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REGRESSION MODELS 

FOR A DICHOTOMOUS 

DEPENDENT VARIABLE

2.1   INTRODUCTION

The purpose of this chapter is to remind the reader of the main building blocks 
of the logistic regression model and introduce the notations that are used in this 
volume. Especially those elements needed in the following chapters are empha-
sized. In this way, the necessary background material for a thorough under-
standing of the comparison issues in core Chapters 3 through 5 are provided. 
Having some elementary, basic prior knowledge of logistic regression analysis 
may be advantageous for the reader’s understanding of this chapter. Several 
introductions with somewhat different emphases can be found in the Sage 
QASS Series (e.g., Menard, 1995, 2002). For an excellent, rather full coverage 
of the basic logistic regression model, see Long, 1997 and Long and Freese, 
2014.

The two main approaches to logistic/probit regression are discussed in 
Section 2.2 from the viewpoint of DRM (discrete response model) and in 
Section 2.3 from the LVM (latent variable model) perspective. In Section 
2.4, the important disturbing role of mavericks (“‘orthogonal’ independent 
variables”) in logistic/probit regression, compared to their role in standard 
regression analysis, is clarified by means of both LVM and DRM.

The logistic regression model as a DRM is introduced and derived in 
Section 2.2.1. The dependent variable used here is an observed dichotomous 
variable  Y  with  0,   1  scores. The restriction to a dichotomous dependent vari-
able, here and elsewhere, is only made for reasons of convenience (as mentioned 
in Section 1.2). The probability of scoring  Y = 1  is called the response prob-
ability. In logistic DRM, the response probabilities turn out to have the well-
known sigmoid, S-curved relationship with the independent variable(s)  X .

One way of measuring the effects of  X  on  Y  in logistic DRM is to use 
some form of change measures in which the effects of  X  on  Y  are essentially 
measured by means of the difference between the response probabilities for 
two different values of  X . Discrete and instantaneous change measures as well 
as the evaluation of the shape of the response profile are discussed in Section 
2.2.1. However, as shown, due to the nonlinear, S-shaped character of the 
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10  Logistic, Probit, and Logit Regression

relation between  X  and  Y , the use of these change measures for the effects of  X  
on  Y  may become rather complicated and even arbitrary.

An alternative effect measure is presented in Section 2.2.2, where essen-
tially the same logistic regression model is discussed, but now applied to the 
response odds instead of to the response probabilities. In this way, the logistic 
regression coefficients themselves can be used in a straightforward way as effect 
measures and can be given a nice, simple interpretation in terms of odds ratios. 
The complications inherent to the use of change measures are thus avoided.

In Section 2.2.2, also the relationship between loglinear/logit models 
and logistic DRM is mentioned. Because of this relationship, the comparison 
difficulties and solutions encountered in logistic regression also apply to log-
linear and logit models.

The DRM probit regression model is presented in Section 2.2.3. The dis-
cussion in this section is mainly meant to show that the comparative interpreta-
tion problems in probit DRM are essentially the same as in in logistic DRM.

The last DRM model explained in Section 2.2 is the LPM (linear prob-
ability model; Section 2.2.4). LPM is a linear-additive regression model for 
the response probabilities and is often used and recommended as an attrac-
tive alternative for logistic (or probit) DRM. Therefore, it is important to see 
when and how logistic DRM and LPM differ in their estimated response 
probabilities and effect estimates.

The other main perspective, the LVM approach, is explained in Section 2.3. 
The dependent variable in LVM is a latent not directly observed continuous vari-
able   Y   *   that is connected to the observed (dichotomous) variable  Y     by means of a 
specific threshold model. The substantive interpretation of this latent variable (like 
the propensity to vote) may be somewhat problematic, as is discussed here.

The effects of the independent variables  X  on the latent variable   Y   *   are 
estimated by means of a standard linear-additive regression equation. The 
usual assumptions are expected to be valid for this underlying regression 
equation, such as the assumption that the error terms are independently and 
identically distributed.

In logistic LVM, dealt with in Section 2.3.1, the assumption is made that 
the error terms in the underlying regression equation for   Y   *   have a logistic 
distribution. In this way, it can be derived that the DRM logistic regression 
coefficients for the effects of  X  on the observed variable  Y  provide scaled esti-
mates of the corresponding unstandardized regression effects in the underly-
ing regression equation for   Y   *  , where the scaling is accomplished regarding 
the error variance in the underlying regression equation. This scaling can be 
seen as a form of standardizing the effects, but not, as usual, by setting the 
variances of the dependent and/or independent variables to one but by fixing 
the error variance to a particular constant.

The outcomes of the DRM logistic regression equation for  Y  can also be used 
to obtain estimates for the usual standardized regression effects in the underlying 
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Chapter 2  •  Regression Models for a Dichotomous Dependent Variable  11

regression equation for   Y   *  , where the standardization is achieved in the custom-
ary way regarding the variances of   Y   *  and/or  X . Finally, it is possible to estimate 
the proportion of explained variance in   Y   *   in the underlying regression equation 
by means of the outcomes of the DRM logistic regression equation for  Y .

The probit LVM, presented in Section 2.3.2, is very much like the logis-
tic LVM, but now starting from the assumption that the error terms in the 
underlying regression equation for   Y   *   are normally instead of logistically dis-
tributed. Therefore, some differences with the outcomes of the logistic LVM 
arise and are discussed.

Both in logistic LVM and probit LVM, the assumption is made that the 
error terms in the underlying regression equation for   Y   *   are homoscedasti-
cally distributed. In standard regression analysis, violation of this assumption 
does not bias the estimates of the unstandardized regression effects (although 
it does affect the variance and standard errors estimates) and is therefore often 
ignored. However, in LVM, the logistic or probit effect estimates are seriously 
biased as scaled estimates of the underlying unstandardized regression coef-
ficients if there is heteroscedasticity in the underlying regression equation for   
Y   *  . This is illustrated in Section 2.3.3.

Simulated Data Set University

Throughout Chapter 2 (and the first part of Chapter 3), a simulated data set 
university is used that is generated by means of a logistic regression equation. 
The use of a simulated data set has the didactic advantage that the analyses 
outcomes and interpretations can be compared with the simulated, “true” 
state of affairs.

The dependent variable in the data set university is referred to as the 
dichotomous variable Attending University –  Y :  1 = attending; 0 = not   attend-
ing  (which is also labeled as  U  when this is more convenient). The data are 
supposed to come from two hypothetical countries A and B represented 
by the dummy variable  C  (Country)   X  1    ( 0 = A ;   1 = B ), labeling this vari-
able either as   X  1    or as  C  for the same convenience reasons. There are three 
additional independent variables, viz.  A  (Academic background of parents)   
X  2    ( 0 = no; 1 = yes ),  S  (number of Siblings)   X  3    ( 0 = 0   or   1; 1 =     ≥ 2 ) and  I  
(Intelligence)   X  4   . The latter independent variable is a categorized continuous 
variable with five categories, scored  –21,   –8,   0,   + 8,   and + 21 . These scores are 
the quintile scores of the underlying continuous intelligence variable, which 
is assumed to be normally distributed with mean 0 and standard deviation 15.

The dichotomous independent variables all have a uniform (.50/.50) 
distribution.

The key data generating equation for this simulation is a main-effects-only 
logistic equation: All logistic higher order interaction effects on the response 
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12  Logistic, Probit, and Logit Regression

variable are assumed to be absent. The precise values of the effect parameters 
used in the simulation are shown in Table 2.1, Column (1) and Eq. (3.1).

The directions of the simulated effects of the independent variables 
on the dependent one are in agreement with research results on educa-
tional attainment (Blake, 1989; Breen & Jonsson, 2005; Skirbekk, 2008; 
Teachman, 1987). However, their precise strengths as well as the relation-
ships among the independent variables are chosen here for their practical, 
illustrative usefulness.

Positive direct effects on university attendance are assumed for academic 
background and intelligence and a negative direct effect for the number of sib-
lings; the proportion university attendance is supposed to be larger in Country 
B than in A. The independent variables were made statistically independent 
of each other, except Academic (  X  2   ) and Sibling (  X  3   ) (  r  AS   = − 0.6 , odds ratio   
OR  AS   = 1 / 16 = .0625 ).

The number of cases was set to two million. This enormously large sam-
ple size is chosen to reproduce the simulation parameters as close as possible 
and to overcome rounding errors that mainly occurred when the simulated 
probabilities were transferred into discrete frequencies.

2.2   DISCRETE RESPONSE MODEL — DRM

In the discrete response modeling (DRM) approach, the research interest 
concerns the effects of the independent variables on the observed, dis-
crete outcomes of the dependent variable. With a dichotomous dependent 

True, Simulated 

Logistic effects β

(1)

Probit effects γ

(2)

LPM 

effects α

(3)

X1 Country (1 = B) ln (9) (= 2.197) 1.256 0.310

X2 Academic  

(1 = yes)

ln (3) (= 1.099) 0.627 0.152

X3 Sibling (1 = 2+) ln (1/3) (= −1.099) −0.627 −0.152

X4 Intelligence ln (11/10) (= 0.095) 0.054 0.013

Constant ln (1/10) (= −2.303) −1.316 0.173

Source: University Data Set (N = 2,000,000)

TABLE 2.1 ■    Logistic, Probit, and LPM Effects on University 

Attendance (Y = 1)
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Chapter 2  •  Regression Models for a Dichotomous Dependent Variable  13

variable, the probability is modeled of observing one of the two pos-
sible outcomes of  Y :  1 = outcome   of   interest   occurs ;   0 = outcome   of   inter-
est   does   not   occur . The probability of  Y = 1  occurring is called the response 
probability. In the simulated university data set, the response probability   
Pr (  Y = 1 )     is the probability to attend university.

A simple, straightforward way of modeling a response probability is to 
estimate it as a linear-additive function of the  k = 1,   ⋯ ,   K  independent vari-
ables   X  k   , each one of them being weighted by its regression coefficient   α  k   :

  Pr ( Y  i   = 1 |  X  1i  , ⋯ ,  X  Ki  )  =  α  0   +  α  1    x  1i   + ⋯ +  α  K    x  Ki   =  α  0   +   ∑ 
k=1

  
K

   α  k    x  ki      (2.1)

To denote the  i = 1,2,      .   .   .   , N  independent cases in the data, subscript  i  
is used. The realization, the actually observed value of random variable   X  k    is 
denoted as   x  ki   . The conditional response probability on the left-hand side of 
Eq. (2.1) is assumed to be a linear function of the realizations   x  ki   . The (par-
tial) regression coefficient   α  k    measures the influence of the independent vari-
able   X  k    on the response probability, controlling for all the other independent 
variables in the model. The right-hand side of Eq. (2.1) is called the linear 
predictor (indicated below by   µ  i   ).

The model in Eq. (2.1) is known as the linear probability model 
(LPM; see Section 2.2.4). There are several problems with LPM, such 
as the estimation problem caused by the heteroscedasticity of the error 
terms (Long, 1997, pp. 38–40). (There is no explicit error term in Eq. 
[2.1] because the model is defined in terms of the response probabilities 
[i.e., in terms of the expected values of  Y , the error terms are actually 
the differences between the estimated response probabilities and the 
observed 0/1-realizations of  Y ].)

Next to strictly statistical estimation issues, a problem is that the left-
hand side of Eq. (2.1) contains a bounded variable: Probabilities are numbers 
between 0 and 1, while the linear-additive function on the right-hand side 
does not guarantee predictions within this unit interval. Another, and prob-
ably even more serious problem, is the functional form in Eq. (2.1), which 
implies that the left-hand side probabilities in- or decrease linearly with the 
values of the independent variables. However, given the bounded nature of 
probabilities, bottom and ceiling effects must be expected and S-curved (sig-
moid) rather than linear relationships are often much more plausible (Long, 
1997, pp. 39, 40; McKelvey & Zavoina, 1975).

To avoid out-of-bound probability predictions, a mathematical function  
F  must be chosen that maps the right-hand side predicted outcomes in Eq. 
(2.1) onto the (left-hand side) probabilities scale and provides results within 
the unit interval:
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14  Logistic, Probit, and Logit Regression

  Pr ( Y  i   = 1 |  X  1i  , ⋯ ,  X  Ki  )  = F ( β  0   +   ∑ 
k=1

  
K

   β  k    x  ki   )    (2.2)

An obvious choice of   F (   ⋅  )     in Eq. (2.2) is a cumulative distribution func-
tion, which links a particular value to a probability. By way of example, think 
of a standard normally distributed random variable  Z  with mean 0 and stan-
dard deviation 1. The probability  Pr (Z ≤ z)     for any particular cutoff value  
Z ≤ z  can be found from the cumulative distribution function  F(Z)  of the 
normal distribution:   Pr (Z ≤ z)  = F (  Z )    .

