
Combining these two partial derivatives leads to:

[A.2]

By setting 2F(m) − 1 = 0, we solve for the value of F(m) = 1/2, that is,
the median, to satisfy the minimization problem.

Repeating the above argument for quantiles, the partial derivative for
quantiles corresponding to Equation A.2 is:

[A.3]

We set the partial derivative F(q) − p = 0 and solve for the value of
F(q) = p that satisfies the minimization problem.

3. QUANTILE-REGRESSION MODEL AND ESTIMATION

The quantile functions described in Chapter 2 are adequate for describ-
ing and comparing univariate distributions. However, when we model the
relationship between a response variable and a number of independent
variables, it becomes necessary to introduce a regression-type model for 
the quantile function, the quantile-regression model (QRM). Given a set of
covariates, the linear-regression model (LRM) specifies the conditional-
mean function whereas the QRM specifies the conditional-quantile func-
tion. Using the LRM as a point of reference, this chapter introduces the
QRM and its estimation. It makes comparisons between the basic model
setup for the LRM and that for the QRM, a least-squares estimation for
the LRM and an analogous estimation approach for the QRM, and the
properties of the two types of models. We illustrate our basic points using
empirical examples from analyses of household income.1

Linear-Regression Modeling and Its Shortcomings

The LRM is a standard statistical method widely used in social-science
research, but it focuses on modeling the conditional mean of a response
variable without accounting for the full conditional distributional properties
of the response variable. In contrast, the QRM facilitates analysis of the full

∂

∂q
E[dp(Y, q)] = (1 − p)F(q) − p(1 − F(q)) = F(q) − p.

∂

∂m

∫ +∞

−∞
|y − m|f (y)dy = F(m) − (1 − F(m)) = 2F(m) − 1.

22
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conditional distributional properties of the response variable. The QRM and
LRM are similar in certain respects, as both models deal with a continuous
response variable that is linear in unknown parameters, but the QRM and
LRM model different quantities and rely on different assumptions about
error terms. To better understand these similarities and differences, we lay
out the LRM as a starting point, and then introduce the QRM. To aid the
explication, we focus on the single covariate case. While extending to more
than one covariate necessarily introduces additional complexity, the ideas
remain essentially the same.

Let y be a continuous response variable depending on x. In our empirical
example, the dependent variable is household income. For x, we use an
interval variable, ED (the household head’s years of schooling), or alterna-
tively a dummy variable, BLACK (the head’s race, 1 for black and 0 for
white). We consider data consisting of pairs (xi ,yi) for i = 1, . . . , n based
on a sample of micro units (households in our example).

By LRM, we mean the standard linear-regression model

yi = β0 + β1x i + ε i , [3.1]

where εi is identically, independently, and normally distributed with mean
zero and unknown variance σ 2. As a consequence of the mean zero
assumption, we see that the function β 0 + β 1x being fitted to the data corre-
sponds to the conditional mean of y given x (denoted by E[ y ⎢x]), which is
interpreted as the average in the population of y values corresponding to a
fixed value of the covariate x.

For example, when we fit the linear-regression Equation 3.1 using
years of schooling as the covariate, we obtain the prediction equation
ŷ = –23127 + 5633ED, so that plugging in selected numbers of years 
of schooling leads to the following values of conditional means for
income.

ED 9 12 16
E ( y | ED) $27,570 $44,469 $67,001

Assuming a perfect fit, we would interpret these values as the average
income for people with a given number of years of schooling. For example,
the average income for people with nine years of schooling is $27,570.

Analogously, when we take the covariate to be BLACK, the fitted regres-
sion equation takes the form ŷ = 53466 – 18268BLACK, and plugging in the
values of this covariate yields the following values.
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Again assuming the fitted model to be a reflection of what happens at the
population level, we would interpret these values as averages in subpopulations,
for example, the average income is $53,466 for whites and $35,198 for blacks.

Thus, we see that a fundamental aspect of linear-regression models is
that they attempt to describe how the location of the conditional distribu-
tion behaves by utilizing the mean of a distribution to represent its central
tendency. Another key feature of the LRM is that it invokes a homoscedas-
ticity assumption; that is, the conditional variance, Var (y|x), is assumed to
be a constant σ 2 for all values of the covariate. When homoscedasticity
fails, it is possible to modify LRM by allowing for simultaneous modeling
of the conditional mean and the conditional scale. For example, one can
modify the model in Equation 3.1 to allow for modeling the conditional
scale: yi = β0 + β1x i + e γε i, where γ is an additional unknown parameter
and we can write Var (y|x) = σ 2e γ.

