SSWCELL pw n

MSA G
MSWCELL

/ ( 1)( 1)
/ [ ( 1)]

The generalized randomized block design enables a 
researcher to isolate one nuisance variable—an advan-
tage that it shares with the randomized block design. 
Furthermore, the design uses the within-cell variation 
in the pw (3)(5) 15= =  cells to estimate error effects 
rather than an interaction, as in the randomized block 
design. Hence, the restrictive sphericity assumption of 
the randomized block design is replaced with the 
assumption of homogeneity of within-cell population 
variances.

Block Designs With  
Two or More Treatments

The blocking procedure that is used with a randomized 
block design can be extended to experiments that have 
two or more treatments, denoted by the letters A, B, C, 
and so on.

Randomized Block Factorial Design

A randomized block factorial design with two treat-
ments, denoted by A and B, is constructed by crossing 
the p  levels of Treatment A with the q levels of 

Figure 4 � Layout for a Two-Treatment, Randomized Block Factorial Design in Which Four Homogeneous Participants 
Are Randomly Assigned to the pq = 2 × 2 = 4 Treatment Combinations in Each Block

Note: ajbk denotes a treatment combination (Treat. Comb.); Yijk denotes a measure of the dependent variable (Dep. Var.).
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Treatment B. The design’s n blocks each contain p q×  
treatment combinations: a b a b a b, .p q1 1 1 2 …  The design 
enables a researcher to isolate variation attributable to 
one nuisance variable while simultaneously evaluating 
two treatments and associated interaction.

The layout for the design with p 2=  levels of 
Treatment A and q 2=  levels of Treatment B is 
shown in Figure 4. It is apparent from Figure 4 that 
all the participants are used in simultaneously evalu-
ating the effects of each treatment. Hence, the design 
permits efficient use of resources because each treat-
ment is evaluated with the same precision as if the 
entire experiment had been devoted to that treatment 
alone.

The total SS and total degrees of freedom for a two-
treatment randomized block factorial design are parti-
tioned as follows:

= + +
− = − + − + −

+ × +
+ − − + − −

SSTOTAL SSBL SSA SSB

npq n p q

SSA B SSRESIDUAL

p q n pq

1 ( 1) ( 1) ( 1)

( 1)( 1) ( 1)( 1).

Four null hypotheses can be tested:

1. H : 0BL0
2σ =  (variance of the blocks, BL, population 

means is equal to zero),

2. H0: µ·1· = µ·2· =!= µ·p·
 (Treatment A population 

means are equal),

3. H : q0 · ·1 · ·2 · ·μ μ μ= = =  (Treatment B population 
means are equal),

4. H A B:0 ×  interaction = 0 (Treatments A and B do not 
interact),

where µijk denotes a population mean for the ith 
block, jth level of Treatment A, and kth level of treat-
ment B. The F  statistics for testing the null hypotheses 
are as follows:

F
SSBL n

SSRESIDUAL n pq

MSBL
MSRESIDUAL

/ ( 1)
/ [( 1)( 1)]

,

= −
− −

=

F
SSA p

SSRESIDUAL n pq

MSA
MSRESIDUAL

/ ( 1)
/ [( 1)( 1)]

,

= −
− −

=

F
SSB q

SSRESIDUAL n pq

MSB
MSRESIDUAL

/ ( 1)
/ [( 1)( 1)]

,

= −
− −

=

F
SSA B p q

SSRESIDUAL n pq

MSA B
MSRESIDUAL

/ ( 1)( 1)
/ [( 1)( 1)]

.

= × − −
− −

= ×

The design shares the advantages and disadvantages 
of the randomized block design. Furthermore, the 
design enables a researcher to efficiently evaluate two 
or more treatments and associated interactions in the 
same experiment. Unfortunately, the design lacks sim-
plicity in the interpretation of the results if interaction 
effects are present. The design has another disadvan-
tage: If Treatment A or B has numerous levels, say four 
or five, the block size becomes prohibitively large. For 
example, if p 4=  and q 3= , the design has blocks of 
size 4 3 12.× =  Obtaining n blocks with 12 matched 
participants or observing n participants on 12 occa-
sions is often not feasible. A design that reduces the size 
of the blocks is described next.

Split-Plot Factorial Design

In the late 1920s, Fisher and Frank Yates addressed 
the problem of prohibitively large block sizes by devel-
oping confounding schemes in which only a portion of 
the treatment combinations in an experiment are 
assigned to each block. The split-plot factorial design 
achieves a reduction in the block size by confounding 
one or more treatments with groups of blocks. Group–
treatment confounding occurs when the effects of, say, 
Treatment A with p  levels are indistinguishable from 
the effects of p  groups of blocks.

The layout for a two-treatment split-plot factorial 
design is shown in Figure 5. The block size in the split-
plot factorial design is half as large as the block size of the 
randomized block factorial design in Figure 4 although 
the designs contain the same treatment combinations. 
Consider the sample means Y·1· and Y·2·  in Figure 5. 
Because of confounding, the difference between Y·1· and 
Y·2· reflects both group effects and Treatment A effects.

The total SS and total degrees of freedom for a 
split-plot factorial design are partitioned as follows:

= + +
+ × +

− = − + − + −
+ − − + − −

SSTOTAL SSA SSBL A SSB

SSA B SSRESIDUAL

npq p p n q

p q p n q

( )

1 ( 1) ( 1) ( 1)

( 1)( 1) ( 1)( 1),
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139Blockmodeling

where SSBL(A) denotes the SS for blocks within 
Treatment A. Three null hypotheses can be tested:

1. H0: µ·1·= µ·2· =!= µ·p  (Treatment A population 
means are equal),

2. H : q0 · ·1 · ·2 · ·μ μ μ= = =  (Treatment B population 
means are equal),

3. H A B:0 ×  interaction = 0 (Treatments A and B do not 
interact),

where µjk denotes the i th block, jth level of treatment 
A, and kth level of treatment B. The F  statistics are

F
SSA p

SSBL A p n
MSA

MSBL A

F
SSB q

SSRESIDUAL p n q

MSB
MSRESIDUAL

F
SSA B p q

SSRESIDUAL p n q

MSA B
MSRESIDUAL

/ ( 1)
( ) / [ ( 1)] ( )

,

/ ( 1)
/ [ ( 1)( 1)]

,

/ ( 1)( 1)
/ [ ( 1)( 1)]

.