Usually, the cumulative normal distribution function or the cumulative 
logistic one is chosen for   F (   ⋅  )     in Eq. (2.2). The choice of the cumulative nor-
mal distribution leads to the probit model and the choice of the cumulative 
logistic distribution to the logistic regression model. Both choices imply an 
S-curved (sigmoidal) rather than a linear relationship between the indepen-
dent variables and the response probabilities. In this way bottom and ceiling 
effects are reckoned with.

The logistic distribution looks much like the normal distribution, but 
is less peaked and with somewhat heavier tails (Long, 1997, p. 43). Hence, 
the predicted conditional response probabilities from the logistic and pro-
bit regression are usually very close, with somewhat larger deviations to be 
expected for response probabilities close to 1 or 0. The probit regression 
effects are about a factor 1.7 smaller than the corresponding logistic effects 
(as further explained in Sections 2.2.3 and 2.3.2). The cumulative logistic 
distribution is perhaps the more popular choice because it is mathematically 
easier to handle than the cumulative normal distribution and because the 
logistic regression coefficients have a simple direct interpretation regard-
ing odds ratios. On the other hand, the probit model is sometimes easier to 
integrate into models assuming normally distributed variables (see also Liao, 
1994, pp. 24, 25; Long, 1997, p. 83). There is also a “disciplinary” flavor to 
the preference for the probit or the logistic model; for example, economic 
researchers often automatically apply the probit and sociologists the logistic 
model.

2.2.1   Logistic Regression, Response Profiles, Discrete  
( DC ), and Instantaneous ( IC ) Change Measures

Using the cumulative logistic distribution function   F ( µ  i  )  = exp ( µ  i  )  /  (  1 + exp 

( µ  i  )  )     to map the linear predictor   µ  i    onto the probability scale, the LPM in 
Eq. (2.1) turns into the following nonlinear logistic regression model for the 
response probabilities:

  Pr ( Y  i   = 1 |  X  1i  , ⋯ ,  X  Ki  )  =   
exp (    β  0   +  ∑ k=1  

K    β  k    x  ki    )  
  _____________________  

1 + exp (    β  0   +  ∑ k=1  
K    β  k    x  ki    )  

     (2.3)
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Chapter 2  •  Regression Models for a Dichotomous Dependent Variable  15

From here on, the  β -coefficients are always used as the symbols for the logis-
tic effects.

The left-hand side probability in Eq. (2.3) can be interpreted as the 
chance that a randomly chosen subject  i  scores  Y = 1  given the scores on the 
independent variables   X  1  , ⋯ ,  X  K   ; it can be estimated by means of the corre-
sponding proportion in the sample. Estimates of the logistic regression coef-
ficients  β  can be found using MLE (maximum likelihood estimation), which 
also provides the (co)variances estimates of the needed for the estimation of 
confidence intervals and the application of statistical tests. Moreover, the 
value of the maximized likelihood can be used to compute overall measures 
of model fit and to test the significance of nested models against each other 
(Long, 1997; for more details on MLE see Eliason, 1993).

The S-shaped form of the relation between the conditional response 
probabilities   Pr     (     Y  i   = 1 |  X  1i  … X  Ki   )     and the independent variables, implied by 
the logistic regression model in Eq. (2.3) is illustrated in Figure 2.1 for a sim-
ple logistic model with one independent variable   X  1    varying between  −5  and  
+5 . The response curves or response profiles are presented for a few different 
values of the intercept   β  0    and the effect   β  1   . (For a more general treatment of 
response profiles, see Long, 1997, Section 3.7.) It is clearly seen in Figure 2.1 
that with de- or increasing values of   X  1   , away from the middle, the response 
probability   Pr     (     Y  i   = 1 |  X  1i   )     gets closer and closer to 0 or 1. However, it will 
never surpass these boundaries. Further, as seen in Figure 2.1, a unit change 
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FIGURE 2.1 ■    The Logistic Regression Function    
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16  Logistic, Probit, and Logit Regression

in   X  1    leads to a larger difference in the response probabilities in the middle 
range of   X  1    values than in the lower or upper range.

In general, when the strength of the effect an independent variable like   
X  1      has on the response probability is measured by means of the differences in 
the response probabilities, the model in Eq. (2.3) implies that the strength of 
the effect varies with the level of   Pr     (     Y  i   = 1 |  X  1   )    : it is largest around the con-
ditional response probabilities of .50 where the response curve is steepest and 
it gets smaller when the conditional response probabilities go to 0 or 1 where 
the response curve becomes flatter.

As also seen in Figure 2.1, the response curve has an approximately linear 
shape when the (estimated) response probabilities all lie within the  .30 − .70  
range. Within this range, the steepness of the response curve is more or less 
constant (Goodman, 1976, p. 92; Long, 1997, p. 64). (Sometimes less conser-
vative ranges are proposed:  .25 − .75  or even  .20 − .80 .)

How much the (expected) response probabilities change for different val-
ues of an independent variable, say   X  1   , can be quantified by means of the 
discrete change coefficients  DC . The  DC  coefficients are defined as the differ-
ence of the two (expected) conditional response probabilities that correspond 
with two different values of the independent variable of interest, controlling 
for other independent variables where appropriate (Long, 1997, pp. 75–79, 
137–138, 166–167; Long & Mustillo, 2018):

   
DC

  
=

  
Pr   (    Y  i   = 1|  X  1i   =  x  1   + δ,  X  2i  , ⋯ ,  X  Ki   )       

 
  

 
  

− Pr   (    Y  i   = 1|  X  1i   =  x  1  ,  X  2i  , ⋯ ,  X  Ki   )   
    (2.4)

The symbol  δ  in Eq. (2.4) indicates the difference between the two chosen 
values of   X  1   ; the quantity (100)( DC ) yields the familiar percentage difference 
as effect measure, often symbolized by  d%  or  ε .

According to Eq. (2.4), the  DC  effect of   X  1    on the response probabil-
ity is obtained by subtracting the (expected) response probability for   X  1   =  x  1    
from the (expected) response probability for another value   x  1  ′   =  x  1   + δ , while 
controlling for the remaining independent variables. This “controlling” is 
done by conditioning on particular values for the remaining independent 
variables. Preferably, the values chosen for   X  1    and the values to which the 
remaining independent variables are set will be chosen for their theoretical 
or practical relevance. However, often a more pragmatic choice is made, for 
example, by investigating the  DC  effect(s) of   X  1    for the means (or medians or 
modes) of the remaining independent variables.

The obtained value of  DC  as a measure of the direct effect of a particular 
independent variable   X  k   , on the response probability may depend strongly on 
the particular choice of the value   x  k    (for a given value of  δ ). A  DC  effect of   X  k    
will generally have a different value when a different value   x′  k    for   X  k    is chosen 
instead of    x  k     while   keeping   δ    (  in   Eq.    [  2.4 ]   )     the   same  . The choice of the values 
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Chapter 2  •  Regression Models for a Dichotomous Dependent Variable  17

pair   x  k      and   x  k   + δ    will deliver the same sign for the  DC  effect of   X  k    on the 
response probability as the pair   x′  k      and   x′  k   + δ    but their sizes will generally be 
different. This is a direct consequence of the S-curved response profile.

Moreover, the strength of the  DC  effect of   X  k    may also strongly vary 
with the choices for the selected conditioning values of the other indepen-
dent variables. This is certainly true when estimated response probabilities 
are involved with values outside the  .30 − .70  range. This also follows from 
the S-shape of the response profile. Say variable   X  c    has a direct effect on the 
response probability and is the independent variable to be controlled. Then, 
the conditional response probability for a given value   X  k   =  x  k    will be gener-
ally different when control variable   X  c    is set to   X  c   =  x  c    rather than to another 
value   X  c   =  x  c  ′  . The response probability, given   X  k   =  x  k   , will be closer to or 
further away from .50 when   X  c   =  x  c    than when   X  c   =  x′  c   . Therefore, the  DC  
effect of   X  k    estimated for the same two values of   X  k    (  X  k   =  x  k    and   X  k   =  x′  k   ) 
will generally be different, larger or smaller, for   X  c   =  x  c    compared to   X  c   =  x  c  ′   
(although it will have the same sign).

In other words, the effects of   X  k    on the response probability will interact 
with   X  c    when the effect of   X  k    is quantified in terms of  DC  and this despite the 
fact that in the basic logistic equation Eq. (2.3) no explicit interaction effects 
were inserted.

The simulated university data nicely demonstrates the above remarks on  
DC s. Because this data set was created by means of the main-effects-only logis-
tic model in Eq. (2.3) with the logistic effects given in Column (1) of Table 2.1, 
the response profile representing the direct effect of a particular independent 
variable on the response probability follows an S-curve (although, as in many 
empirical applications, only a segment of the complete S-curve is realized). The 
estimated (simulated) conditional response probabilities of attending univer-
sity are presented in Table 2.2 for three categories of   X  4   -Intelligence: the lowest 
score (-21), the middle (0) and the highest (21), conditioned on the combined 

X4-Intelligence −21 0 21

Favorable conditions:

X1 = X2 = 1; X3 = 0

0.267 0.730 0.952

DC 0.462 0.222

Unfavorable conditions:

X1 = X2 = 0; X3 = 1

0.004 0.032 0.198

DC 0.028 0.166

Source: Simulated data set set university

TABLE 2.2 ■    Response Probabilities of Attending University   

Copyright © 2024 by Sage Publications, Inc. 
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute



18  Logistic, Probit, and Logit Regression

scores on the remaining independent variables in terms of favorable versus 
unfavorable for attending university. The favorable condition is the combina-
tion of Country B (  X  1   = 1 ), Academic background (  X  2   = 1 ), and 0 or 1 Sibling 
(  X  3   = 0 ), and unfavorable, otherwise.

Given a favorable condition, someone with a middle intelligence score (0) 
has a . 462     higher chance of attending university than someone with the lowest 
intelligence score (-21):  DC = .730 − .267 = .462 . Under the same favorable 
condition, an equally sized jump  δ  but now from intelligence 0 to 21 improves the 
university chances by a smaller amount:  DC = .952 − .730 = .223 . This follows 
from the S-curved response profile. The effect  DC = .462  involves the response 
probabilities .267 and .730, which are symmetrically arranged around the middle 
value .50, a range in which the response profile is steepest. The effect  DC = .223  
on the other hand is the difference between the response probabilities .730 and 
.952, which are closer to the endpoint 1 where the response profile is less steep.

Looking at the comparable outcomes but now for the unfavorable condition, 
belonging to the middle intelligence category 0 instead of the lowest  – 21 hardly 
improves one’s chances of attending university (  DC = .028 )    , while belonging to 
the highest category instead of the middle improves one’s chances by  DC = .166 .  
Again, this is in agreement with the response probabilities for  DC = .028  being 
closer to the endpoint 0 than the ones for  DC = .166 .

Looked at from another angle, these same outcomes also show a strong 
 DC  interaction effect of intelligence and the favorable/unfavorable condi-
tions on the response probabilities. Under the favorable condition, having 
a middle instead of the lowest intelligence score has an effect on university 
attendance of  DC = .462 , while under the unfavorable conditions there is 
hardly any effect:  DC = .028 . Again, this is understandable from the fact that 
the favorable conditions move the response probabilities upward toward .50, 
while the unfavorable conditions move them strongly toward 0. The change 
from middle to highest intelligence has more or less the same effect under the 
favorable ( DC = .223 ) and the unfavorable condition ( DC = .166 ), in agree-
ment with the fact that both effects pertain to response probabilities at the 
(opposite) tails of the (symmetrical) distribution.

In an actual research project, the obvious next step would be to find sub-
stantive explanations for these interaction effects. However, how do these out-
comes and possible interpretations then relate to the fact that that the university 
data was constructed using a logistic regression main-effects-only model with-
out any interaction effects? Must this interaction effect not be regarded, in the 
words of Stinchcombe (1983), as an instance of a “spurious interaction effect” 
(p. 107). This issue is extensively discussed next in several places.

The need to address this issue is the more urgent if one realizes that the 
simulated data example university is a rather simple one. Often much more 
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Chapter 2  •  Regression Models for a Dichotomous Dependent Variable  19

variables are involved, many of them with much more categories. Unless 
all conditional response probabilities range between .30 and .70 where the 
response profile is more or less linear or unless the conditioning independent 
variables have only weak effects on the response probabilities, a very large 
number of (partial, conditional) response profiles and  DC s are needed to cap-
ture adequately the outcomes of a logistic regression equation and the effects 
of the independent variables on the response probabilities.