Thus, utilizing LRM reveals important aspects of the relationship
between covariates and a response variable, and can be adapted to perform
the task of modeling what is arguably the most important form of shape
change for a conditional distribution: scale change. However, the estimation
of conditional scale is not always readily available in statistical software.
In addition, linear-regression models impose significant constraints on the
modeler, and it is challenging to use LRM to model more complex condi-
tional shape shifts.

To illustrate the kind of shape shift that is difficult to model using LRM,
imagine a somewhat extreme situation in which, for some population of
interest, we have a response variable y and a covariate x with the property
that the conditional distribution of y has the probability density of the form
shown in Figure 3.1 for each given value of x = 1,2,3. The three probabil-
ity density functions in this figure have the same mean and standard devia-
tion. Since the conditional mean and scale for the response variable y do
not vary with x, there is no information to be gleaned by fitting a linear-
regression model to samples from these populations. In order to understand
how the covariate affects the response variable, a new tool is required.
Quantile regression is an appropriate tool for accomplishing this task.

A third distinctive feature of the LRM is its normality assumption.
Because the LRM ensures that the ordinary least squares provide the best
possible fit for the data, we use the LRM without making the normality
assumption for purely descriptive purposes. However, in social-science
research, the LRM is used primarily to test whether an explanatory variable

24

BLACK 0 1
E ( y | BLACK) $53,466 $35,198
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significantly affects the dependent variable. Hypothesis testing goes beyond
parameter estimation and requires determination of the sampling variabil-
ity of estimators. Calculated p-values rely on the normality assumption or
on large-sample approximation. Violation of these conditions may cause
biases in p-values, thus leading to invalid hypothesis testing.

A related assumption made in the LRM is that the regression model used
is appropriate for all data, which we call the one-model assumption.
Outliers (cases that do not follow the relationship for the majority of the
data) in the LRM tend to have undue influence on the fitted regression line.
The usual practice used in the LRM is to identify outliers and eliminate
them. Both the notion of outliers and the practice of eliminating outliers
undermine much social-science research, particularly studies on social
stratification and inequality, as outliers and their relative positions to those
of the majority are important aspects of inquiry. In terms of modeling, one
would simultaneously need to model the relationship for the majority cases
and for the outlier cases, a task the LRM cannot accomplish.

25
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Figure 3.1 Conditional Distributions With the Same Mean and Standard
Deviation but Different Skewness 
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All of the features just mentioned are exemplified in our household
income data: the inadequacy of the conditional mean from a distributional
point of view and violations of the homoscedasticity assumption, the nor-
mality assumption, and the one-model assumption. Figure 3.2 shows the
distributions of income by education groups and racial groups. The location
shifts among the three education groups and between blacks and whites are
obvious, and their shape shifts are substantial. Therefore, the conditional
mean from the LRM fails to capture the shape shifts caused by changes in
the covariate (education or race). In addition, since the spreads differ sub-
stantially among the education groups and between the two racial groups,
the homoscedasticity assumption is violated, and the standard errors are
not estimated precisely. All box graphs in Figure 3.2 are right-skewed.
Conditional-mean and conditional-scale models are not able to detect these
kinds of shape changes.

By examining residual plots, we have identified seven outliers, including
three cases with 18 years of schooling having an income of more than
$505,215 and four cases with 20 years of schooling having an income of
more than $471,572. When we add a dummy variable indicating member-
ship in this outlier class to the regression model of income on education, we
find that these cases contribute an additional $483,544 to the intercept.

These results show that the LRM approach can be inadequate for a vari-
ety of reasons, including heteroscedasticity and outlier assumptions and the
failure to detect multiple forms of shape shifts. These inadequacies are not
restricted to the study of household income but also appear when other
measures are considered. Therefore, it is desirable to have an alternative
approach that is built to handle heteroscedasticity and outliers and detect
various forms of shape changes.

As pointed out above, the conditional mean fails to identify shape shifts.
The conditional-mean models also do not always correctly model central
location shifts if the response distribution is asymmetric. For a symmetric
distribution, the mean and median coincide, but the mean of a skewed dis-
tribution is no longer the same as the median (the .5th quantile). Table 3.1
shows a set of brief statistics describing the household income distribution.
The right-skewness of the distribution makes the mean considerably larger
than the median for both the total sample and for education and racial
groups (see the first two rows of Table 3.1). When the mean and the median
of a distribution do not coincide, the median may be more appropriate to
capture the central tendency of the distribution. The location shifts among
the three education groups and between blacks and whites are considerably
smaller when we examine the median rather than the mean. This difference
raises concerns about using the conditional mean as an appropriate measure
for modeling the location shift of asymmetric distributions.