= −
−

=

= −
− −

=

= × − −
− −

= ×

The split-plot factorial design uses two error terms: 
MSBL(A) is used to test Treatment A; a different and 
usually much smaller error term, MSRESIDUAL, is 
used to test Treatment B and the A B×  interaction. 
Because MSRESIDUAL is generally smaller than 
MSBL(A), the power of the tests of Treatment B and the 
A B×  interaction is greater than that for Treatment A.

Roger E. Kirk

See also Analysis of Variance (ANOVA); Confounding; F  Test; 
Nuisance Variable; Null Hypothesis; Sphericity; Sums of 
Squares
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Blockmodeling

Blockmodeling is an approach for partitioning or 
clustering units (e.g., nodes, vertices, actors) of a 
network based on patterns (i.e., structure) of their 
ties to each other. By shrinking the groups that are 
then obtained, a new network called a blockmodel is 

Figure 5 � Layout for a Two-Treatment, Split-Plot Factorial Design in Which 10 + 10 = 20 Homogeneous Blocks Are 
Randomly Assigned to the Two Groups

Note: ajbk denotes a treatment combination (Treat. Comb.); Yijk denotes a measure of the dependent variable (Dep. Var.). 
Treatment A is confounded with groups. Treatment B and the A ´ B are not confounded.
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Figure 1  From an Unordered Network/Matrix to a Blockmodel
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created whereby units represent groups and ties rep-
resent ties among these groups. This process is 
depicted in Figure 1: The right column shows graph 
representation and the left column shows the matrix 
representation of the network. Blockmodeling is 
therefore used to transform a large and complex net-
work into  a smaller and more comprehensible one. 
Blockmodeling has also been used to operationalize 
social roles.

A More Detailed Description
The term blockmodeling arises from the fact that when 
a network is represented by a matrix, and this matrix is 
rearranged according to a partition (so that the units 
that are part of the same groups are located together), 
blocks that represent ties within and between groups 
appear if one separates the groups by lines. These blocks 
are seen in the second row of the left column in Figure 
1, where nine blocks are visible.

More formally, blockmodeling is an approach for 
clustering units in a network based on some form of 
equivalence. Equivalence is something that tells which 
units can be considered equal in some respect. As units 
typically are not perfectly equivalent to each other, 
blockmodeling methods usually attempt to cluster 
together units that are more equivalent to each other 
than to other units.

Equivalences
The form of equivalence class that is most commonly 
used is structural equivalence. Units are structurally 
equivalent if they are connected in the same way to the 
same units. If a partition is compatible with structural 
equivalence—that is, if the units within all the groups 
are perfectly structurally equivalent—then all ties 
within each block that are induced by the partition into 
such groups are all equal. With binary networks, this 
means that either the induced blocks are null (empty, 
meaning that no ties are present or, equivalently, that 
all ties have a value of 0) or they are complete (all pos-
sible ties are present or, equivalently, all of the ties have 
a value of 1).

Similarly, units are regularly equivalent if they are 
connected in the same way to equivalent others. The 
definition is circular by design. For binary networks, if 
a partition is compatible with regular equivalence, then 
all the blocks induced by that partition are either null or 
regular. A regular block is a block that has at least one 
tie in each row and each column. Namely, each unit 
from a row group must be connected to at least one unit 
from the column group.

Generalized equivalence is defined by block types 
and possibly their position in the blockmodel. Block 
type defines the allowed pattern of ties within a block. 
While describing structural and regular equivalence, 
these patterns are described earlier for binary networks 
for null, complete, and regular block types, yet numer-
ous block types are defined for both binary and valued 
networks. Therefore, generalized equivalence is not a 
single equivalence class, but a way of specifying custom 
equivalences.

Another frequently used form of equivalence is 
stochastic equivalence. Units are stochastically equiva-
lent if they have the same probability of having a tie 
to all other units.

Types of Blockmodeling
Blockmodeling approaches are characterized by several 
features. One such feature is the kind of networks the 
approaches are designed to analyze. For example, there 
are approaches for one-mode networks (all units can 
connect to any other unit and are of the same type) as 
well as for two-mode networks (ties are only possible 
between units of different types). Similarly, there are 
approaches that can handle either only single-relational 
networks or also multirelational ones. Certain 
approaches can also handle temporal or multilevel net-
works. Still pertaining to the type of networks, some 
approaches can handle only binary networks, while 
others can handle signed (where negative ties are also 
possible) or values networks (where ties can also have 
other values beyond simply 0 or 1).

Other divisions are based on the underlying charac-
teristics of the algorithm being used. An important dis-
tinction is between stochastic and deterministic 
blockmodeling. Stochastic blockmodeling approaches 
are essentially those based on stochastic equivalence. 
They rely on some probabilistic model or generative 
model of network formation. Similar models also go by 
the name of mixture models for block clustering.

In contrast, deterministic approaches are not based 
on such a model and can be split into direct and indirect 
methods. Indirect methods involve two steps. First, a 
dissimilarity matrix among all units compatible with 
the selected equivalence must be computed. Second, 
building on that, a partition is obtained via some classi-
cal clustering technique, usually hierarchal clustering.