These remarks and questions regarding the use of  DC s apply similarly to the 
use of  IC s, the instantaneous change measures. Where the discrete change coef-
ficients  DC  can be applied to all kinds of independent variables, whether they are 
continuous or discrete and measured at nominal, ordinal, or interval level, the 
instantaneous change measure  IC  can only be used meaningfully if an indepen-
dent variable   X  k    is continuous. An  IC  indicates the instantaneous change in the 
response probability at a particular point on the   X  k   -axis.  IC  reflects the steepness 
of the S-shaped response curve at   X  k   =  x  k    and, geometrically speaking, equals 
the slope of the tangent that touches the response curve at   X  k   =  x  k   .   IC s can be 
computed by evaluating the (partial) derivative of the response probability with 
respect to the pertinent continuous independent variable   X  k   . Readers not familiar 
with calculus can think of the derivative as the limiting value when  δ  in Eq. (2.4) 
becomes infinitely small. The difference  ∆  X  k   =  [ ( x  k   + δ)  −  x  k  ]   equals  ∂  X  k    when  
δ  becomes infinitely small, in other words when the change in   X  k    approaches 0.

For the logistic regression model in Eq. (2.3), the partial derivative of the 
response probability with respect to a continuous independent variable, say   
X  k   , equals (see Long, 1997, Section 3.7.4):

   

  
∂ Pr ( Y  i   = 1 |  X  1i  , ⋯ ,  X  Ki  ) 

  ___________________ ∂  X  k  
  

  

=

  

  
exp ( β  0   +  ∑  k=1  

K      β  k    x  ki  ) 
  ________________________   

  (1 + exp ( β  0   +  ∑  k=1  
K      β  k    x  ki  ) )    

2
 
   ⋅  β  k  

    
 
  
=

  
  

exp ( β  0   +  ∑  k=1  
K      β  k    x  ki  ) 

  _____________________  
1 + exp ( β  0   +  ∑  k=1  

K      β  k    x  ki  ) 
  
    

 
  

 
  

⋅   1 _____________________  
1 + exp ( β  0   +  ∑  k=1  

K      β  k    x  ki  ) 
   ⋅  β  k  

    

 

  

=

  

Pr ( Y  i   = 1 |  X  1i  , ⋯ ,  X  Ki  ) 

   

 

  

 

  

⋅  (1 − Pr ( Y  i   = 1 |  X  1i  , ⋯ ,  X  Ki  ) )  ⋅  β  k  

    (2.5)

In econometric (and more recently in social science) vernacular, the 
partial derivative in Eq. (2.5) is called a marginal effect (Long, 1997, p. 5). 
For some scholars who distinguish between partial and marginal effects 
in terms of controlling or not controlling for other independent variables, 
this terminology may be confusing. The term marginal effect does not refer 
here to an effect in a lower order distribution. For example, it does not 
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20  Logistic, Probit, and Logit Regression

refer to an effect in marginal table  AB , obtained by collapsing the joint 
distribution  ABC  over  C . Marginal in this context simply means that the 
interest lies in the expected change of the response probability when the 
independent variable changes by an infinitely small amount, controlling 
for all the other independent variables in the model. In that sense, these 
marginal effects are partial effects. The terms marginal effects, instanta-
neous change coefficients, and (partial) derivatives, then, all refer here to 
essentially the same phenomenon. Where the meaning of the term mar-
ginal is ambiguous, it is clarified.

In a linear-additive model like the LPM in Eq. (2.1), the partial derivative, 
analogous to Eq. (2.5), is equal to   α  k      – the direct (partial) effect coefficient for   
X  k    (see Eq. [2.14] below). For the nonlinear logistic regression model in Eq. 
(2.3), however, as is obvious from Eq. (2.5), the instantaneous change of the 
response probability due to   X  k    is not only a function of the effect   β  k   , but it also 
depends on which value of   X  k    is considered and to which values the other inde-
pendent variables have been set. The partial derivative in Eq. (2.5) not only 
includes   X  k   ’s effect   β  k   , but also the effects and values of all independent vari-
ables in the model; they are all in the term  exp ( β  0   +  ∑ k=1  

K    β  k    x  ki   )   in Eq. (2.5) 
determining the partial derivative. As such, the instantaneous change in the 
response probability due to   X  k    not only depends on   β  k   , but also on the value 
chosen for   X  k   , on the chosen values of the remaining independent variables, 
and on what direct effects these remaining independent variables have on the 
response probability (as was shown to be true for  DC ).

The last line in Eq. (2.5) shows that the (instantaneous) change of the 
response probability is larger, the larger the product of the conditional response  
probability with its conditional converse probability is. This product  
  Pr ( Y  i   = 1 |  X  1i  , ⋯ ,  X  Ki  )  ⋅  (  1 − Pr ( Y  i   = 1 |  X  1i  , ⋯ ,  X  Ki  )  )     equals the (conditional) 
variance of  Y  and so  IC  is largest when  Pr ( Y  i   = 1 |  X  1i  , ⋯ ,  X  Ki  )  = 0.5  and gets 
smaller when  Pr ( Y  i   = 1 |  X  1i  , ⋯ ,  X  Ki  )   approaches 0 or 1 (as was shown for  DC ).  
For response probabilities within the range  .30 − .70 , this conditional vari-
ance (this product) is more or less constant, for example,    (.50)  (  .50 )   = .25   and  
   (.70)  (  .30 )   = .21  , but not outside this range, for example,    (.95)  (  .05 )   = .0475  . 
Because of the multiplication factor in Eq. (2.5),   β  k    is multiplied by a factor 5.2 
times larger when the conditional response probability equals .50 compared to .95.

Conditional response profiles and  DC s and  IC s are especially useful when 
there are not too many variables, when there are not too many categories for 
each independent variable, or when there are obvious theoretical or practical 
reasons to justify the scoring choices to be made (as excellently exemplified 
by Long & Mustillo, 2018).

Sometimes in their wish to have one simple  DC  or  IC  type of effect measure, 
researchers apply pragmatic solutions, where the slope of the response curve and 
the  DC s and  IC s are evaluated for a few meaningful values of   X  k   , but then setting 
all remaining independent variables at their mean values. Or instead of the mean, 
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Chapter 2  •  Regression Models for a Dichotomous Dependent Variable  21

other “pragmatic values” are chosen, such as the mean-plus/minus-one-stan-
dard-deviation, the median value, or the first or third quartile (see Long, 1997,  
pp. 74–79, for “pragmatic” solutions for both  DC  and  IC ).

Two often used “one-effect-solutions” for  IC  are  MEM  (marginal effect at 
the mean) and  AME  (average marginal effect). For  MEM , the instantaneous 
effect of   X  k    is evaluated at its mean while setting all remaining independent 
variables also at their mean values.

 AME  is defined as the instantaneous effect of   X  k    averaged over all obser-
vations, which amounts to:

  
AME  (    X  k   )    =

  
   β  k   ⋅   

 ∑ i=1  
N    Pr   (    Y  i   = 1|  X  1i  , ⋯ ,  X  Ki   )    ⋅   (  1 − Pr   (    Y  i   = 1|  X  1i  , ⋯ ,  X  Ki   )    )        ______________________________________________   

N
  

   (2.6)

A variant of  AME  is the average partial effect ( APE ). The same Eq. (2.6) 
is used but then applied to subgroups that have a specific value or a specific 
range of values on   X  k    (Karlson et al., 2012, pp. 298–302; Mood, 2010, p. 75).

 MEM  and  AME  are different measures, having different meanings, and 
will often deliver different outcomes, and especially, but most importantly, 
both involve often a rather arbitrary choice from the many possibilities 
(Long, 1997, pp. 74–75).

A single  DC  and  IC  may present rather distorting pictures of the effects in 
the data, certainly when more variables and more categories are involved than 
in our simulated data set and when there are no clear theoretical reasons to 
choose which one of the many possible (but needed)  DC s or  IC s will provide 
the best answer to the research question.

In the next section, an alternative view on effects in a logistic regression 
equation is discussed, giving meaning to the  β -parameters as effect measures.

2.2.2   Logistic DRM as a Logit Model: Odds Ratios as Effect 
Measures

So far, the logistic DRM has been mainly described as a “transformed” standard 
regression model for the response probabilities. Starting point was the additive 
regression or LPM for the response probabilities in Eq. (2.1). To deal with possible 
bottom and ceiling effects and with out-of-range predicted response probabili-
ties, the linear predictor   µ  i    in Eq. (2.1) was mapped onto the probability scale by 
means of the cumulative logistic distribution function   F ( µ  i  )  = exp ( µ  i  )  /  (  1 + exp 
( µ  i  )  )    , resulting in Eq. (2.3). Analogous to what is common practice in standard 
regression analysis, the effect of the independent variable was then evaluated by 
estimating how the dependent variable is expected to change due to a unit change 
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22  Logistic, Probit, and Logit Regression

in the independent variable, controlling for the other independent variables in the 
logistic regression equation.

In the additive regression equation Eq. (2.1), this difference in expected 
response probabilities for a unit change in   X  k    is simply and directly rendered 
by the effect coefficient   α  k   . However, as seen previously, in logistic regression, 
all kinds of complications arise when using  DC  and  IC  type effect measures 
and there is no such simple direct relation between  DC/IC  type measures and 
the logistic effects   β  k   .

Fortunately, there exists a rather straightforward interpretation of the logis-
tic regression coefficients themselves that is not affected by these complexities. 
Instead of looking at the consequences of the changes in   X  k    for the response prob-
abilities, it is investigated what the consequences of the (same) logistic regression 
model in Eq. (2.3) implies for the response odds. As it turns out, the response 
odds are a much simpler function of the independent variables with weights   β  k    
where the   β  k   s can be simply interpreted in terms of odds ratios.

Odds, symbolized here by  Ω , are ratios of probabilities. For exam-
ple, if the variable Voting has three categories: R(epublican), D(emocrat), 
I(ndependent), the odds of voting R rather than D equals the ratio   Pr (  R )   / Pr 
(  D )     and the odds of voting D rather than I are   Pr (  D )   / Pr (  I )    , and so on. In 
the (dichotomous) university example, the response odds of attending uni-
versity rather than not are defined as the response probability of attending 
university   Pr (  U )     divided by the converse probability of not attending uni-
versity   Pr (  U )   /  (  1 − Pr (U)  )    . The logarithm of the odds is called the logodds 
or a logit. (Note that specifically in STATA, the term odds is not used for a 
ratio like   Pr (  D )   / Pr (  I )     but only for  Pr (D)  /   (  1 − Pr (D)   . Odds like   Pr (  D )   / Pr (  I )     
are called the relative risk. For the effect measure using the relative risk, the 
term relative risk ratio is used instead of odds ratio. We do not follow this 
specific use of the relative risk ratio here).

An effect of an independent variable can be expressed in terms of a ratio 
between odds, called the odds ratio, symbolized by  OR . For the university data, 
if a researcher wants to know whether there is a relationship between Academic 
and University, the odds of attending university rather than not are computed 
among those with an academic home background and among those without 
an academic home background. Next, the ratio between these two conditional 
odds is found. This odds ratio expresses the effect of Academic on University 
by telling how many times larger or smaller the odds of going to university are 
among Academics compared to the Nonacademics (Agresti, 2002, Chapter 2; 
Hagenaars, 1990, Chapter 2; Rudas, 1998).

Let the odds   Ω  1/0  
Y|   X   stand for the conditional response odds that  Y = 1  

rather than  Y = 0 , conditional on a combination of values of the set of inde-
pendent variables   X  1  , ⋯ ,  X  K    indicated by X. The logistic regression model 
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Chapter 2  •  Regression Models for a Dichotomous Dependent Variable  23

in Eq. (2.3) can be rewritten in such a way that the response odds   Ω  1/0  
Y|   X   are 

a multiplicative function of the logistic regression coefficients (where the 
simplification of the right-hand side of the equation is easily understood 

from     a _ 1 + a   /   (  1 −   a _ 1 + a    )   = a  ):

   

 Ω  1/0  
Y| X 

  

=

  

  
Pr   (    Y  i   = 1|  X  1i  , ⋯ ,  X  Ki   )     _______________________  

(1 − Pr   (    Y  i   = 1|  X  1i  , ⋯ ,  X  Ki   )   )
  

       =    
  

exp   (    β  0   +  ∑ k=1  
K     β  k    x  ki   )     _____________________  

1 + exp   (    β  0   +  ∑ k=1  
K     β  k    x  ki   )   

  
  ________________________   

1 −   
exp   (    β  0   +  ∑ k=1  

K     β  k    x  ki   )     _____________________  
1 + exp   (    β  0   +  ∑ k=1  

K     β  k    x  ki   )   
  
      

 

  

=

  

exp   (    β  0   +  ∑ k=1  
K     β  k    x  ki   )   

   

 

  

=

  

exp   (    β  0   )    ⋅ exp   (    β  1   )      x  1i    ⋅ …   ⋅ exp   (    β  K   )      x  Ki   

   (2.7)

The terms  exp ( β  0  )  ,  exp ( β  1  )  , and so on are the multiplicative effects on the 
response odds and are the anti-logarithms (the exponential functions) of the 
logistic regression coefficients   β  k   .