26
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Conditional-Median and Quantile-Regression Models

With a skewed distribution, the median may become the more appropriate
measure of central tendency; therefore, conditional-median regression,
rather than conditional-mean regression, should be considered for the
purpose of modeling location shifts. Conditional-median regression was
proposed by Boscovich in the mid-18th century and was subsequently
investigated by Laplace and Edgeworth. The median-regression model
addresses the problematic conditional-mean estimates of the LRM. Median
regression estimates the effect of a covariate on the conditional median, so
it represents the central location even when the distribution is skewed.

To model both location shifts and shape shifts, Koenker and Bassett (1978)
proposed a more general form than the median-regression model, the quan-
tile-regression model (QRM). The QRM estimates the potential differential
effect of a covariate on various quantiles in the conditional distribution, for
example, a sequence of 19 equally distanced quantiles from the .05th quan-
tile to the .95th quantile. With the median and the off-median quantiles, these
19 fitted regression lines capture the location shift (the line for the median),
as well as scale and more complex shape shifts (the lines for off-median
quantiles). In this way, the QRM estimates the differential effect of a covari-
ate on the full distribution and accommodates heteroscedasticity.

Following Koenker and Bassett (1978), the QRM corresponding to the
LRM in Equation 3.1 can be expressed as:

yi = β (p)
0 + β (p)

1 xi + ε (p)
i , [3.2]

where 0 < p < 1 indicates the proportion of the population having
scores below the quantile at p. Recall that for LRM, the conditional mean
of yi given x i is E(yi|xi ) = β0 + β 1x i, and this is equivalent to requiring
that the error term ε i have zero expectation. In contrast, for the corre-
sponding QRM, we specify that the pth conditional quantile given xi is
Q (p)( yi|xi) = β (p)

0 + β (p)
1 xi. Thus, the conditional pth quantile is determined

by the quantile-specific parameters, β (p)
0 and β (p)

1 , and a specific value of the
covariate xi. As for the LRM, the QRM can be formulated equivalently with
a statement about the error terms εi. Since the term β (p)

0 +β (p)
1 x i is a constant,

we have Q (p)( yi|xi) = β (p)
0 + β (p)

1 xi + Q(p)(εi ) = β (p)
0 + β (p)

1 xi, so an equivalent
formulation of QRM requires that the pth quantile of the error term
be zero.

It is important to note that for different values of the quantile p of
interest, the error terms ε ( p)

i for fixed i are related. In fact, replacing
p by q in Equation 3.2 gives yi = β (q)

0 + β (q)
1 x i + ε (q)

i , which leads to
ε (p)

i – ε (q)
i = (β (q)

0 – β (p)
0 ) + xi( β (q)

1 – β (p)
1 ), so that the two error terms differ by

29
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a constant given x i. In other words, the distributions of ε (p)
i and ε (q)

i are shifts
of one another. An important special case of QRM to consider is one in
which the ε (p)

i for i = 1, . . . , n are independent and identically distributed;
we refer to this as the i.i.d. case. In this situation, the qth quantile of ε (p)

i is
a constant cp,q depending on p and q and not on i. Using Equation 3.2, we
can express the qth conditional-quantile function as Q(q)( yi|xi ) =
Q(p)( yi|xi ) + cp,q.

2 We conclude that in the i.i.d. case, the conditional-quan-
tile functions are simple shifts of one another, with the slopes β 1

(p) taking a
common value β1. In other words, the i.i.d. assumption says that there are
no shape shifts in the response variable.

Equation 3.2 dictates that unlike the LRM in Equation 3.1, which
has only one conditional mean expressed by one equation, the QRM can
have numerous conditional quantiles. Thus, numerous equations can be
expressed in the form of Equation 3.2.3 For example, if the QRM specifies
19 quantiles, the 19 equations yield 19 coefficients for x i , one at each of the
19 conditional quantiles ( β 1

.05, β 1
.10, . . . , β 1

.95). The quantiles do not have to
be equidistant, but in practice, having them at equal intervals makes them
easier to interpret.

Fitting Equation 3.2 in our example yields estimates for the 19 condi-
tional quantiles of income given education or race (see Tables 3.2 and 3.3).
The coefficient for education grows monotonically from $1,019 at the .05th
quantile to $8,385 at the .95th quantile. Similarly, the black effect is weaker
at the lower quantiles than at the higher quantiles.