In contrast with the indirect approaches, the direct 
approaches partition units by directly optimizing some 
criterion function (which again must be compatible 
with the selected equivalence). Direct approaches vary 
according to both the criterion function they optimize 
and the optimization method. For instance, the criterion 
function for binary networks could be the number of 
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errors in blocks or, for both binary and valued net-
works, the sum of squares of deviations from the block 
mean (analogous to Ward’s criterion function or 
k-means criterion from classical cluster analysis).

Most deterministic approaches are only able to find 
partitions compatible with structural equivalence. A 
notable exception is Patrick Doreian, Vladimir Batagelj, 
and Anuška Ferligoj’s generalized blockmodeling. 
Generalized blockmodeling is also able to find parti-
tions compatible with regular and generalized equiva-
lence; therefore, it can be used to find partitions and 
blockmodels with specific properties. When using gen-
eralized blockmodeling, some or all parts of the block-
model can be prespecified.

Aleš Žiberna

Author’s Note: The author acknowledges the financial 
support from the Slovenian Research Agency (Research Core 
Funding No. P5-0168 and the project “Blockmodeling 
Multilevel and Temporal Networks” No. J7-8279).

See also Cluster Analysis; Mixture Models; Network Analysis; 
Social Network Analysis
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Bonferroni Procedure

The Bonferroni procedure is a statistical adjustment to 
the significance level of hypothesis tests when multiple 
tests are being performed. The purpose of an adjust-
ment such as the Bonferroni procedure is to reduce the 
probability of identifying significant results that do not 
exist, that is, to guard against making Type I errors 
(rejecting null hypotheses when they are true) in the 
testing process. This potential for error increases with 
an increase in the number of tests being performed in a 
given study and is due to the multiplication of probabil-
ities across the multiple tests. The Bonferroni procedure 
is often used as an adjustment in multiple comparisons 
after a significant finding in an analysis of variance 
(ANOVA) or when constructing simultaneous confi-
dence intervals for several population parameters, but 

more broadly, it can be used in any situation that 
involves multiple tests. The Bonferroni procedure is one 
of the more commonly used procedures in multiple test-
ing situations, primarily because it is an easy adjustment 
to make. A strength of the Bonferroni procedure is its 
ability to maintain Type I error rates at or below a 
nominal value. A weakness of the Bonferroni procedure 
is that it often overcorrects, making testing results too 
conservative because of a decrease in statistical power.

A variety of other procedures have been developed 
to control the overall Type I error level when multiple 
tests are performed. Some of these other multiple com-
parison and multiple testing procedures, including the 
Student–Newman–Keuls procedure, are derivatives of 
the Bonferroni procedure, modified to make the proce-
dure less conservative without sacrificing Type I error 
control. Other multiple comparison and multiple testing 
procedures are simulation based and are not directly 
related to the Bonferroni procedure.

This entry describes the procedure’s background, 
explains the procedure, and provides an example. This 
entry also presents applications for the procedure and 
examines recent research.

Background
The Bonferroni procedure is named after the Italian math-
ematician Carlo Emilio Bonferroni. Although his work 
was in mathematical probability, researchers have since 
applied his work to statistical inference. Bonferroni’s prin-
cipal contribution to statistical inference was the identifi-
cation of the probability inequality that bears his name.

Explanation
The Bonferroni procedure is an application of the 
Bonferroni inequality to the probabilities associated 
with multiple testing. It prescribes using an adjustment 
to the significance level for individual tests when simul-
taneous statistical inference for several tests is being 
performed. The adjustment can be used for bounding 
simultaneous confidence intervals, as well as for simul-
taneous testing of hypotheses.

The Bonferroni inequality states the following:

1.		�Let A i, 1i =  to k, represent k events. Then, 

P Ai
i=1

k

∩
⎛
⎝⎜

⎞
⎠⎟
≥1− P Ai( )

i=1

k

∑ , where Ai is the 

complement of the event Ai.

2. Consider the mechanics of the Bonferroni inequality, 

P Ai
i=1

k

∩
⎛
⎝⎜

⎞
⎠⎟
≥1− P Ai( )

i=1

k

∑ ,

Do n
ot c

opy
, po

st, 
or d

istr
ibu

te

Copyright ©2022 by SAGE Publications, Inc. 
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.



143Bonferroni Procedure

3. and rewrite the inequality as follows: 

1−P Ai
i=1

k

∩
⎛
⎝⎜

⎞
⎠⎟
≤ P Ai( )

i=1

k

∑ .

Now, consider Ai as a Type I error in the ith test in a 

collection of k hypothesis tests. Then P Ai
i=1

k

∩
⎛
⎝⎜

⎞
⎠⎟

 repre-

sents the probability that no Type I errors occur in the 

k hypothesis tests, and 1− P Ai
i=1

k

∩
⎛
⎝⎜

⎞
⎠⎟

 represents the 

probability that at least one Type I error occurs in the k 
hypothesis tests. P Ai )(  represents the probability of a 
Type I error in the ith test, and we can label this prob-
ability as P Ai iα )(= . So Bonferroni’s inequality implies 
that the probability of at least one Type I error occur-

ring in k hypothesis tests is .i
i

k

1
∑α≤

=
If, as is often assumed, all k tests have the same prob-

ability of a Type I error, α , then we can conclude that 
the probability of at least one Type I error occurring in 
k hypothesis tests is kα≤ .

Consider an illustration of Bonferroni’s inequality in 
the simple case in which k 2= : Let the two events A1 and 
A2 have probabilities P(A1) and P(A2), respectively. The 
sum of the probabilities of the two events is clearly 
greater than the probability of the union of the two 
events because the former counts the probability of the 
intersection of the two events twice, as shown in Figure 1.

The Bonferroni procedure is simple in the sense that 
a researcher need only know the number of tests to be 
performed and the probability of a Type I error for 
those tests in order to construct this upper bound on the 
experiment-wise error rate. However, as mentioned ear-
lier, the Bonferroni procedure is often criticized for 
being too conservative. Consider that the researcher 

does not typically know what the actual Type I error 
rate is for a given test. Rather, the researcher constructs 
the test so that the maximum allowable Type I error rate 
is α . Then the actual Type I error rate may be consider-
ably less than α  for any given test.