The logistic regression model in Eq. (2.7) looks even simpler in its loga-
rithmic form in which the logs of the response odds, the response logits, are a 
familiar linear-additive function of the independent variables:

   
ln  (   Ω  1/0  

Y| X  )   
  
=

  
ln  (    

Pr   (   Y  i   = 1 |  X  1i  , ⋯ ,  X  Ki   )     _____________________  
1 − Pr   (   Y  i   = 1 |  X  1i  , ⋯ ,  X  Ki   )   

   )   
     

 

  

=

  

logit  (  Pr   (   Y  i   = 1 |  X  1i  , ⋯ ,  X  Ki   )    )    =  β  0   +  β  1    x  1i   + ⋯ +  β  K    x  Ki  

    (2.8)

The partial derivative of the response logit for the effect of   X  k     simply    
equals   β  k   :

    
ln ( Ω  1/0  

Y|X ) 
 _ ∂  X  k  

   =   
∂ logitPr ( Y  i   = 1 |  X  1i  , ⋯ ,  X  Ki  ) 

  ______________________  ∂  X  k  
   =  β  k     (2.9)

The logistic regression model in Eqs. (2.7) and (2.8) is a main-effects-only 
model. There are no interaction effects in the sense that the direct, partial effect   
β  k    of independent variable   X  k    on the response logit is the same for all values on 
the remaining independent variables (as also seen in Eq. [2.9]). Further, the 
response logits increase linearly with the values of   X  k   : For each additional unit 
increase of   X  k   , the response logits increase additionally by a constant   β  k   . So  
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24  Logistic, Probit, and Logit Regression

Eq. (2.8) represents a linear-additive model for the response logits (and the 
logistic regression model is an instance of the generalized linear model).

The corresponding multiplicative counterpart in Eq. (2.7) is of course 
also a main-effects-only model. Linearity now implies that the response odds 
increase by a constant factor: For each additional unit increase of   X  k   , the odds 
increase additionally by a constant factor   exp (    β  k   )    .

As in standard linear regression, nonlinear and interaction effects on the 
response logits can be introduced in Eq (2.8) by using for the independent 
variables polynomials, dummy variables and product terms (Jaccard, 2001; 
Jaccard & Turisi, 2003).

The independent variables in Eq. (2.8) can be continuous or discrete or 
dummy variables (as in standard regression analysis). If all variables (in Eq. 
[2.8]) are treated as discrete or categorical, the resulting model is the (categori-
cal) logit model (or the loglinear model, given the correspondence between 
loglinear and logit models; Agresti, 2002; Demaris, 1992; Hagenaars 1990; 
Knoke & Burke, 1980). The maximum likelihood estimates for the categorical 
logit model are exactly the same as the ones obtained for the previous logistic 
regression model. This means that computer programs for and the vast litera-
ture on the varieties of categorical loglinear and logit models can also be applied 
for handling and interpreting DRM logistic regression (and vice versa). It also 
means that the comparison issues for the DRM logistic regression model dis-
cussed next apply similarly to the (categorical) logit and loglinear models.

Regarding terminology, the term logistic regression model usually 
implies that the independent variables in the logistic regression equation are 
in principle, but not necessarily seen as, continuous variables. The term logit 
model is mostly used to imply that the independent variables are treated as 
categorical variables. However, the terms logistic regression and logit regres-
sion are also used in the literature (and here) to refer to the same regression 
model.

The simulated university data set can be used to illustrate the interpreta-
tion of the  β  effects in terms of odds ratios. As said in the beginning of this 
chapter, this data set has been constructed by means of the main-effects-only 
logistic regression equation in Eq. (2.8) using the parameter values presented 
in Column (1) of Table 2.1.

First, the interpretation of the intercept. As easily concluded from Eq. 
(2.8), the intercept   β  0    is the value of the response logit for those research units 
that score 0 on all independent variables. As in standard linear regression, 
this may be a reference set  R  of individuals that may be empirically empty or 
may not really exist because one or more independent variables do not have a 
score 0. In the university example, this reference group  R  consists of individu-
als from Country A, with average (middle) intelligence, no academic back-
ground, and not more than one sibling. The response odds for this reference 
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Chapter 2  •  Regression Models for a Dichotomous Dependent Variable  25

group turn out to be   Ω  1/0  
Y   |      R  = exp   (    β  0   )    = exp   (   − 2.303 )    = 0.100  (Table 2.1). 

The response probability, that is, the probability of attending university, are 
in the reference group 10 times smaller than the probability of not attending 
university, viz. .0909 versus .9090. Note that the response probability can 
be computed from the response odds, for example, in the reference group  R :

  Pr   (  Y = 1|R )    =      Ω  1/0  
Y         |         R  /  (  1 +  Ω  1/0  

Y      |         R  )     (2.10)

The logistic effects   β  k    show the effects of the independent variables. As 
follows from Eq. (2.8), the effect   β  1    of   X  1    (Country) indicates how much the 
response logit in- or decreases when Country increases by one measurement 
unit (i.e., when people live in Country B [score 1] instead of Country A [score 0]  
and all other independent variables are held constant). The logistic effect 
of Country is   β  1   = 2.197 . Due to the direct effect of Country, the response 
logit is 2.197 larger in Country B than in A. Regarding the response odds, 
the odds of attending university rather than not are  exp (2.197)  = 9.000  
times larger in Country B than in A. This is the partial odds ratio  OR , 
representing the direct partial effect of Country on the response odds. 
Comparing individuals with the same characteristics on the remaining 
independent variables, the odds of going to university are much more, viz., 
nine times more favorable for individuals living in Country B than for 
those living in A.

This  OR  interpretation of   exp (  β )     applies in general. The multiplicative 
direct effect   exp (    β  k   )     is the partial  OR  that tells by what factor the response odds 
change if   X  k    increases by one measurement unit while all remaining indepen-
dent variables are constant. For example, Intelligence   X  4    was given the scores 
 – 21,  – 8, 0, 8, 21, and   β  4   = .095 . So for each unit increase in intelligence, wher-
ever on the Intelligence scale, the response logit increases by .095. Given the 
scores for Intelligence, this means that going from the middle Intelligence score 
0 to the next one 8, there is an increase of    (  8 − 0 )     Intelligence units and so 
an expected increase in the response logit of   (8   ⋅   .095)  = .760 . Regarding the 
response odds, the multiplicative effect  OR  for one unit increase in Intelligence 
equals  exp (.095)  = 1.100 . Therefore, given an Intelligence increase from 0 to 8,  
the response odds increase by a factor:    1.100   8  = 2.144    (   = exp (.760) ,     ignoring 
rounding errors, holding the remaining independent variables constant.

At first sight, it may seem strange that the same data sets, when ana-
lyzed in different ways, leads to such seemingly different conclusions. On the 
one hand, there is the main-effects-only, additive-linear logistic regression 
model in Eqs. (2.8) and (2.7) in which there are no interaction effects of the 
independent variables on the response logits (or odds). On the other hand, 
when the outcomes of this main-effect logistic regression model are analyzed 
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26  Logistic, Probit, and Logit Regression

in terms of response probabilities and  DC / IC s, S-shaped relationships and 
interaction effects appear. Of course, both analyses and conclusions are 
mathematically correct: A linear effect on the response logits logically/math-
ematically implies a particular curvilinear relationship on the response prob-
abilities and also leads to particular interaction effects in terms of  DCs,   IC s 
(and vice versa); different dependent left-hand side elements in the equations 
are involved, viz. response odds versus response probabilities. Nevertheless, 
the choice of the effect measure ( DC  or  OR ) may lead to different substantive 
conclusions from the research outcomes about the effects of the independent 
variables. More on how to deal with this and on the interpretation of interac-
tion effects is presented in Sections 4.3 and 6.2.

Because the  β s are the natural effect coefficients in the DRM logistic 
regression equations and given their parsimonious and direct interpretation 
in terms of odds and odds ratios,    β s and  OR s are the central effect measures in 
the next three chapters on the comparative issues for logistic DRM (although 
some comparisons with  DC / IC –type additive effect measures are made).

2.2.3   Probit Regression

So far, the logistic distribution function has been used for the cumulative 
distribution function in Eq. (2.2). As an alternative, the cumulative standard 
normal distribution  F (z)  = Φ (z)   was mentioned, giving rise to the probit 
model. Given the similar shape of the logistic and the normal distribution, 
the estimates of the conditional response probabilities in the probit regression 
model are rather close to those obtained by the logit regression model, except 
for estimates very close to 0 or 1. Also the comparative issues involved are very 
much the same for the probit and logit model.

The main disadvantage of the probit model is that the probit regres-
sion coefficients do not have the simple substantive interpretation in terms 
of odds ratios or something similar, which exists for the logistic regression 
coefficients. No simple transformation of probits exists that have a simpler 
interpretation than the probit itself. This means, given the use of the cumula-
tive standard normal distribution, that the probit effects can be interpreted 
in terms of the expected change in the  z -scores of the categorical depen-
dent variable due to a unit change in the independent variable. However, 
for dichotomous dependent variables, such as attending university or not, 
and for categorical variables in general, the use of  z -scores usually does not 
make much theoretical, substantive sense. Hence, researchers tend to use the 
predicted response probabilities that correspond to the predicted  z -scores 
to gauge the effects in probit regression. Mostly, the  DC  and  IC  measure 
described earlier are being used as effect measures, with the same advantages 
and complications described for the logistic regression model.

In the probit DRM, the response probability is parameterized as a func-
tion of the independent variables in the following way:
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Chapter 2  •  Regression Models for a Dichotomous Dependent Variable  27

   
Pr      (    Y  i   = 1|  X  1i  , ⋯ ,  X  Ki   )   

  
= Φ  (    γ  0   +  ∑ k=1  

K     γ  k    x  ki   )   
  

 
    

 
  

=   1 _ 2π
    ∫ −∞   γ  0  + ∑ k=1  

K    γ  k   x  ki      exp   (   − 0.5  t   2  )   dt
  

 
   (2.11)

Eq. (2.11) yields an S-shaped response curve very similar to the response 
curve for the logistic model, although less heavy in the tails of the distri-
bution (Long, 1997, p. 43). The linear predictor   µ  i   =  γ  0   +  ∑ k=1  

K    γ  k    x  ki     is a  
linear-additive function of the independent variables with the probit regres-
sion coefficients denoted by the Greek letter  γ . The probit effects   γ  k    can be 
estimated by means of MLE methods.

Similar to the logit function (Eq. [2.8]) being the inverse of the cumula-
tive standard logistic distribution function with mean 0 and variance π²/3, the 
probit function is the inverse of the cumulative standard normal distribution. 
(Technically, multiply the right-hand and left-hand sides of Eq. [2.11] by   Φ   −1  .)  
And as the logit DRM, the probit DRM is a linear-additive model in terms of 
the probits:

  probit (Pr ( Y  i   = 1 |  X  1i  , ⋯ ,  X  Ki  ) )  =  γ  0   +  γ  1    x  1i   + ⋯ +  γ  K    x  Ki     (2.12)

Column (2) of Table 2.1 shows the estimated probit regression coeffi-
cients for the main effects model, applied to the university data set. They are 
systematically smaller in absolute size than the logistic regression coefficients, 
which is true in general. There are various proposals to make them more com-
parable, but all those proposals lead to more or less the result:  β ≈ 1.7γ  (Long, 
1997, p. 48). In Section 2.3.2, the logic behind the factor  1.7  is explained. In 
Table 2.1, the logistic effects  β  are all close to 1.75 times larger than the cor-
responding probit effects  γ . As can be seen from the STATA output on the 
chapter’s webpage, the estimated response probabilities for the probit model 
are very much like the response probabilities for the logistic model.