The selected conditional quantiles on 12 years of schooling are:

30

p .05 .50 .95
E ( yi | EDi = 12) $7,976 $36,727 $111,268

and the selected conditional quantiles on blacks are:

p .05 .50 .95
E ( yi | BLACKi = 1) $5,432 $26,764 $91,761

These results are very different from the conditional mean of the LRM.
The conditional quantiles describe a conditional distribution, which can be
used to summarize the location and shape shifts. Interpreting QRM esti-
mates is a topic of Chapters 5 and 6.

Using a random sample of 1,000 households from the total sample and
the fitted line based on the LRM, the left panel of Figure 3.3 presents
the scatterplot of household income against the head of household’s years
of schooling. The single regression line indicates mean shifts, for example,
a mean shift of $ 22,532 from 12 years of schooling to 16 years of schooling

03-Hao.qxd  3/13/2007  5:24 PM  Page 30



31

TA
B

L
E

 3
.2

Q
ua

nt
ile

-R
eg

re
ss

io
n 

E
st

im
at

es
 f

or
 H

ou
se

ho
ld

 I
nc

om
e 

on
 E

du
ca

tio
n

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

(7
)

(8
)

(9
)

(1
0)

(1
1)

(1
2)

(1
3)

(1
4)

(1
5)

(1
6)

(1
7)

(1
8)

(1
9)

E
D

1,
01

9
1,

61
7

2,
02

3
2,

43
4

2,
75

0
3,

10
7

3,
39

7
3,

65
7

3,
94

8
4,

20
8

4,
41

8
4,

67
6

4,
90

5
5,

21
4

5,
55

7
5,

87
0

6,
37

3
6,

88
5

8,
38

5
(2

8)
(3

1)
(4

0)
(3

9)
(4

4)
(5

1)
(5

7)
(6

4)
(6

6)
(7

2)
(8

1)
(9

2)
(8

8)
(1

02
)

(1
27

)
(1

38
)

(1
95

)
(2

74
)

(4
63

)

C
on

st
an

t
−

4,
25

2
−7

,6
48

−9
,1

70
−1

1,
16

0
−1

2,
05

6
−1

3,
30

8
−1

3,
78

3
−1

3,
72

6
−1

4,
02

6
−1

3,
76

9
−1

2,
54

6
−1

1,
55

7
−9

,9
14

−8
,7

60
−7

,3
71

−4
,2

27
−1

,7
48

4,
75

5
10

,6
48

(3
80

)
(4

24
)

(5
47

)
(5

27
)

(5
93

)
(6

93
)

(7
64

)
(8

66
)

(8
84

)
(9

69
)

(1
,0

84
)

(1
,2

26
)

(1
,1

69
)

(1
,3

58
)

(1
,6

90
)

(1
,8

28
)

(2
,5

82
)

(3
,6

19
)

(6
,1

01
)

N
O

T
E

:S
ta

nd
ar

d 
er

ro
rs

 in
 p

ar
en

th
es

es
.

TA
B

L
E

3.
3

Q
ua

nt
ile

-R
eg

re
ss

io
n 

E
st

im
at

es
 f

or
 H

ou
se

ho
ld

 I
nc

om
e 

on
 R

ac
e

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

(7
)

(8
)

(9
)

(1
0)

(1
1)

(1
2)

(1
3)

(1
4)

(1
5)

(1
6)

(1
7)

(1
8)

(1
9)

B
L

A
C

K
−3

,1
24

−5
,6

49
−7

,3
76

−8
,8

48
−9

,7
67

−1
1,

23
2

−1
2,

34
4

−1
3,

34
9

−1
4,

65
5

−1
5,

23
3

−1
6,

45
9

−1
7,

41
7

−1
9,

05
3

−2
0,

31
4

−2
1,

87
9

−2
2,

91
4

−2
6,

06
3

−2
9,

95
1

−4
0,

63
9

(3
04

)
(3

06
)

(4
21

)
(4

85
)

(5
84

)
(5

36
)

(6
09

)
(7

08
)

(7
81

)
(7

65
)

(8
47

)
(8

87
)

(1
,0

50
)

(1
,0

38
)

(1
,1

91
)

(1
,2

21
)

(1
,4

35
)

(1
,9

93
)

(3
,5

73
)

C
on

st
an

t
8,

55
6

12
,4

86
16

,0
88

19
,7

18
23

,1
98

26
,8

32
30

,3
54

34
,0

24
38

,0
47

41
,9

97
46

,6
35

51
,5

15
56

,6
13

62
,7

38
69

,6
80

77
,8

70
87

,9
96

10
2,

98
1

13
2,

40
0

(1
15

)
(1

16
)

(1
59

)
(1

83
)

(2
20

)
(2

02
)

(2
30

)
(2

68
)

(2
95

)
(2

89
)

(3
20

)
(3

35
)

(3
97

)
(3

92
)

(4
50

)
(4

61
)

(5
42

)
(7

53
)

(1
,3

50
)

N
O

T
E

:S
ta

nd
ar

d 
er

ro
rs

 in
 p

ar
en

th
es

es
.