For example, suppose a test is constructed with a 
nominal .05α = . Suppose the researcher conducts k 10=  
such tests on a given set of data, and the actual Type I error 
rate for each of the tests is .04. Using the Bonferroni pro-
cedure, the researcher concludes that the experiment-wise 
error rate is at most 10*.05,or .50. The error rate in this 
scenario is in fact .40, which is considerably less than .50.

As another example, consider the extreme case in 
which all k 10=  hypothesis tests are exactly dependent 
on each other—the same test is conducted 10 times on 
the same data. In this scenario, the experiment-wise 
error rate does not increase because of the multiple tests. 
In fact, if the Type I error rate for one of the tests is 

.05,α =  the experiment-wise error rate is the same, .05, 
for all 10 tests simultaneously. We can see this result 

from the Bonferroni inequality: P Ai
i=1

k

∩
⎛
⎝⎜

⎞
⎠⎟
= P Ai( )  when 

the events, Ai, are all the same because 


A Ai
i

k

i
1

=
=

. The 

Bonferroni procedure would suggest an upper bound on 
this experiment-wise probability as .50—overly conser-
vative by 10-fold! It would be unusual for a researcher 
to conduct k  equivalent tests on the same data. 
However, it would not be unusual for a researcher to 
conduct k tests and for many of those tests, if not all, to 
be partially interdependent. The more interdependent 
the tests are, the smaller the experiment-wise error rate 
and the more overly conservative the Bonferroni 
procedure is.

Other procedures have sought to correct for infla-
tion in experiment-wise error rates without being as 
conservative as the Bonferroni procedure. However, 
none are as simple to use. These other procedures 
include the Student–Newman–Keuls, Tukey, and 
Scheffé procedures, to name a few. Descriptions of 
these other procedures and their uses can be found in 
many basic statistical methods textbooks, as well as 
this encyclopedia.

Example
Consider the case of a researcher studying the effect 
of  three different teaching methods on the average 
words per minute (µ1, µ2, µ3)  at which a student can 
read. The researcher tests three hypotheses: 
µ1 = µ2(vs. µ1 ≠ µ2),µ1 = µ3(vs. µ1 ≠ µ3), and µ2 = µ3(vs. µ2 ≠ µ3). 
Each test is conducted at a nominal level, .05,0α =  
resulting in a comparison-wise error rate of .05cα =  for 

Figure 1  Illustration of Bonferroni’s Inequality

Note: A1 = event 1; A2 = event 2; P(A1) = probability of A1; 
P(A2) = probability of A2. Interaction between events results 
in redundance in probability.

P (A1) P (A2)
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each test. Denote A1, A2, and A3 as the event of falsely 
rejecting the null hypotheses 1, 2, and 3, respectively, 
and denote p p p1, 2, and 3 the probability of events A1, 
A2, and A3, respectively. These would be the individual 
p values for these tests. It may be assumed that some 
dependence exists among the three events, A1, A2, and 
A3, principally because the events are all based on data 
collected from a single study. Consequently, the experi-
ment-wise error rate, the probability of falsely rejecting 
any of the three null hypotheses, is at least equal to 

.05eα =  but potentially as large as .05*3 .15.=  For this 
reason, we may apply the Bonferroni procedure by 
dividing our nominal level of .050α =  by k 3=  to 
obtain .0167.0

*α =  Then, rather than comparing the p 
values p1, p2, and p3 to 050α = , we compare them to 

.0167.0
*α =  The experiment-wise error rate is therefore 

adjusted down so that it is less than or equal to the 
original intended nominal level of .05.0α =

It should be noted that although the Bonferroni pro-
cedure is often used in the comparison of multiple 
means, because the adjustment is made to the nominal 
level, 0α , or to the test’s resulting p value, the multiple 
tests could be hypothesis tests of any population param-
eters based on any probability distributions. So, for 
example, one experiment could involve a hypothesis test 
regarding a mean and another hypothesis test regarding 
a variance, and an adjustment based on k 2=  could be 
made to the two tests to maintain the experiment-wise 
error rate at the nominal level.

Applications
As noted above, the Bonferroni procedure is used pri-
marily to control the overall α  level (i.e., the experi-
ment-wise level) when multiple tests are being performed. 
Many statistical procedures have been developed at least 
partially for this purpose; however, most of those proce-
dures have applications exclusively in the context of 
making multiple comparisons of group means after find-
ing a significant ANOVA result. While the Bonferroni 
procedure can also be used in this context, one of its 
advantages over other such procedures is that it can also 
be used in other multiple testing situations that do not 
initially entail an omnibus test such as ANOVA.

For example, although most statistical tests do not 
advocate using a Bonferroni adjustment when testing 
beta coefficients in a multiple regression analysis, it 
has been shown that the overall Type I error rate in 
such an analysis involving as few as eight regression 
coefficients can exceed .30, resulting in almost a 1 in 
3 chance of falsely rejecting a null hypothesis. Using a 
Bonferroni adjustment when one is conducting these 
tests would control that overall Type I error rate. 
Similar adjustments can be used to test for main 

effects and interactions in ANOVA and multivariate 
ANOVA designs because all that is required to make 
the adjustment is that the researcher knows the num-
ber of tests being performed. The Bonferroni adjust-
ment has been used to adjust the experiment-wise 
Type I error rate for multiple tests in a variety of dis-
ciplines, such as medical, educational, and psycho-
logical research, to name a few.