When using the response profiles and  IC  or  DC  as effect measures in pro-
bit regression, the (marginal) effect of a particular independent variable   X  k    is 
largest in the center of the multivariate distribution and gets smaller toward 
its tails, as follows from the standard normal density being the largest in the 
center of the distribution (around   Y  i   = 1 |  X  1i  , ⋯ ,  X  Ki   = .50 ). Therefore, the 
sizes of  IC  and  DC  as effect measures for a particular independent variable 
depend in general, as for the logistic regression model, on the values chosen 
for that particular variable and on the values and effects of the other indepen-
dent variables. Nonlinearities and interaction  DC/IC  effects will appear, even 
in the main-effects-only probit regression model in Eqs. (2.11) and (2.12). 
This is formally shown in Eq. (2.13) for the partial derivative ( IC , the mar-
ginal effect) with   f (z)  = ϕ (  z )     being the standard normal density:
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28  Logistic, Probit, and Logit Regression

   
  
∂ Pr   (   Y  i   = 1 |  X  1i  , ⋯ ,  X  Ki   )     ___________________ ∂  X  k  

  
  
=

  
ϕ  (   γ  0   +   ∑  

k=1
  

K
    γ  k    x  ki   )    ⋅  γ  k  

     
 
  

=
  
  1 _ 
 √ 
_

 2π  
   exp  (  −   

  {   γ  0   +  ∑  k=1  
K    γ  k    x  ki   }     2 

  ________________ 2   )    ⋅  γ  k  
    (2.13)

And of course, from Eq. (2.13), it is easily inferred that the appearance of 
nonlinearities and interaction effects are also true for the  DC  effect measures.

2.2.4   Linear Probability Model – LPM

The linear probability model was introduced in Eq. (2.1) as a first obvious 
and attractive choice to model response probabilities. It is often consid-
ered as a serious alternative to logit or probit regression. LPM in Eq. (2.1) 
is a main-effects-only additive-linear regression model, but now for the 
response probabilities and not for the response logits or probits. The partial 
derivative for the LPM simply amounts to:

    
∂  Pr   (    Y  i   = 1|  X  1i  , ⋯ ,  X  Ki   )     ____________________ ∂  X  k  

       =      α  k    (2.14)

The   α  k    effects in LPM are identical to the familiar unstandardized 
regression coefficients from a standard regression analysis (with dichotomous 
dependent variable  Y ). They are also identical to the  DC s and  IC s discussed 
earlier for a unit increase in the independent variable, but without the men-
tioned complexities. In standard LPM (Eq. [2.1]), there are no curvilinear or 
S-shaped relations and no interaction effects.

LPM’s parameters including their standard errors can be estimated by 
means of OLS (ordinary least squares). However, the statistical properties 
of the OLS estimates are based on certain assumptions, among them the 
homoscedasticity assumption regarding the error terms. This homoscedas-
ticity assumption is not fulfilled when the dependent variable is dichoto-
mous. As a consequence, although estimates of the regression coefficients are 
still unbiased, estimates of their standard errors are not. In principle, this 
problem can be tackled by either using robust standard errors or using WLS 
(weighted least squares) estimation. However, often OLS is used to estimate 
LPMs, as several authors recommend (Angrist & Pischke, 2008; Long, 1997, 
pp. 38–39).

Column (3) of Table 2.1 shows the OLS estimates of the main-effects-only 
LPM model in Eq. (2.1) for the university data. The estimate of the intercept   
α  0    tells that the estimated response probability of attending university equals 

Copyright © 2024 by Sage Publications, Inc. 
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute



Chapter 2  •  Regression Models for a Dichotomous Dependent Variable  29

.173 in the reference group  R  (individuals from Country A, with average intelli-
gence, no academic background, and maximum one sibling). Note that accord-
ing to the true (simulated) data, the response probability in this reference group  
R  is actually .091. The estimate of the effect   α  1    of   X  1    Country is .310 and means 
that the response probability is .310 higher in Country B than in A, holding 
all remaining independent variables constant. The estimate of the effect   α  4    of   
X  4   -Intelligence is .013 and implies that an increase in intelligence from 0 to 8 
increases the response probability of going to university by  8    ⋅    .13 =    .104 .

If in a given data set all conditional response probabilities lie within the 
range .30 and .70, there is a rather close linear connection between the logis-
tic effects   β  k    and the LPM effect   α  k    (see Goodman, 1976, p. 92):

   β  k   ≈  4α  k     (2.15)

In the university data, however, there are a quite a few response prob-
abilities outside the range .30–.70, especially  < .30 . As the book’s web-
site shows, LPM produces several negative estimated conditional response 
probabilities (for eight of 80 combinations of the independent variables) 
and several estimated response probabilities that seriously deviate from 
the probabilities in the data (22 from 80 estimated probabilities deviate 
more than .10 from the true probabilities where all deviations concern true 
probabilities that are less than 0.2 or larger than 0.85). In this sense, LPM 
does not fit as nicely as the logistic regression, which (necessarily) fitted the 
simulated university data perfectly. When the conditional response prob-
abilities cover the whole range 0–1 in S-shaped form, it is easily seen from 
Figure 2.1 that fitting a (LPM) straight line through the (logistic) S-curve 
must lead to overestimating the lower tail and underestimating the upper 
tail response probabilities.

As was true for the logistic model in Eq. (2.8), nonlinearities and inter-
action effects might be added to the basic main effects LPM in Eq. (2.1) by 
means of independent variables in the form of higher order polynomials, 
dummy variables, or product terms.

Finally, a categorical LPM variant exists, in which all independent vari-
ables are treated as categorical or discrete (analogous to the relationship 
between the logistic and the categorical logit model). Grizzle et al. (1969) 
developed the main framework, using WLS estimation; the model is often 
called the GSK model (which also includes the WLS logit model; Kuechler 
& Wides, 1981). Bergsma et al. (2009) developed a similar MLE approach 
while Davis (1975) explained extensively the logic of additive path models for 
categorical data, based on LPM notions and  d%  (or  DC ) and loosely applying 
MLE (see also Aris, 2001).
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30  Logistic, Probit, and Logit Regression

2.3   LATENT VARIABLE MODEL — LVM

A rather different view on the logistic or probit regression model, different 
from the DRM perspective, is to understand the logistic or probit regres-
sion model as derived from a particular LVM. In logistic and probit LVM, 
the observed dependent variable  Y  is conceptualized as the dichotomized 
outcome of an underlying unobserved continuous dependent variable   Y   *   
and the interest is in the effects of the independent variables  X  on this 
latent variable   Y   *  .

At the observed level, both approaches are equivalent: Logistic LVM 
and logistic DRM lead to one and the same logistic regression model and 
are identical to each other in terms of the (expected) response probabili-
ties   Pr (    Y  i   = 1 )     and the (estimated) logistic effects  β  on  Y . Similarly, probit 
DRM and probit LVM lead to the same results and effects at the observed 
level.

To indicate the effect coefficients for the effects the independent vari-
ables have on the underlying, latent variable   Y   *  , Latin instead of Greek letters 
are used; for logistic LVM:  b  instead of  β  and for probit LVM:  c  instead of γ. 
(Some other authors do it the other way around and use  b  for the logistic and  
β  for the underlying effects on   Y   *   (e.g., Karlson et al., 2012).

The basic idea underlying LVM is that the observed (dichotomized)  Y  
gets the value 1 if a research unit’s score on the latent continuous variable   Y   *   
is larger than a particular threshold value  τ  and that otherwise the observed 
score on  Y  is 0:

    y  i   = 1 (    y  i  
*  > τ )      (2.16)

where   1 (   ⋅  )     is an indicator function returning a value of  1  if the logical 
expression in brackets is true; otherwise, it returns a value of  0 .

The latent variable itself is assumed to be a linear-additive function of the  
k = 1,   ⋯ ,   K  independent variables   X  k   :

   y  i  
*  =  µ  i   +  u  i   =  b  0   +  b  1    x  1i   + ⋯ +  b  K    x  Ki   +  u  i     (2.17a)

As explained further, it is convenient for showing the connection between   
b  k    in Eq. (2.17a) and the logistic effect   β  k    (and similarly for  c  and γ) to rewrite 
Eq. (2.17a) by replacing   u  i    by another error term   e  i    multiplied by a scaling fac-

tor  φ  (i.e.,   u  i   =  φe  i   ):

   y  i  
*  =  µ  i   +  u  i   =  b  0   +  b  1    x  1i   + ⋯ +  b  K    x  Ki   +  φe  i     (2.17b)
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Chapter 2  •  Regression Models for a Dichotomous Dependent Variable  31

The error variance in Eq. (2.17b) equals:   σ  u  
2  =  φ   2   σ  e  

2     and the scaling fac-
tor is  φ =  σ  u   /  σ  e   . (Note that in Section 2.23 on probit regression the symbols 
φ [and its capital Φ] referred to the [cumulative] normal distribution func-
tion, but from here on φ will refer to the scaling factor.)

Except for the fact that   Y   *   is an unobserved, latent variable with unknown 
scale, and therefore unknown mean and variance, the model in Eq. (2.17) 
is otherwise a normal standard regression equation with   Y   *   as a continuous 
interval level dependent variable. The partial derivative of   Y   *   with respect to 
a particular   X  k    equals:  ∂  Y   *  / ∂  X  k   =  b  k    and the LVM regression coefficients in 
Eq. (2.17) are the direct effects for each independent variable on the latent 
variable   Y   *  .

The usual standard regression assumptions are made for Eq. (2.17), such 
as homoscedastic error variances and error terms that are not correlated with 
each other and not with the independent variables. Both assumptions are 
important of course, but the homoscedasticity assumption is more impor-
tant than usual. In a normal standard regression equation with an observed 
dependent variable, if the error variances are not the same within the cat-
egories of  X , heteroscedasticity will not lead to biased OLS estimates of the 
unstandardized regression coefficients   b  k    (although the OLS variance esti-
mates and standard errors are biased; as in LPM, Section 2.2.4). However, in 
logistic (and probit) LVM, heteroscedasticity of the error term in Eq. (2.17) 
may cause serious bias in the (scaled) estimates of   b  k    (and   c  k   ), as shown in 
Section 2.3.3.

Before discussing the precise relationship between the logistic  β  effects 
and the underlying effects  b  (and between probit effect γ and  c ), a fundamen-
tal question must be raised: What is the conceptual status of the latent vari-
able   Y   *   and hence the meaning of the LVM approach? Theoretically, the idea 
of an underlying continuous variable may be a useful and interesting one. It 
certainly has a certain intuitive appeal. In the words of Long (1997):

Consider a woman’s labor force participation as the observed variable  
Y . The variable  Y  can only be observed in two states: a woman is in 
the labor force, or she is not. However, not all women in the labor 
force are there with the same certainty. One woman might be very 
close to the decision of leaving the labor force, while another woman 
could be very firm in her decision. In both cases, we observe the same  
Y = 1 . The idea of a latent   Y   *   is that there is an underlying propensity 
to work that generates the observed state. (p. 40)

Researchers within a discipline like economics in which utility as a primi-
tive notion and rational choice play a central role find this idea very appealing 
and make extensive use of it. Moreover, in the statistical literature, it has been 
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32  Logistic, Probit, and Logit Regression

probably the mostly used way to derive the properties of the logistic/probit 
regression model.

Nevertheless, some problematic aspects must be mentioned that have to 
be taken into account when interpreting the results from LVM. These issues 
have been brought forward many times. They also echo the notorious dispute 
from the old days between Yule and Pearson about the nature of categorical 
data and reverberate the discussions about revealed versus stated preferences 
(Berkson, 1951; Hagenaars, 2016; Kuha & Mills, 2017, pp. 13–17).

First of all, it must be asked why such a single crude dichotomous mea-
surement  Y  is used when the interest is actually in the underlying continuous 
variable   Y   *  . It might be true that this is all researchers have at their disposal, 
but still, then, they should be aware of the possible shortcomings of their 
“measurement.”

Second, as shown next, the response model that links the (unknown) 
scores on   Y   *   to the observed scores on  Y  entails a rather restrictive distri-
butional assumption for the underlying latent variable along with a spe-
cific deterministic response mechanism. And these restrictions cannot be 
empirically validated because they are needed for the identification of the 
model.

Finally, and perhaps most important, the substantive meaning of the latent 
variable   Y   *   may be far from obvious. Take the university data as an example. 
What is the meaning of   Y   *   here? Within LVM, the focus is not on the prob-
ability of attending university or not, but on the propensity/inclination to attend 
university. Outside a definite theoretical framework, this propensity/inclination 
is a very vague concept. Is propensity, for example, the preference, capacity, abil-
ity, willingness, suitability, or encouragement to go to university? And is it often 
not of interest to know why people who have the propensity to go to university are 
actually not going rather than interpreting their behavior as realized preference?