03-Hao.qxd  3/13/2007  5:24 PM  Page 31



32

Quantile Regression
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Figure 3.3 Effects of Education on the Conditional Mean and Conditional
Quantiles of Household Income: A Random Sample of 1,000
Households

(5633 · (16 – 12)). However, this regression line does not capture shape
shifts.

The right panel of Figure 3.3 shows the same scatterplot as in the left
panel and the 19 quantile-regression lines. The .5th quantile (the median)
fit captures the central location shifts, indicating a positive relationship
between conditional-median income and education. The slope is $ 4,208,
shifting $16,832 from 12 years of schooling to 16 years of schooling
(4208 · (16 – 12)). This shift is lower than the LRM mean shift.

In addition to the estimated location shifts, the other 18 quantile-regression
lines provide information about shape shifts. These regression lines are
positive, but with different slopes. The regression lines cluster tightly at
low levels of education (e.g., 0–5 years of schooling) but deviate from each
other more widely at higher levels of education (e.g., 16–20 years of
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schooling). A shape shift is described by the tight cluster of the slopes at
lower levels of education and the scattering of slopes at higher levels of
education. For instance, the spread of the conditional income on 16 years
of schooling (from $12,052 for the .05th conditional quantile to $144,808
for the .95th conditional quantile) is much wider than that on 12 years of
schooling (from $7,976 for the .05th conditional quantile to $111,268 for
the .95th conditional quantile). Thus, the off-median conditional quantiles
isolate the location shift from the shape shift. This feature is crucial for
determining the impact of a covariate on the location and shape shifts of the
conditional distribution of the response, a topic discussed in Chapter 5 with
the interpretation of the QRM results.

QR Estimation

We review least-squares estimation so as to place QR estimation in a famil-
iar context. The least-squares estimator solves for the parameter estimates
β̂ 0 and β̂ 1 by taking those values of the parameters that minimize the sum
of squared residuals:

min ∑
i
(yi – ( β0+β 1 xi ) )2. [3.3]

If the LRM assumptions are correct, the fitted response function
β̂ 0 + β̂ 1 approaches the population conditional mean E( y⏐x) as the sample
size goes to infinity. In Equation 3.3, the expression minimized is the sum
of squared vertical distances between data points ( x i , y i ) and the fitted line
y = β̂ 0 + β̂ 1x. 

A closed-form solution to the minimization problem is obtained by
(a) taking partial derivatives of Equation 3.3 with respect to β0 and β1,
respectively; (b) setting each partial derivative equal to zero; and (c) solv-
ing the resulting system of two equations with two unknowns. We then
arrive at the two estimators:

A significant departure of the QR estimator from the LR estimator is that
in the QR, the distance of points from a line is measured using a weighted
sum of vertical distances (without squaring), where the weight is 1 – p for
points below the fitted line and p for points above the line. Each choice

β̂1 =

n∑
i

(xi − x̄)(yi − y---)

n∑
i

(xi − x̄)2

, β̂0 = y--- − β̂1x̄.
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for this proportion p, for example, p = .10, .25, .50, gives rise to a different
fitted conditional-quantile function. The task is to find an estimator with the
desired property for each possible p. The reader is reminded of the discus-
sion in Chapter 2 where it was indicated that the mean of a distribution can
be viewed as the point that minimizes the average squared distance over the
population, whereas a quantile q can be viewed as the point that minimizes
an average weighted distance, with weights depending on whether the point
is above or below the value q.

For concreteness, we first consider the estimator for the median-regression
model. In Chapter 2, we described how the median (m) of y can be viewed 
as the minimizing value of E|y – m|. For an analogous prescription in the
median-regression case, we choose to minimize the sum of absolute residu-
als. In other words, we find the coefficients that minimize the sum of absolute
residuals (the absolute distance from an observed value to its fitted value).
The estimator solves for the βs by minimizing Equation 3.4:

∑i ⎢yi – β0 – β1xi ⎢. [3.4]

Under appropriate model assumptions, as the sample size goes to infin-
ity, we obtain the conditional median of y given x at the population level.

When expression Equation 3.4 is minimized, the resulting solution,
which we refer to as the median-regression line, must pass through a pair
of data points with half of the remaining data lying above the regression
line and the other half falling below. That is, roughly half of the residuals
are positive and half are negative. There are typically multiple lines with
this property, and among these lines, the one that minimizes Equation 3.4
is the solution.