Recent Research
One of the main criticisms of the Bonferroni procedure is 
the fact that it overcorrects the overall Type I error rate, 
which results in lower statistical power. Many modifica-
tions to this procedure have been proposed over the years 
to try to alleviate this problem. Most of these proposed 
alternatives can be classified either as step-down proce-
dures (e.g., the Holm method), which test the most sig-
nificant (and, therefore, smallest) p value first, or step-up 
procedures (e.g., the Hochberg method), which begin 
testing with the least significant (and largest) p value. 
With each of these procedures, although the tests are all 
being conducted concurrently, each hypothesis is not 
tested at the same time or at the same level of significance.

More recent research has attempted to find a divisor 
between 1 and k that would protect the overall Type I 
error rate at or below the nominal .05 level but closer 
to that nominal level so as to have a lesser effect on the 
power to detect actual differences. This attempt was 
based on the premise that making no adjustment to the 
α  level is too liberal an approach (inflating the experi-
ment-wise error rate), and dividing by the number of 
tests, k, is too conservative (overadjusting that error 
rate). It was shown that the optimal divisor is directly 
determined by the proportion of nonsignificant differ-
ences or relationships in the multiple tests being per-
formed. Based on this result, a divisor of k q(1 )− , where 
q = the proportion of nonsignificant tests, did the best 
job of protecting against Type I errors without sacrific-
ing as much power. Unfortunately, researchers often do 
not know, a priori, the number of nonsignificant tests 
that will occur in the collection of tests being per-
formed. Consequently, research has also shown that a 
practical choice of the divisor is k/1.5 (rounded to the 
nearest integer) when the number of tests is greater than 
three. This modified Bonferroni adjustment will outper-
form alternatives in keeping the experiment-wise error 
rate at or below the nominal .05 level and will have 
higher power than other commonly used adjustments.

Jamis J. Perrett and Daniel J. Mundfrom

See also Analysis of Variance (ANOVA); Hypothesis; Multiple 
Comparison Tests; Newman–Keuls Test and Tukey Test; 
Scheffé Test
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Bootstrapping 

Bootstrapping is a computerized simulation operation 
that involves random resampling from the data set 
one is using to produce perhaps thousands of new 
data sets that have similar participant compositions to 
the original data set. For example, if a researcher had 
a data set containing 500 participants, the bootstrap-
ping procedure would sample from the original data 
set to create new data sets, each of 500 participants. 
It is used to determine the statistical significance of 
parameter estimates whose significance cannot be 
tested using established statistical distributions (e.g., t, 
F, and chi-square distributions). One might use boot-
strapping when data are nonnormal or the distribu-
tion of a parameter is difficult to anticipate (e.g., 
indirect effects in path analysis). Bootstrapping esti-
mates the standard error (standard deviation of a set 

of statistical values such as a set of means from mul-
tiple samples) for a given statistical analysis, as well as 
confidence intervals for a parameter. Standard errors 
and confidence intervals are key to determining statis-
tical significance.

This entry describes how and why bootstrapping 
samples are created, and how bootstrap samples indicate 
statistical significance of results. Other resampling 
techniques that are alternatives to bootstrapping are 
also introduced. The entry concludes with a review of 
software that can be used for bootstrapping.

How Bootstrap  
Samples Are Drawn

The key to bootstrapping is that the new bootstrap 
simulation samples are drawn with replacement. 
Imagine that a researcher places five ping-pong balls 
into a hat, the number “1” having been painted onto 
one ball, a “2” onto another, and the same for “3,” “4,” 
and “5.” Suppose further that the researcher plans to 
draw a random sample of three balls. The term with 
replacement refers to the fact that the ball that is drawn 
first is put back into the hat to possibly be drawn again. 
The same is done with the ball drawn second. Hence, 
the final three-ball sample conceivably could consist of 
balls 2, 2, and 4, or balls 1, 3, and 3, for example. If 
sampling is done without replacement, a ball selected 
into the sample is not returned to the hat; hence, the 
same number cannot appear more than once in the 
sample. Possible samples might, therefore, include balls 
1, 2, and 3, or balls 2, 4, and 5. 

Without replacement, drawing 500 people to create 
new data sets of 500 (a more realistic example for 
bootstrapping) would simply keep reproducing the 
original sample of the same 500 people. With 
replacement, however, the same participant in the 
original data set could be selected into a new sample, 
put back into the original sampling pool, then selected 
again into the same new sample. Other participants in 
the original sample may not be selected at all into one 
of the new samples. Suppose a researcher who has a 
sample of 500 participants wishes to draw 1,000 new 
bootstrap samples, each with the same sample size of 
500. One of these bootstrap samples might include 
participants with the identification (ID) number 1, ID 
number 2, ID number 2 again (so that his or her data 
are used twice), ID number 5, ID number 6, and so 
forth, all the way to a total of 500 participants. 
Another bootstrap sample might include participants 
with ID number 3, ID number 3 again, ID number 4, 
ID number 7, ID number 7 again, ID number 7 a third 
time, ID number 10, and so forth. 

Do n
ot c

opy
, po

st, 
or d

istr
ibu

te

Copyright ©2022 by SAGE Publications, Inc. 
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.



146 Bootstrapping 

The Rationale for Bootstrap Samples
Amassing perhaps 1,000 or 5,000 synthetic samples 
from an original source sample is thought to approxi-
mate the real samples that would appear if a researcher 
drew thousands of random samples from a population 
of actual people (e.g., residents of Chicago or London). 
Bootstrapping is used in place of actual population sam-
pling because it would be virtually impossible logisti-
cally and financially to draw and interview people 
comprising thousands of random samples of conven-
tional sizes (e.g., 500–1,000 respondents) from a given 
geographic entity. For this reason, the unseen source of 
the bootstrap samples is sometimes referred to as a sur-
rogate population, with the resulting samples some-
times called phantom samples.