All this is not to say that one should not use the latent variable interpre-
tation of logistic regression, but that this choice should be based on careful 
considerations.

2.3.1   Logistic Latent Variable Model

To be able to estimate the effects of the independent variables on the latent 
variable   Y   *   in Eq. (2.17), a precise formal link must be established between 
the unobserved scores on   Y   *   and the response probabilities of  Y = 1 . Starting 
point is the threshold equation Eq. (2.16) in which regression equation Eq. 
(2.17b) is inserted:

    y  i   = 1 (    b  0   +  b  1    x  1i   + ⋯ +  b  K    x  Ki   + φ  e  i   > τ )      (2.18)
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Chapter 2  •  Regression Models for a Dichotomous Dependent Variable  33

From Eq. (2.18), it follows that the probability of observing   Y  i   = 1  equals 
the following expression:

   
Pr ( Y  i   = 1 |  X  1i  , ⋯ ,  X  Ki  )

  
=

  
Pr (φ  e  i   > τ −  ( b  0   +  b  1    x  1i   + ⋯ +  b  K    x  Ki  ) ) 

      
 
  

=
  
Pr ( e  i   >   τ _ φ   −  (  

 b  0   _ φ   +   
 b  1   _ φ    x  1i   + ⋯ +   

 b  K  
 _ φ    x  Ki  ) ) 

    (2.19)

Now assume that the error   e  i    has a certain distribution that allows one to 
compute the probability that   e  i    exceeds or falls below a certain value. If one 
assumes this distribution to be symmetric (such as the normal or the logistic 
distribution), Eq. (2.19) can also be written as:

  Pr     (     Y  i   = 1 |  X  1i  , ⋯ ,  X  Ki   ) = Pr ( e  i   ≤  (  
 b  0   _ φ   +   

 b  1   _ φ    x  1i   + ⋯ +   
 b  K  

 _ φ    x  Ki  )  −   τ _ φ  )    (2.20)

The right-hand side of Eq. (2.20) equals the definition of a cumulative 
distribution function (cdf):   F (z)  = Pr (  Z ≤ z )    . The random variable for this 
cdf is error variable  E  and the right-hand side of Eq. (2.20) provides the prob-
ability of that random variable being smaller than a certain value, namely the 
expression to the right of the inequality sign  ≤ .

In logistic LVM, the standard logistic distribution is assumed for the 
error variable  E  with a mean of 0 and variance of   σ  e  

2  =  π   2  / 3 ; in probit LVM, 
the standard normal distribution is used for  E  with a mean of 0 and   σ  e  

2  = 1  
(Long, 1997, p. 43).

Application of the standard logistic distribution to the error variable  E  
turns Eq. (2.20) into:

  Pr   (  Y  i   = 1 |  X  1i  , ⋯ ,  X  Ki   ) =   
exp  (      b  0   − τ

 _ φ   +   b  1   _ φ    x  1i   + ⋯ +   b  K   _ φ    x  Ki  )   ___________________________   
1 + exp  (      b  0   − τ

 _ φ   +   b  1   _ φ    x  1i   + ⋯ +   b  K   _ φ    x  Ki  )
     (2.21)

which is equivalent to Eq. (2.3). Comparison of the coefficients of Eq. (2.3) 
and Eq. (2.21) shows the following relationships between the logistic DRM 
coefficients   β  k    and the underlying LVM coefficients   b  k   :

   β  0   =   
 b  0   − τ

 _ φ      and        β  k   =   
 b  k   _ φ  ;       k = 1, ⋯ , K  (2.22a)

  with      φ =   
 σ  u   _  σ  e  

   =   
 σ  u   _ 

π/  √ 
_

 3  
        (2.22b)

The logistic DRM coefficients   β  k    in Eq. (2.3) are scaled versions of the 
corresponding underlying LVM coefficients   b  k    the researcher is actually 
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34  Logistic, Probit, and Logit Regression

interested in. The scaling factor  φ  as such is unknown, being the ratio of 
the unknown true standard deviation of  U  and the fixed standard devia-
tion of  E . This scaling (or error-standardizing) factor  φ  is a key factor in 
the comparative interpretation of the logistic regression coefficients, as 
the next chapters show.

From Eq. (2.22a), it is further seen that the threshold value  τ  only 
plays a role in intercept   β  0   . This role is related to the fact that the mean of 
latent variable   Y   *   is unknown and therefore the intercept   β  0    is a function, 
not only of   b  0    and  φ , but also of  τ . Usually, it is arbitrarily assumed that  
τ = 0  (sometimes    b  0   = 0 )    . As long as the latent dependent variable   Y   *   is 
regarded as an interval, rather than a ratio level variable, this is not a seri-
ous restriction: assigning an arbitrary value to  τ  amounts to switching the 
origin (0) of the interval scale, which in case of an interval level variable 
is arbitrary anyhow.

Often, due to the scaling problem in LVM, researchers will not try to 
evaluate the estimated  b  effects on the latent variable   Y   *   but instead just focus 
on the consequences the LVM model has for the response probabilities. The 
estimates of the response probabilities are not affected by the size of the scal-
ing factor, that is, they are not scale dependent. If the logistic distribution had 
been assigned a standard deviation different from  π /  √ 

_
 3   , the same estimated 

response probabilities would have been found (they are estimable functions; 
see Long, 1997, pp. 49–50).

So, as for the logistic DRM discussed earlier, also in LVM the effects 
of the independent variables might be evaluated by using response pro-
files or one more of variants of the  IC  or  DC  effect measures. However, 
given that the estimated response probabilities are the same in both DRM 
and LVM, these “effect measures” will of course be the same in both 
approaches and the same complexities will arise in LVM as in DRM due 
to the non-linear, S-shaped relations and the many interaction effects. As 
in DRM, the use of odds ratios might solve these complexity problems. 
But in this way, there is essentially no difference between the DRM and 
the LVM approach: The purpose of finding the linear-additive effects  b  of 
the X variables on the unobserved   Y   *   has disappeared. Therefore, despite 
the scaling problems, the focus in the next chapters regarding LVM is 
on what can be inferred about the underlying effects  b  on   Y   *   in the three 
main comparative situations.

Underlying Standardized Effects and Explained Variance of   Y   *  

So the main source of the difficulties involved when using the logistic regres-
sion coefficients  β  to draw conclusions about the LVM regression coeffi-
cients  b  is the unknown size of the underlying error variance   σ  u  

2   and hence 
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Chapter 2  •  Regression Models for a Dichotomous Dependent Variable  35

the unknown variance   σ   Y   *   
2    of   Y   *  . One general way of solving this problem 

is to assign the value 1 to the variance of   Y   *   and transform the underlying 
latent variable   Y   *   into the standardized variable   Z   Y   *     with variance   σ   Z   Y   *   

  2   = 1  
(and mean 0; Long, 1997, pp. 70–74; McKelvey & Zavoina, 1975; Winship 
& Mare, 1983, 1984). The focus of the LVM analysis then switches from the 
underlying unstandardized regression coefficients  b  to the underlying stan-
dardized effects. As shown next, these standardized effects can be estimated 
from the observed data.

For the fully standardized regression coefficients, all variables, the depen-
dent and the independent ones, are standardized with mean equal to 0 and 
standard deviation equal to 1, yielding the fully standardized coefficients   b  k  

fs : 

   b  k  
fs  =   

 σ  k   _  σ   Y   *   
    b  k     (2.23)

A semi- or half-standardized regression coefficient in the form of only   
Y   *  -standardized,   b  k  

 s   Y   *      equals:

   b  k  
 s   Y   *     =   

 b  k   _  σ   Y   *   
     (2.24)

Half-standardized effects in the form of only  X -standardized are not 
considered in this volume, because they do not solve the scaling problem. 
Half-standardized effects always refer to the   b  k  

 s   Y   *      coefficients. Also the fully stan-
dardized effects are mostly ignored. Certainly with independent variables in the 
form of dummy variables, the   Y   *  -standardized effects make more sense than the 
fully standardized (see also Section 3.1). The half-standardized coefficients in 
Eq. (2.24) leave the initial scoring of the independent variables as they are but 
standardize   Y   *  , whose scaling is not known anyhow. The   Y   *  -standardized effect 
indicates how many standard deviations the latent variable in- or decreases by 
an increase of one measurement unit on the independent variable. Although the 
standard deviation of   Y   *   remains unknown, this is the type of interpretations 
that is regularly used also in standard regression analysis.

Although   σ   Y   *     and   b  k    in Eq. (2.24) are both unknown, latent, the (half-) stan-
dardized effect   b  k  

 s   Y   *      can be obtained from the data. Starting point is the equation   
σ   Y   *   

2   =  σ     ̂  Y     
*
   

2   +  σ  u  
2  : The total variance   σ   Y   *   

2    equals the sum of the explained variance   
σ     ̂  Y     

*
   

2    plus the error variance   σ  u  
2  , where    σ  u  

2  =  φ   2   σ  e  
2  =  φ   2    (  π   2  / 3 )    . The explained 

variance   σ     ̂  Y     
*
   

2    can be written as a function of the (co)variances of the independent 
variables and their effects  b :

  Var  (    µ  i   )    =  σ    Y ̂     
∗
   

2   =   ∑ 
k   =1

  
K
      ∑ 

l   =   1
  

K
     b  k   ⋅  b  l   ⋅  σ  kl        (2.25)
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36  Logistic, Probit, and Logit Regression

in which   σ  kl    (for  k ≠ l       ) is the covariance   Cov (    X  k  ,  X  l   )     and   σ  kk    (for  k = l       ) the vari-
ance   σ  k  

2  . As it turns out, when using the outcomes of the logistic regression equa-
tion Eq. (2.3) for computing the total variance   σ   Y   *   

2    and the standardized effects   
b  k  

 s   Y   *     , the scaling factor  φ  cancels out. This can be simply illustrated for a regression 
equation with one independent variable   X  1    (and straightforwardly generalized to 
more independent variables):

   

 b  1  
 s   Y   ∗    

  

=

  

  
 b  1   _  σ   Y   ∗   

   =   
 b  1   _ 

 √ 
_

  b  1  
2   σ  1  

2  +  σ  u  
2   
   =   

φ  β  1   ______________  
 √ 

_____________
   φ   2   β  1  

2   σ  1  
2  +  φ   2    π   2  _ 3    

  

     
 
  

 
  

=   
φ  β  1   ___________ 

φ  √ 
_

  β  1  
2   σ  1  

2  +   π   2  _ 3    
   =   

 β  1   _ 
 √ 
_

  β  1  
2   σ  1  

2  +   π   2  _ 3    
  
    (2.26)

Because all elements in the last right-hand side component of Eq. 
(2.26) can be estimated from the observed data, the underlying half-stan-
dardized effects   b  1  

 s   Y   *      can be computed and they can be interpreted in the 
usual way (Long, 1997, pp. 70–71). The advantages and disadvantages 
of using standardized versus unstandardized coefficients are essentially 
the same in LVM as for standard regression models. The issue is well dis-
cussed in general treatments of standard regression analysis; it returns in 
later chapters.

The notions underlying Eqs. (2.25) and (2.26) can also be used to esti-
mate how much of the variance in latent variable   Y   *   is explained by the inde-
pendent variables. Several  pseudo −  R   2   coefficients both within the DRM 
and the LVM framework have been proposed in the literature and imple-
mented in the main statistical packages (Long, 1997, Section 4.3). For LVM, 
a rather straightforward and intuitively appealing coefficient   R   Y   *   

2   , suggested 
by McKelvey and Zavoina (1975), is based on an estimate of   σ     ̂  Y     

*
   

2   /  σ   Y   *   
2   , the 

proportion explained variance in   Y   *   (pp. 111–112; Long, 1997, p. 105). 
Coefficient   R   Y   *   

2    can be computed from the data as illustrated in Eq. (2.27) 
for one independent variable   X  1    (and easily generalized to more independent 
variables using Eq. [2.25]; see Long, 1997, p. 105):

   

 R   Y   ∗ .1  
2  

  

=   
 σ    Y ̂     

∗
   

2  
 _ 

 σ   Y   ∗   
2  

   =   
 b  1  

2   σ  1  
2 
 _ 

 b  1  
2   σ  1  

2  +  σ  u  
2 
   =   

 b  1  
2   σ  1  

2 
 ___________ 

 b  1  
2   σ  1  

2  +  φ   2   σ  e  
2 
  

  

 

  

 

     
 
  

=   
 φ   2   β  1  

2   σ  1  
2 
 _____________  

 φ   2   β  1  
2   σ  1  

2  +  φ   2    π   2  _ 3  
   =   

 β  1  
2   σ  1  

2 
 _ 

 β  1  
2   σ  1  

2  +   π   2  _ 3  
  
  

 
  

 
   (2.27)
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Chapter 2  •  Regression Models for a Dichotomous Dependent Variable  37

2.3.2   Probit Latent Variable Model

If the error variable  E  in Eq. (2.17b) is assumed to be standard normally dis-
tributed with standard deviation equal to 1, the result is the probit LVM. The 
underlying LVM probit effects are indicated by   c  k   , replacing   b  k    in Eq. (2.17).