Algorithmic Details

In this subsection, we describe how the structure of the function Equation
3.4 makes it amenable to finding an algorithm for its minimization. Readers
who are not interested in this topic can skip this section.

The left panel of Figure 3.4 shows eight hypothetical pairs of data points
(xi, yi) and the 28 lines (8(8 − 1)/2 = 28) connecting a pair of these points
is plotted. The dashed line is the fitted median-regression line, that is, the
line that minimizes the sum of absolute vertical distance from all data
points. Observe that of the six points not falling on the median-regression
line, half of the points are below it and the other half are above it. Every
line in the (x, y) plane takes the form y = β0 + β1x for some choice of
intercept-slope pair ( β0 , β 1), so that we have a correspondence between
lines in the (x, y) plane and points in the ( β0 , β 1) plane. The right panel
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of Figure 3.4 shows a plot in the ( β0, β 1) plane that contains a point
corresponding to every line in the left panel. In particular, the solid circle
shown in the right panel corresponds to the median-regression line in the
left panel.

In addition, if a line with intercept and slope ( β0, β1) passes through a
given point (x i , yi), then yi = β0 + β1x i, so that (β0, β1) lies on the line β1 =
( yi /xi) – (1/xi)β0. Thus, we have established a correspondence between
points in the (x, y) plane and lines in the ( β0, β1) plane and vice versa, a
phenomenon referred to as point/line duality (Edgeworth, 1888).

The eight lines shown in the right panel of Figure 3.4 correspond to the
eight data points in the left panel. These lines divide the ( β0, β 1) plane into
polygonal regions. An example of such a region is shaded in Figure 3.4. In
any one of these regions, the points correspond to a family of lines in 
the (x, y) plane, all of which divide the data set into two sets in exactly the
same way (meaning that the data points above one line are the same
as the points above the other). Consequently, the function of (β0, β1) that we
seek to minimize in Equation 3.4 is linear in each region, so that this func-
tion is convex with a graph that forms a polyhedral surface, which is plot-
ted from two different angles in Figure 3.5 for our example. The vertices,
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edges, and facets of the surface project to points, line segments, and regions,
respectively, in the (β0, β1) plane shown in the right-hand panel of Figure 3.4.
Using the point/line duality correspondence, each vertex corresponds to a line
connecting a pair of data points. An edge connecting two vertices in the sur-
face corresponds to a pair of such lines, where one of the data points defining
the first line is replaced by another data point, and the remaining points main-
tain their position (above or below) relative to both lines.

An algorithm for minimization of the sum of absolute distances in
Equation 3.4, one thus leading to the median-regression coefficients (β̂ 0, β̂ 1 ) ,
can be based on exterior-point algorithms for solving linear-programming
problems. Starting at any one of the points (β0, β1) corresponding to a 
vertex, the minimization is achieved by iteratively moving from vertex to
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vertex along the edges of the polyhedral surface, choosing at each vertex
the path of the steepest descent until arriving at the minimum. Using the
correspondence described in the previous paragraph, we iteratively move
from line to line defined by pairs of data points, at each step deciding which
new data point to swap with one of the two current ones by picking the one
that leads to the smallest value in Equation 3.4. The minimum sum of
absolute errors is attained at the point in the ( β0, β1 ) plane below the lowest
vertex of the surface. A simple argument involving the directional derivative
with respect to β0 (similar to the one in Chapter 2 showing that the median is
the solution to a minimization problem) leads to the conclusion that the same
number of data points lie above the median-regression line as lie below it.

The median-regression estimator can be generalized to allow for pth
quantile-regression estimators (Koenker & d’Orey, 1987). Recall from the
discussion in Chapter 2 that the pth quantile of a univariate sample y1, . . . , yn

distribution is the value q that minimizes the sum of weighted distances from
the sample points, where points below q receive a weight of 1 – p and points
above q receive a weight of p. In a similar manner, we define the pth quantile-
regression estimators β̂ 0

(p) and β̂ 1
(p) as the values that minimize the weighted

sum of distances between fitted values ŷi = β̂ 0
(p) + β̂ 1

(p)xi and the yi, where we
use a weight of 1 – p if the fitted value underpredicts the observed value yi

and a weight of p otherwise. In other words, we seek to minimize a weighted
sum of residuals yi – ŷi where positive residuals receive a weight of p and
negative residuals receive a weight of 1 – p. Formally, the pth quantile-
regression estimators β̂ 0

(p) and β̂ 1
(p) are chosen to minimize

[3.5]

where dp is the distance introduced in Chapter 2. Thus, unlike Equation 3.4,
which states that the negative residuals are given the same importance as
the positive residuals, Equation 3.5 assigns different weights to positive and
negative residuals. Observe that in Equation 3.5, the first sum is the sum of
vertical distances of data points from the line y = β 0

(p) + β 1
(p) x, for points

lying above the line. The second is a similar sum over all data points lying
below the line.