How Bootstrap  
Samples Indicate  

Statistical Significance of a Result
Once the bootstrap samples are obtained, the computer 
program runs the desired analysis (e.g., multiple regres-
sion) in each sample and compiles a histogram of the 
focal statistic (e.g., a beta coefficient from one predictor 
to the outcome) in each of the bootstrap samples. This 
step, thus, creates a sampling distribution of the beta 
coefficient. As a consequence of the Central Limit 
Theorem, the histogram of regression coefficients will 
tend toward a normal distribution. Christoph Hanck 
and colleagues (2020) provide an interactive online ani-
mated demonstration of the process. Statistics blogger 
Jim Frost (2020) notes that the bootstrap method can 
analyze a large variety of sample statistics, including the 
mean,  median, mode, standard deviation, analysis of 
variance, correlations, regression coefficients, propor-
tions, odds ratios, variance in binary data, and 
multivariate statistics. 

One way to obtain a bootstrap confidence interval 
(95% CI, in this example) is to remove the highest 2.5% 
and lowest 2.5% of parameter estimates (here, regression 
coefficients) from the histogram of results from the 
bootstrap samples. This is known as a percentile 
confidence interval and is not necessarily symmetric to 
the left and right of the mean of the focal parameter. The 
percentile CI is considered a nonparametric technique. 
After removal of the upper and lower 2.5% of the 
distribution, the remaining range from the lowest to 
highest parameter estimate constitutes the CI. With a 
large sample and a roughly normal bootstrap sampling 
distribution, a CI can be determined via equations 
involving the bootstrap standard error. The focal 
parameter (e.g., regression coefficient) is significantly 
different from zero if the CI end points are either both 

greater than zero (i.e., significantly positive coefficient) or 
both less than zero (i.e., significantly negative coefficient). 
Software packages typically display the lower and upper 
end points of confidence intervals in their output.

Refinements to Bootstrap Solutions
More complex alternatives, including bias-corrected 
and accelerated (BCa) CIs, can be used to adjust percen-
tile intervals to make them more accurate. Two flaws 
for which the BCa attempts to correct are bias and 
skewness in the distribution. According to David Moore 
and colleagues (2016, pp. 16–10), “Bias is the difference 
between the mean of the resample means and the origi-
nal [sample] mean.” Skewness is used here in the ordi-
nary sense, in terms of asymmetry between the two 
sides of the distribution. Moore and colleagues note 
that calculation of such CIs is highly technical but urge 
the use of BCa or similar methods when available in the 
software package one is using. 

Illustration With  
Path Analysis Indirect Effects

One common use of bootstrapping in psychology and 
other social sciences is to determine the significance of 
indirect or mediational effects in path analysis modeling 
from an antecedent variable to an outcome variable. 
The magnitude of indirect effects is calculated by multi-
plying the two respective path coefficients, from an 
antecedent to a proposed mediator variable and from 
the mediator to an outcome (e.g., exposure to stressful 
life circumstances leading to increases in cortisol and 
cortisol leading to physical symptoms). Bootstrap tests 
of the significance of indirect effects would be imple-
mented in line with the aforementioned general steps, 
by generating large numbers of random resamplings of 
the original data set, running path analysis models in 
each of the new synthetic samples, and plotting a histo-
gram of the resulting indirect effects. Andrew Hayes has 
created a macro (add-on) to perform bootstrap media-
tion (and other) analyses with indirect effects in the 
SPSS and SAS packages (with an R macro in develop-
ment at this writing).

Alternative Resampling Techniques
To provide context on bootstrapping’s capabilities, 
limitations, and scope, two alternatives to it that also 
use resampling to determine statistical significance—
jackknifing and permutation tests—are discussed briefly. 
Jackknifing creates repeated synthetic samples by 
deleting one observation from the original sample. 
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Permutation tests provide a way to assess significance 
by comparing a test statistic from one’s sample with a 
critical value (akin to how, before computers automati-
cally generated p levels for t- or chi-square tests, 
researchers used to consult tables in the back of a statis-
tics textbook to see if their obtained statistic exceeded a 
critical value for significance). Permutation tests create 
synthetic distributions (centered at zero, akin to a 
z-distribution, representing the null hypothesis) from 
one’s data, providing a way to compare an obtained test 
statistic to a critical value. 

Bootstrapping Versus  
Other Resampling Techniques

Because bootstrapping and jackknifing are the most 
similar to each other and often are discussed in conjunc-
tion with each other, direct comparison of the two tech-
niques is warranted. First, jackknifing is a simpler 
approximation to bootstrapping, suggesting the latter 
should be preferred unless prohibitively difficult (e.g., 
limited computer resources). Second, properties of a 
statistical parameter including linearity (i.e., a function 
involving only basic mathematical operations such as 
adding and multiplying, as opposed to raising numbers 
to higher powers such as squaring) and smoothness  
affect the usefulness of bootstrapping and jackknifing. 
Jackknife analyses of nonsmooth parameters such as 
the median and of nonlinear functions perform poorly, 
suggesting that bootstrapping can be used with a 
broader range of statistics than can jackknifing. Third, 
as discussed by Rodgers, the sampling frame of possible 
combinations of cases is much larger for bootstrapping 
than for other resampling techniques, making boot-
strapping advantageous. On the other hand, bootstrap-
ping is prone to difficulties with small samples.

Software Packages for Bootstrapping
The major statistical packages have general bootstrap-
ping routines (i.e., applicable to a wide variety of tech-
niques), sometimes at extra cost beyond the basic 
package. SAS provides macros known as %BOOT for 
a normally distributed sampling distribution and 
%BOOTCI for confidence intervals from nonnormal 
distributions. SPSS provides bootstrap options in its 
menu-driven modules for several techniques (e.g., mean, 
correlation). Stata offers syntax-based bootstrap rou-
tines. Finally, many different bootstrap routines in R 
can easily be found through internet searches.