Similar to logistic LVM, the probit effect coefficients   γ  k    in Eq. (2.12) are 
scaled versions of the underlying LVM coefficients   c  k   :

   γ  0   =   
 c  0   − τ

 _ φ      and     γ  k   =   
 c  k   _ φ  ;       k = 1, ⋯ , K  (2.28a)

      with      φ =   
 σ  u   _  σ  e  

   =   
 σ  u   _ 1   =  σ  u     (2.28b)

The consequences of this scaling problem are the same for the probit LVM 
as for the logistic LVM. They can be circumvented for the probit LVM analo-
gously to the logistic LVM by defining (half) standardized effects or using the 
estimated response probabilities, with the same advantages and problems. The 
effect coefficients   γ  k    of the probit DRM did not have the same clear and nice 
(odds ratio) interpretation as was possible for the logistic DRM. However, the 
underlying effects   c  k    (probit) and   b  k    (logit) on the latent dependent   Y   *   have the 
same kind of standard regression interpretation. The only difference between 
logistic and probit LVM is that in probit LVM the error term is assumed to be 
standard normally distributed instead of standard logistically, which does not 
affect the basic interpretation of the underlying effects.

It can now be explained why (in DRM) the logistic effect   β  k    is about 
1.7 times larger in absolute value than the corresponding probit effect   γ  k   . 
First of all, the standard deviation of the error terms in the assumed standard 
logistic distribution equals  π /  √ 

_
 3   = 1.814 , while the standard deviation of the 

error terms in the assumed standard normal distribution equals 1. Taking 
this difference into account, it can be expected from comparing Eqs. (2.28) 
and (2.22) that the logistic effects are about    (  π /  √ 

_
 3   )    / 1  times stronger than the 

probit effect:   β  k   = 1.814  γ  k   , just due to the different scaling of the error terms.
However, although the standard logistic and the standard normal 

distribution have approximately the same form, the shapes are not com-
pletely the same and differ not only with regard to their respective standard 
deviations. Taking this into account, somewhat different results might be 
obtained. Andreß et al. (2013) suggested to restrict the marginal effect for  Pr 

( Y  i   = 1)  = 0.5  to be the same for probit and logit LVM, yielding:   β  k   = 1.6  γ  k    
(p. 226). The same result, as cited by Long (1997), is obtained by Amemiya 
who suggested making the cdfs of the logistic and the normal distributions 
as close as possible. Long’s own calculations along similar lines resulted in   
β  k   = 1.7  γ  k    (p. 48).
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38  Logistic, Probit, and Logit Regression

2.3.3   Heteroscedastic Errors, Unequal Thresholds, and 
Biased Effects

Homoscedasticity of the error terms   u  i    in the underlying LVM equation (Eq. 
(2.17) is an essential assumption in logistic/probit LVM. It is strictly needed 
for the identification of the underlying  b s in terms of   b  k   = φ  β  k    and cannot 
be empirically tested due to the latent nature of   Y   *  . If the error terms   u  i    in 
the underlying LVM equation (Eqs. (2.17a, b) are not homoscedastically 
distributed, the crucial relationship   b  k   = φ  β  k    (Eq. 2.22) are no longer valid 
and inferences about the underlying  b s on the basis of the “observed”  β s are 
biased. A thorough understanding of the consequences of heteroscedasticity 
is therefore important. The simulated data example used for this purpose also 
provides further insight into the role of the thresholds in LVM.

The observed dichotomous variable  Y  in the simulated data example is 
(again) denoted as Attending university or Not (1 = Attending; 0 = Not). The 
underlying variable   Y   *   represents the propensity to attend university. There is 
only one independent variable Gender (1 = Men; 0 = Women). The underlying 
equation equals:   Y   *  =  b  0   +  b   Y   * G   G +  u  i   . In the simulation, the “true” under-
lying effects are known. The intercept is given the value   b  0   = − 1.5  and the 
effect of Gender is set to one:   b   Y   * G   = 1 . Hence, the mean latent score of   Y   *   for 
Women equals  E ( Y  W  *  )  =   – 1.5 and for Men  E ( Y  M  *  )  =   – .5. For the distribution 
of the errors   u  i    around these expected values, the logistic distribution is used 

E(Y*|Men)

E(Y*|Women)

26.94.7

–6

–4

–2

0

2

4

Y*

Women Men

a) Homoscedasticity 

E(Y*|Men)

E(Y*|Women)

26.918.2

–6

–4

–2

0

2

4

Y*

Women Men

b) Heteroscedasticity

FIGURE 2.2 ■    Homoscedastic (a) and Heteroscedastic (b) Error 

Variance in LVM   
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Chapter 2  •  Regression Models for a Dichotomous Dependent Variable  39

and shown in Figure 2.2. The threshold value  τ  is set at   Y   *  = 0  for both Men 
and Women.

As can be readily seen from Figure 2.2, the conditional response prob-
ability   Pr (  Y = 1 | G )     will in principle vary with and depend on the threshold 
value  τ  and on the expected value of   Y   *   but also on the error terms (i.e., on the 
spread around the expected values of   Y   *  ).

First, the homoscedastic scenario is simulated and presented in Figure 
2.2a. In this scenario, the errors   u  i    are logistically distributed with a standard 
deviation that is identical for Men and Women and made .5 times as small 
as the error standard deviation   σ  e      in the standard logistic distribution:    σ  uM   =  
σ  uW   =  .5σ  e   =  (  .5 )   (  π /   √ 

_
 3   )   =  (  .5 )   (  1.8138 )   = .9069    and the scaling factor 

equals  φ =  σ  u   /  σ  e   = .5 . Also the threshold is the same for Men and Women. 
In this way, the difference in the response probabilities for Men and Women 
is only a function of the difference in expected values (i.e., of the underlying 
effect   b   Y   * G   ).

The response probability for Men resulting from this simulation is  

  Pr ( Y  M   = 1)  =  (    e    (−1.5+1) /0.5  )    /   (  1 +  e    (−1.5+1) /0.5   )   =   .2689   and the response 

odds are   Ω  1/0  
Y      |      M  = .2689/  (  1 − .2689 )          = .3679 . For Women, the simulated result 

for the response probability is   Pr  (    Y  W          = 1 )    =   (    e   −1.5/0.5  )   /  (  1 +  e   −1.5/0.5  )     

 = .0472  and for the response odds:   Ω  1/0  
Y      |      W  = .0472/  (  1 − .0472 )          = .0495 .  

The odds ratio for the effect of Gender on the observed variable  Y  equals  
 OR =  Ω  1/0  

Y      |      M  /  Ω  1/0  
Y      |      W  = .2689/.0472 = 7.4246  and  ln OR =  β  YG   =    2.00.  The 

logistic effect   β  YG    is twice as large as the underlying effect   b   Y   * G   ; this corresponds 
with the simulated value of  φ .

In the homoscadestic scenario, it should be true that   b  k   = φ  β  k   . For these 
simulated data, the scale factor  φ  is known and was set to:  φ = 0.5 . Applying the 
scale factor to find the underlying effect from the logistic effect yields:   b   Y   * G   = φ  
β  YG   = .5 ⋅ 2 = 1 , which is the true, simulated underlying effect of Gender. In the 
homoscedastic scenario, the logistic effect    β  YG      (   = 2 )     is an unbiased, albeit  φ  
scaled estimate of    b   Y   * G      (   = 1 )    . If the standard deviation   σ  e    had been made equal 
to the true eror standard deviation   σ  u   , logistic effect   β  YG    would have been the 
same as the underlying effect   b   Y   * G   .

In the heteroscedastic scenario in Figure 2.2b, everything stays the 
same for Men and Women as in the homoscedastic scenario, except that 
for Women the spread around the expected value has been doubled:    
σ  uW   = 2 ⋅ .9069 =   1.8138    (   = π /  √ 

_
 3   )    . Just due to the larger error variance 

for Women, a much larger percentage of the Women will now obtain the 
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40  Logistic, Probit, and Logit Regression

score  Y = 1 :   Pr (    Y  W   = 1 )   =   (    e   −1.5  )    /   (  1 +  e   −1.5  )    = .1824   (instead of .0474). 
For Men, the response probability and response odds remain the same as 
in the homoscedastic scenario. In the heteroscedastic scenario, the dif-
ference between the observed response probabilities for Men ( .2689 ) and 
Women (.1824) is not only a function of the difference in their expected 
values (i.e., of   b   Y   * G   ), but also a function of the difference in their error vari-
ances: in this heteroscedastic scenario,  OR =   (  .2689  /   (1 − .2689)  )    /   (  .1824 /  
(  1 − .1824 )   )    = .3679 / .2231 = 1.649  and    β  YG   =   ln   OR = ln (1.649)  = .50    

(   = − 1.5 + 2 )    . While the underlying regression effect   b   Y   * G    on   Y   *   is the 
same in the two scenarios, the logistic effect   β  YG    is very much smaller in 
the heteroscedastic than in the homoscedastic scenario (.5 vs. 2).

For real data sets, the researcher would not know the heteroscedasticity 
in the underlying equation for   Y   *  . The question is, then, what would happen 
when the simulated data under the heteroscedastic scenario were analyzed as 
if the error terms were homoscedastically distributed?

The value of the single pooled estimate of the two error variances for Men 
and Women would depend on the distribution of Gender. (But note that the 
relative conditional distributions of   Y   *   for Men and Women do not change 
when only the marginal distribution of Gender is changed and so  b,   OR   and   β  
will keep the same values.) For a uniform (.50/.50) distribution of Gender, the 
pooled error variance would be equal to the unweighted average of the two error 
variances and the square root of this average variance equals   σ  u−pooled   = 1.4340 .  

The scaling factor would be equal to  φ = 1.4340 / 1.8138 = .7906  and so   b   Y   * G    
would be estimated as   b   Y   * G     = φ  β  YG   = .7906 ⋅ .5 = .3953 , a far cry from the 
true value 1. Similar calculations for a .75/.25 distribution Women/Men would 
lead to   σ  u−pooled   = 1.6349  and   b   Y   * G     = φ  β  YG   = .4507  and a .25/.75 distribution 
to   σ  u−pooled   = 1.1997  and   b  G   = φ  β  YG   = .3307 .

Obviously, assuming homoscedasticity of the underlying error terms 
when they are actually heteroscedastic may seriously bias the inferences 
about the underlying  b  coefficients in LVM by means of the  β s. How het-
eroscedasticity precisely affects the outcomes, certainly when there are sev-
eral independent variables involved is hard to tell. It depends on the amount 
of the heteroscedasticity and on how the heteroscedasticity is related to one 
or more of the independent variables. But if there is reason to believe that 
there is heteroscedasticity, this simple example warns the researcher to be 
careful.

In the remainder of this volume, it will just be assumed that there is 
homoscedasticity of the underlying errors, except for the subgroup compari-
sons dealt with in Chapter 4.
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Chapter 2  •  Regression Models for a Dichotomous Dependent Variable  41

From Figure 2.2, it is also easily seen that different thresholds   τ  M    and   τ  W    for 
Men and Women would lead to serious distortions of the estimates of the under-
lying effects on   Y   *   if  φ  β   Y   * G    is used to make inferences about   b   Y   * G   . If one moves 
the horizontal threshold line in Figure 2.2a up- or downward only for Men and 
not for Women, while keeping the expected values for Men   E (    Y  M  *   )       and Woman   
E (    Y  W  *   )       and therefore the value of   b   Y   * G    the same, the response probability for Men 
changes and the key equation   b  k   = φ  β  k    no longer applies.

The assumption that the measurement model linking the underly-
ing latent variable   Y   *   to the observed variable  Y  is the same for all subjects 
and, as part of this, that the thresholds are the same for all subjects is a spe-
cific instance of the general requirement that the measurement instruments 
should have the same meaning for all subjects. Without such an assumption 
the variable scores of the subjects could never be compared. Nevertheless, its 
validity might be doubted, as may especially occur in cross-cultural research 
settings. The consequences of unequal thresholds are discussed again in the 
chapter on subgroup comparisons (Section 4.1).