Observe that, contrary to a common misconception, the estimation of
coefficients for each quantile regression is based on the weighted data
of the whole sample, not just the portion of the sample at that quantile.

n∑
i=1

dp(yi, ŷi) = p
∑

yi≥β
(p)
0 +β

(p)
1 xi

|yi − β
(p)

0 − β
(p)

1 xi | + (1 − p)

∑
yi<β

(p)
0 +β

(p)
1 xi

|yi − β
(p)

0 − β
(p)

1 xi |,
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An algorithm for computing the quantile-regression coefficients β̂ 0
( p) and

β̂ 1
(p) can be developed along lines similar to those outlined for the median-

regression coefficients. The pth quantile-regression estimator has a similar
property to one stated for the median-regression estimator: The proportion
of data points lying below the fitted line y = β̂ 0

(p)+β̂ 1
(p)x is p, and the pro-

portion lying above is 1 – p.
For example, when we estimate the coefficients for the .10th quantile-

regression line, the observations below the line are given a weight of .90
and the ones above the line receive a smaller weight of .10. As a result, 90%
of the data points (xi,yi) lie above the fitted line leading to positive residuals,
and 10% lie below the line and thus have negative residuals. Conversely, to
estimate the coefficients for the .90th quantile regression, points below the
line are given a weight of .10, and the rest have a weight of .90; as a result,
90% of observations have negative residuals and the remaining 10% have
positive residuals.

Transformation and Equivariance

In analyzing a response variable, researchers often transform the scale to
aid interpretation or to attain a better model fit. Equivariance properties of
models and estimates refer to situations when, if the data are transformed,
the models or estimates undergo the same transformation. Knowledge of
equivariance properties helps us to reinterpret fitted models when we trans-
form the response variable.

For any linear transformation of the response variable, that is, the addition
of a constant to y or the multiplication of y by a constant, the conditional
mean of the LRM can be exactly transformed. The basis for this statement
is the fact that for any choice of constants a and c, we can write

E(c + ay |x) = c + aE(y |x). [3.6]

For example, if every household in the population received $500 from
the government, the conditional mean would also be increased by $500 (the
new intercept would be increased by $500). When the $1 unit of income is
transformed to the $1,000 unit, the conditional mean in the $1 unit is
increased by 1,000 times as well (the intercept and the slope are both mul-
tiplied by 1,000 to be on the dollar scale). Similarly, if the dollar unit for
wage rate is transformed to the cent unit, the conditional mean (the inter-
cept and the slope) is divided by 100 to be on the dollar scale again. This
property is termed linear equivariance because the linear transformation is
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the same for the dependent variable and the conditional mean. The QRM
also has this property:

Q(p)(c + ay |x) = c + a (Q(p)[y | x]), [3.7]

provided that a is a positive constant. If a is negative, we have
Q(p) (c + ay | x) = c + a(Q (1− p)[ y|x]) because the order is reversed.

Situations often arise in which nonlinear transformation is desired.
Log transformations are frequently used to address the right-skewness of
a distribution. Other transformations are considered in order to make a
distribution appear more normal or to achieve a better model fit.

Log transformations are also introduced in order to model a covariate’s
effect in relative terms (e.g., percentage changes). In other words, the effect of
a covariate is viewed on a multiplicative scale rather than on an additive one.
In our example, the effects of education or race were previously expressed in
additive terms (the dollar unit), and it may be desirable to measure an effect in
multiplicative terms, for example, in terms of percentage changes. For exam-
ple, we can ask: What is the percentage change in conditional-mean income
brought about by one more year of schooling? The coefficient for education in
a log income equation (multiplied by 100) approximates the percentage
change in conditional-mean income brought about by one more year of
schooling. However, under the LRM, the conditional mean of log income is
not the same as the log of conditional-mean income. Estimating two LRMs
using income and log income yields two fitted models:

ŷ = –23,127 + 5,633ED, log ŷ = 8.982 + .115ED.