Alan Reifman and Sylvia Niehuis

See also Confidence Intervals; Jackknife; Randomization Tests; 
Standard Error of the Mean
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Box-And-Whisker Plot

A box-and-whisker plot, or box plot, is a tool used to 
visually display the range, distribution symmetry, and 
central tendency of a distribution in order to illustrate 
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the variability and the concentration of values within a 
distribution. The box plot is a graphical representation 
of the five-number summary, or a quick way of sum-
marizing the center and dispersion of data for a vari-
able. The five-number summary includes the minimum 
value, 1st (lower) quartile (Q1), median, 3rd (upper) 
quartile (Q3), and the maximum value. Outliers are also 
indicated on a box plot. Box plots are especially useful 
in research methodology and data analysis as one of the 
many ways to visually represent data. From this visual 
representation, researchers glean several pieces of infor-
mation that may aid in drawing conclusions, exploring 
unexpected patterns in the data, or prompting the 
researcher to develop future research questions and 
hypotheses. This entry provides an overview of the his-
tory of the box plot, key components and construction 
of the box plot, and a discussion of the appropriate uses 
of a box plot.

History
A box plot is one example of a graphical technique 
used within exploratory data analysis (EDA). EDA is 
a statistical method used to explore and understand 
data from several angles in social science research. 
EDA grew out of work by John Tukey and his associ-
ates in the 1960s and was developed to broadly 
understand the data, graphically represent data, gen-
erate hypotheses and build models to guide research, 
add robust measures to an analysis, and aid the 
researcher in finding the most appropriate method for 
analysis. EDA is especially helpful when the researcher 
is interested in identifying any unexpected or mislead-
ing patterns in the data. Although there are many 
forms of EDA, researchers must employ the most 
appropriate form given the specific procedure’s pur-
pose and use.

Definition and Construction
One of the first steps in any statistical analysis is to 
describe the central tendency and the variability of the 
values for each variable included in the analysis. The 
researcher seeks to understand the center of the distri-
bution of values for a given variable (central tendency) 
and how the rest of the values fall in relation to the 
center (variability). Box plots are used to visually dis-
play variable distributions through the display of 
robust statistics, or statistics that are more resistant to 
the presence of outliers in the data set. Although there 
are somewhat different ways to construct box plots 
depending on the way in which the researcher wants 
to display outliers, a box plot always provides a visual 
display of the five-number summary. The median is 

defined as the value that falls in the middle after the 
values for the selected variable are ordered from low-
est to highest value, and it is represented as a line in 
the middle of the rectangle within a box plot. As it is 
the central value, 50% of the data lie above the 
median and 50% lie below the median. When the dis-
tribution contains an odd number of values, the 
median represents an actual value in the distribution. 
When the distribution contains an even number of 
values, the median represents an average of the two 
middle values.

To create the rectangle (or box) associated with a 
box plot, one must determine the 1st and 3rd quar-
tiles, which represent values (along with the median) 
that divide all the values into four sections, each 
including approximately 25% of the values. The 1st 
(lower) quartile (Q1) represents a value that divides 
the lower 50% of the values (those below the 
median) into two equal sections, and the 3rd (upper) 
quartile (Q3) represents a value that divides the 
upper 50% of the values (those above the median) 
into two equal sections. As with calculating the 
median, quartiles may represent the average of two 
values when the number of values below and above 
the median is even. The rectangle of a box plot is 
drawn such that it extends from the 1st quar-
tile  through the 3rd quartile and thereby represents 
the interquartile range (IQR; the distance between 
the 1st and 3rd quartiles). The rectangle includes the 
median.

In order to draw the “whiskers” (i.e., lines extending 
from the box), one must identify fences, or values that 
represent minimum and maximum values that would 
not be considered outliers. Typically, fences are calcu-
lated to be Q 1.5−  IQR (lower fence) and Q 1.53 +  IQR 
(upper fence). Whiskers are lines drawn by connecting 
the most extreme values that fall within the fence to the 
lines representing Q1 and Q3. Any value that is greater 
than the upper fence or lower than the lower fence is 
considered an outlier and is displayed as a special sym-
bol beyond the whiskers. Outliers that extend beyond 
the fences are typically considered mild outliers on the 
box plot. An extreme outlier (i.e., one that is located 
beyond 3 times the length of the IQR from the 1st quar-
tile (if a low outlier) or 3rd quartile (if a high outlier) 
may be indicated by a different symbol. Figure 1 pro-
vides an illustration of a box plot.

Box plots can be created in either a vertical or a 
horizontal direction. (In this entry, a vertical box plot is 
generally assumed for consistency.) They can often be 
very helpful when one is attempting to compare the 
distributions of two or more data sets or variables on 
the same scale, in which case they can be constructed 
side by side to facilitate comparison.
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Steps to Creating a Box Plot

The following six steps are used to create a vertical 
box plot:

1. Order the values within the data set from smallest to 
largest and calculate the median, lower quartile (Q1

), 
upper quartile (Q3

), and minimum and maximum 
values.

2. Calculate the IQR.

3. Determine the lower and upper fences.

4. Using a number line or graph, draw a box to mark 
the location of the 1st and 3rd quartiles. Draw a line 
across the box to mark the median.

5. Make a short horizontal line below and above  
the box to locate the minimum and maximum  
values that fall within the lower and upper fences. 
Draw a line connecting each short horizontal  
line to the box. These are the box plot  
whiskers.