2.4   INSERTING MAVERICKS, “ORTHOGONAL” 

INDEPENDENT VARIABLES, INTO EQUATIONS

As the next chapters show, the controversies surrounding the comparative interpre-
tations of logistic or probit effects are often discussed under the headings collapsing 
and confounding and differences in unobserved heterogeneity (or, equivalently, instead 
of unobserved heterogeneity: differences in error variances/in scaling factors). For 
a clear understanding of these discussions and the link between the notions unob-
served heterogeneity and collapsing effect, it is very helpful to have a good insight 
into the consequences of adding to or omitting from a particular regression equa-
tion an independent variable that has a direct effect on the dependent variable but is 
statistically independent of the other independent variables.

In standard multiple regression equations, the addition of such an inde-
pendent variable will increase the explained variance, but will not affect the 
values of the (un)standardized regression coefficients for the other indepen-
dent variables. In logit/probit regression on the other hand, this is not true: 
The other logistic (probit) effects  β  ( γ ) will be affected; to be more precise: 
They keep their sign, but their strengths will increase. As Mood (2010, p. 69) 
noted this difference is often forgotten. Even in the widely used introductory 
text on logistic regression by Menard, this difference with standard multiple 
regression is overlooked (Menard, 1995, p. 59; also Menard, 2002, p. 69).

In the context of logistic regression, Hauck et al. (1991) aptly call 
such a variable that is statistically independent of the other independent 
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42  Logistic, Probit, and Logit Regression

variables but directly inf luences the dependent variable, a maverick. 
One might say, a loner that disturbs the established, expected order of 
things. A maverick is defined here in a strict sense (i.e., in terms of statis-
tical independence of the other independent variables). In standard lin-
ear models, orthogonality,—a less stringent requirement, viz. not being 
correlated    (  r = 0 )       with the other independent variables—is sufficient to 
arrive at similar results, but here the stricter condition of statistical inde-
pendence is used.

What precisely happens to the effect parameters of a logistic regression 
equation when a maverick is added to the equation can be more easily shown 
by means of the LVM than by the DRM framework, but of course with iden-
tical results for the logistic regression equation.

Starting point is the LVM regression equation Eq. (2.17a) for the effects on 
latent variable   Y   *  . To such an equation with independent variables   X  k   , maverick   
X  Q    is added. The regression equation including   X  Q    is called the full equation, with 

underlying regression effects   b  k  
f    (and   b  Q  f   ). The corresponding regression equation 

but without   X  Q    is called the reduced equation, with underlying regression coef-
ficients   b  k  

r   .
Because Eq. (2.17) is a normal standard regression equation,   b  k  

r    in the reduced 
equation will have the same value as   b  k  

f    in the full equation:     b  k  
r   =  b  k  

f   . However, the 
logistic effects   β  k  

f    and   β  k  
r    will be different from each other. They will have the 

same sign but different strengths,   β  k  
f    being stronger. That   β  k  

f    and   β  k  
r    have the same 

sign, viz. the sign of   b  k  
f    (or, for that matter,   b  k  

r   ) follows directly from   b  k   = φ  β  k    and 
the fact that the scaling factor  φ  is always positive ( φ > 0 ), being a ratio of two 
standard deviations.

The inequality  | β  k  
f   | >  |β  k  

r  |    follows from the unequal error variances and 
scale factors in the underlying reduced and full equation. The unexplained 
variance    (    σ  u  

f   )     2   in the full equation is smaller than    (    σ  u  
r   )     2   in the reduced equa-

tion due to the extra nonzero direct effect   b  Q  f    of   X  Q   :   σ  u  
f   <  σ  u  

r   . However, in 
logistic LVM, both equations, the reduced and the full equation, are esti-
mated as logistic regression equations with the restriction that the error 
variance is fixed to   σ  e  

2  :   σ  e  
f  =  σ  e  

r  = π /  √ 
_

 3   . Therefore, the scaling factor   φ  f    for 

the full logistic equation equals   φ  f          =  σ  u  
f   /  σ  e    and the scaling factor   φ  r    for the 

reduced equation:   φ  r     =  σ  u  
r   /  σ  e   . Because   σ  u  

f   <  σ  u  
r   , it follows that   φ  f   <  φ  r      and 

therefore  | β  k  
f   | >  |β  k  

r  | . After adding a maverick, the strength of the effect of   X  k    
on the response probability will be larger in the full than in the reduced equa-
tion, in formula:

    
 β  k  

f  
 _  β  k  

r     =   
 b  k  

f   /  φ  f    
 _ 

 b  k  
r   /  φ  r  

   =   
 b  k   /  φ  f    

 _ 
 b  k   /  φ  r  

   =   
 φ  r   _  φ  f    

   =   
 σ  u  

r   /  (π /  √ 
_

 3  ) 
 _ 

 σ  u  
f   /  (π /  √ 

_
 3  ) 
   =   

 σ  u  
r  
 _ 

 σ  u  
f  
   > 1   (2.29)
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Chapter 2  •  Regression Models for a Dichotomous Dependent Variable  43

From the other perspective, omitting a maverick from the equation (col-
lapsing the joint distribution over   X  Q   ) decreases the strengths of the effects   β  k    
without changing their signs.

Although deleting or adding mavericks in an equation changes the 
strengths of the effects, it usually hardly changes the relative effects in the 
form of their ratios. For example, the ratio   β  k   /  β  k′      of the effects of the inde-
pendent variables   X  k    and   X  k′    will remain practically the same after adding or 
deleting a maverick   X  Q   :   β  k  

r   /  β  k′  
r   ≈  β  k  

f   /  β  k′  
f   . This is easily seen by noting that the 

underlying  b s do not change by adding or deleting a maverick and that within 
each equation, within the full and within the reduced one, the scaling fac-
tor is the same for all effects. (However, the incompatibility issue involving 
some possible incompatibilities between the reduced equation without the 
maverick and the full equation including the maverick, further discussed in 
Section 5.1.2, may have a small distorting effect on the ratio.) Relative effects 
are further discussed in Chapter 3.

How much the addition or deletion of a maverick changes the other logistic 
effects   β  k    in the equation depends on the distribution of   X  Q    and on the absolute 

strength of its direct effect   b  Q  f    on the dependent variable   Y   *  . The larger the vari-

ance of   X  Q    and the larger its direct effect   b  Q  f   , the more variance of   Y   *   is explained 
in the full compared to the reduced underlying equation and the larger the ratios   
σ  u  

r   /  σ  u  
f   ,   φ  r   /  φ  f       and    β  k  

f   /  β  k  
r    are (see also, Mood, 2010). Moreover, because ratios and 

relative changes are important here, the relative effect of the other independent 
variables compared to the effects of the maverick also plays a role. If the mav-
erick reduces the error variance by an amount  x , this generally has much more 
impact on the ratio   σ  u  

r   /  σ  u  
f    (and hence on   β  k  

f   /  β  k  
r   ) for smaller than for larger values 

of   σ  u  
r   , that is, for larger than for smaller amounts of explained variance. And of 

course, the larger the effects of the other independent in the reduced equation, 
the smaller the error variance is.

Analogous result can be obtained for the probit LVM and the ratio   γ  k  
f   /  γ  k  

r   , 
using   σ  e   = 1  instead of   σ  e   =   π /  √ 

_
 3   .

Because application of LVM leads in the end to the same logistic (or pro-
bit) equation for the observed  Y  as DRM, the same consequences of add-
ing or omitting a maverick   X  Q    are true within the DRM framework for the 
logistic (probit) effects. These consequences can also be investigated without 
recourse to a latent dependent variable, strictly within a DRM framework. 
The formulas are obtained by deriving the multiplicative effect parameters 
in the collapsed (reduced) table or distribution as sums of the multiplicative 
effects in the complete (full) table or distribution. Ultimately, the conse-
quences of adding or omitting a maverick have to do with elementary proper-
ties of logarithms, for example, that generally the sum of logs is not equal to 
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44  Logistic, Probit, and Logit Regression

the log of the sum:    [   ln (    a )    + ln  (b)  ]   ≠ ln (a + b)     but    [  ln   (  a )    + ln   (  b )    ]    =     ln   (  ab )     
(in contrast to:   ∑   (    X  i  +    W  i    )   =  (  ∑  X  i   + ∑  W  i   )    ).

For a rather simple distribution in the form of a  2 × 2 × 2  table, Hauck 
et al. (1991) provide a formula for the influence of omitting   X  Q    from the full 
logistic equation (collapsing the full distribution over   X  Q   ) on the effects of 
the other independent variables. In this way, a proportionality factor can be 
obtained to investigate the effects on the logistic effects of introducing a mav-
erick. But even for this simple data set in  2 × 2 × 2  table, this proportionality 
factor looks more complicated than Eq. (2.29) (Hauck et al, 1991, p. 81). Aris 
presents a similar proportionality formula for the same situation, carries out 
many simulations and also investigates the consequences for the variances of 
the estimates and the power of significance tests (Aris, 2001, Section 6.3.2; 
Aris et al., 2000). Hagenaars and Andreß (2020) propose a (possibly less 
cumbersome) simulation procedure SIMMAV to approximately evaluate the 
consequences of introducing mavericks in logistic regression (see Chapter 5).  
For still more, somewhat different DRM approaches for investigating the 
consequences of introducing mavericks, see Agresti, (2002, pp. 498–500), 
Karlson et al. (2012, p. 305), and Zeger et al. (1988, p. 1054).

How big the changes in the strength of   β  k    might be and to what 
extent the substantive conclusions about the effects of   X  k    might change 
after introduction of a maverick is further discussed and illustrated in 
the next three core chapters. But to give a first impression, Aris (2001, 
Section 6.3.2) simulated the effects of deleting a maverick from the 
full logistic regression equation. He found that if the strength of the 
logistic effect   β  Q  f    of maverick   X  Q    on  Y     is less than half the strength of 

the logistic effect   β  k  
f    of   X  k   , the decrease in the strength of   β  k    after dele-

tion of the maverick from the equation is less than 2% (and so, using  
1 / .98 = 1.0204 :   1 <  (   β  k  

f   /  β  k  
r   )   ≤ 1.02  ). If   β  Q  f    and   β  k  

f    are about the same size, 

the decrease is about 6% (and using   1 / .94 = 1.0638 :    (   β  k  
f   /  β  k  

r   )   ≈ 1.06  ). 
However, for very large   β  Q  f   , decreases in   β  k  

f    of  25%  or even somewhat more  

can be found, although   β  k  
f    keeps at least 50% of its original value (and 

so,   1.33 <  (   β  k  
f   /  β  k  

r   )   ≤ 2.00  ). Of course, these outcomes, as is always true 
in simulations, depend on the precise nature of the chosen simulation 
parameters (for details, see Aris, 2001), but they are in line with what 
was to be expected from the above and do not contradict what was found 
elsewhere and is found in the following chapters. In many cases, the sub-
stantive conclusions will not differ whether a maverick is introduced or 
not. However, in particular circumstances, the numerical consequences 
of introducing mavericks on the existing effects may be rather large and 
have to be reckoned with, certainly when rather precise effect estimates 
matter.
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Finally, contrary to what is sometimes suggested, also the value of  DC  as 
effect measure is affected by the introduction of a maverick, despite the fact 
that  DC  measures are essentially unstandardized regression coefficients. This 
is because the  DC s are not computed on the basis of response probabilities 
estimated by means of standard linear-additive regression equations (or such 
as LPM) but by means of a logistic regression equation.

As discussed in Section 2.2.1, the value of  DC  for the effect of   X  k    on 
the response probabilities not only depends on the chosen values of   X  k    but 
also on the values chosen for the other independent variables in the equa-
tion, including maverick   X  Q   . Depending on the chosen value of maverick   
X  Q   , the  DC  effect of   X  k    will be evaluated at different points of the S-curve 
with different slopes, yielding different  DC  values. This is also true for 
the  IC  measures (although AME [Eq. (2.6)] can be expected to be differ-
ently, often less, affected by the introduction of mavericks [Mood, 2010; 
Woolridge, 2002, p. 471]).

Given the often rather arbitrary nature of the  DC  and  IC  measures due 
to the nonlinearity of the response profiles and given the emphasis in this 
volume on the interpretation of the effect coefficients in the pertinent equa-
tions,  DC  and  IC  effect measures are mostly ignored in the remainder of this 
volume (but see Breen et al., 2018; Cramer, 2003; Mood, 2010; Woolridge, 
2002, Chapter 15).
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