6. Mark each outlier with an asterisk or an “o.”

25.00

20.00

15

Data set

IQR

15.00

10.00

5.00

0.00

Data set values
2.0

2.0

2.0

3.0

3.0

5.0

6.0

6.0

7.0

7.0

8.0

8.0

9.0

10.0

22.0

Defining features of this box plot
Median = 6.0

First (Lower) Quartile = 3.0

Third (Upper) Quartile = 8.0

Interquartile Range (IQR) = 5.0

Lower Inner Fence = -4.5 

Upper Inner Fence = 15.5

Range = 20.0

Mild Outlier = 22.0

Figure 1  Box Plot Created With a Data Set and SPSS (an IBM company, formerly called PASW® Statistics)

Note: Data set values: 2.0, 2.0, 2.0, 3.0, 3.0, 5.0, 6.0, 6.0, 7.0, 7.0, 8.0, 8.0, 9.0, 10.0, 22.0. Defining features of this box plot: 
median = 6.0; first (lower) quartile = 3.0; third (upper) quartile = 8.0; interquartile range (IQR) = 5.0; lower inner fence = 4.5; 
upper inner fence = 15.5; range = 20.0; mild outlier = 22.0.Do n
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Making Inferences

R. Lyman Ott and Michael Longnecker described 
five inferences that one can make from a box plot. First, 
the researcher can easily identify the median of the data 
by locating the line drawn in the middle of the box. 
Second, the researcher can easily identify the variability 
of the data by looking at the length of the box. Longer 
boxes illustrate greater variability whereas shorter box 
lengths illustrate a tighter distribution of the data 
around the median. Third, the researcher can easily 
examine the symmetry of the middle 50% of the data 
distribution by looking at where the median line falls in 
the box. If the median is in the middle of the box, then 
the data are evenly distributed on either side of the 
median, and the distribution can be considered sym-
metrical. Fourth, the researcher can easily identify outli-
ers in the data by the asterisks outside the whiskers. 
Fifth, the researcher can easily identify the skewness of 
the distribution. On a distribution curve, data skewed to 
the right show more of the data to the left with a long 
“tail” trailing to the right. The opposite is shown when 
the data are skewed to the left. To identify skewness on 
a box plot, the researcher looks at the length of each 
half of the box plot. If the lower or left half of the box 
plot appears longer than the upper or right half, then 
the data are skewed in the lower direction or skewed to 
the left. If the upper half of the box plot appears longer 
than the lower half, then the data are skewed in the 
upper direction or skewed to the right. If a researcher 
suspects the data are skewed, it is recommended that the 
researcher investigate further by means of a histogram.

Variations
Over the past few decades, the availability of several 
statistical software packages has made EDA easier for 
social science researchers. However, these statistical 
packages may not calculate parts of a box plot in the 
same way, and hence some caution is warranted in their 
use. One study conducted by Michael Frigge, David C. 
Hoaglin, and Boris Iglewicz found that statistical pack-
ages calculate aspects of the box plot in different ways. 
In one example, the authors used three different statisti-
cal packages to create a box plot with the same distri-
bution. Though the median looked approximately the 
same across the three box plots, the differences appeared 
in the length of the whiskers. The reason for the differ-
ences was the way the statistical packages used the 
interquartile range to calculate the whiskers. In general, 
to calculate the whiskers, one multiplies the interquar-
tile range by a constant and then adds the result to Q3 
and subtracts it from Q1. Each package used a different 
constant, ranging from 1.0 to 3.0. Though packages 

typically allow the user to adjust the constant, a pack-
age typically sets a default, which may not be the same 
as another package’s default. This issue, identified by 
Frigge and colleagues, is important to consider because 
it guides the identification of outliers in the data. In 
addition, such variations in calculation lead to the lack 
of a standardized process and possibly to consumer 
confusion. Therefore, the authors provided three sug-
gestions to guide the researcher in using statistical pack-
ages to create box plots. First, they suggested using a 
constant of 1.5 when the number of observations is 
between 5 and 20. Second, they suggested using a con-
stant of 2.0 for outlier detection and rejection. Finally, 
they suggested using a constant of 3.0 for extreme 
cases. In the absence of standardization across statisti-
cal packages, researchers should understand how a 
package calculates whiskers and follow the suggested 
constant values.

Applications
As with all forms of data analysis, there are many 
advantages and disadvantages, appropriate uses, and 
certain precautions researchers should consider when 
using a box plot to display distributions. Box plots pro-
vide a good visualization of the range and potential 
skewness of the data. A box plot may provide the first 
step in exploring unexpected patterns in the distribution 
because box plots provide a good indication of how the 
data are distributed around the median. Box plots also 
clearly mark the location of mild and extreme outliers 
in the distribution. Other forms of graphical representa-
tion that graph individual values, such as dot plots, may 
not make this clear distinction. When used appropri-
ately, box plots are useful in comparing more than one 
sample distribution side by side. In other forms of data 
analysis, a researcher may choose to compare data sets 
using a t test to compare means or an F  test to compare 
variances. However, these methods are more vulnerable 
to skewness in the presence of extreme values. These 
methods must also meet normality and equal variance 
assumptions. Alternatively, box plots can compare the 
differences between variable distributions without the 
need to meet certain statistical assumptions.

However, unlike other forms of EDA, box plots 
show less detail than a researcher may need. For one, 
box plots may display only the five-number summary. 
They do not provide frequency measures or the quanti-
tative measure of variance and standard deviation. 
Second, box plots are not used in a way that allows the 
researcher to compare the data with a normal distribu-
tion, which stem plots and histograms do allow. Finally, 
box plots would not be appropriate to use with a small 
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sample size because of the difficulty in detecting outliers 
and finding patterns in the distribution.

Besides taking into account the advantages and dis-
advantages of using a box plot, one should consider a 
few precautions. In a 1990 study conducted by John T. 
Behrens and colleagues, participants frequently made 
judgment errors in determining the length of the box or 
whiskers of a box plot. In part of the study, participants 
were asked to judge the length of the box by using the 
whisker as a judgment standard. When the whisker 
length was longer than the box length, the participants 
tended to overestimate the length of the box. When the 
whisker length was shorter than the box length, the par-
ticipants tended to underestimate the length of the box. 
The same result was found when the participants judged 
the length of the whisker by using the box length as a 
judgment standard. The study also found that compared 
with vertical box plots, box plots positioned horizon-
tally were associated with fewer judgment errors.

Sara C. Lewandowski and Sara E. Bolt

See also Exploratory Data Analysis; Histogram; Outlier
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