The result from the log income model suggests that one more year of
education increases the conditional-mean income by about 11.5%.4 The
conditional mean of the income model at 10 years of schooling is $33,203,
the log of which becomes 8.108. The conditional mean of the log income
model at the same schooling level is 10.062, a much larger figure than the
log of the conditional mean of income (8.108). While the log transforma-
tion of a response in the LRM allows an interpretation of LRM estimates as
a percentage change, the conditional mean of the response in absolute terms
is impossible to obtain from the conditional mean on the log scale:

E(log y ⎢x) ≠ log [E( y ⎢x )] and E(yi ⎢xi) ≠ eE[log yi ⎢xi ]. [3.8]

Specifically, if our aim is to estimate the education effect in absolute
terms, we use the income model, whereas for the impact of education in
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relative terms, we use the log income model. Although the two objectives
are related to each other, the conditional means of the two models are not
related through any simple transformation.5 Thus, it would be a mistake to
use the log income results to make conclusions about the distribution of
income (though this is a widely used practice).

The log transformation is one member of the family of monotone trans-
formations, that is, transformations that preserve order. Formally, a trans-
formation h is a monotone if h (y) < h(y′) whenever y < y′. For variables
taking positive values, the power transformation h (y) = yφ is monotone for
a fixed positive value of the constant φ. As a result of nonlinearity, when we
apply a monotone transformation, the degree to which the transformation
changes the value of y can differ from one value of y to the next. While the
property in Equation 3.6 holds for linear functions, it is not the case for
general monotone functions, that is, E(h (y)|x) ≠ h (E(yi|xi)). Generally
speaking, the “monotone equivariance” property fails to hold for condi-
tional means, so that LRMs do not possess monotone equivariance.

By contrast, the conditional quantiles do possess monotone equivariance;
that is, for a monotone function h, we have

Q(p)(h (y) ⎢x) = h (Q(p)[y|x]). [3.9]

This property follows immediately from the version of monotone equi-
variance stated for univariate quantiles in Chapter 2. In particular, a condi-
tional quantile of log y is the log of the conditional quantile of y:

Q(p)(log(y) ⎢x) = log (Q(p)[y|x]), [3.10]

and equivalently,

Q(p)(y ⎢x) = eQ(p)[log(y) ⎢x], [3.11]

so that we are able to reinterpret fitted quantile-regression models
for untransformed variables to quantile-regression models for trans-
formed variables. In other words, assuming a perfect fit for the pth quantile
function of the form Q(p)(y|x) = β0 + β1x, we have Q(p)(log y|x) =
log(β0 + β1x), so that we can use the impact of a covariate expressed in
absolute terms to describe the impact of a covariate in relative terms and
vice versa.

Take the conditional median as an example:

Q(.50)( yi ⎢EDi) = –13769 + 4208EDi, Q(.50) (log(yi) ⎢EDi ) = 8.966 + .123EDi .
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The conditional median of income at 10 years of schooling is $28,311.
The log of this conditional median, 10.251, is similar to the conditional
median of the log income equation at the same education level, 10.196.
Correspondingly, when moving from log to raw scale, in absolute terms, the
conditional median at 10 years of schooling from the log income equation
is e10.916 = 28,481.

The QRM’s monotone equivariance is particularly important for research
involving skewed distributions. While the original distribution is distorted
by the reverse transformation of log-scale estimates if the LRM is used, the
original distribution is preserved if the QRM is used. A covariate’s effect
on the response variable in terms of percentage change is often used in
inequality research. Hence, the monotone equivariance property allows
researchers to achieve both goals: measuring percentage change caused by
a unit change in the covariate and measuring the impact of this change on
the location and shape of the raw-scale conditional distribution.

Robustness

Robustness refers to insensitivity to outliers and to the violation of model
assumptions concerning the data y. Outliers are defined as some values of
y that do not follow the relationship for the majority values. Under the
LRM, estimates can be sensitive to outliers. Earlier in the first section of
this chapter, we presented an example showing how outliers of income dis-
tribution distort the mean and the conditional mean. The high sensitivity of
the LRM to outliers has been widely recognized. However, the practice of
eliminating outliers does not satisfy the objective of much social-science
research, particularly inequality research.

In contrast, the QRM estimates are not sensitive to outliers.6 This robust-
ness arises because of the nature of the distance function in Equation 3.5
that is minimized, and we can state a property of quantile-regression esti-
mates that is similar to a statement made in Chapter 2 about univariate
quantiles. If we modify the value of the response variable for a data point
lying above (or below) the fitted quantile-regression line, as long as that
data point remains above (or below) the line, the fitted quantile-regression
line remains unchanged. Stated another way, if we modify values of the
response variable without changing the sign of the residual, the fitted line
remains the same. In this way, as for univariate quantiles, the influence of
outliers is quite limited.

In addition, since the covariance matrix of the estimates is calculated
under the normality assumption, the LRM’s normality assumption is neces-
sary for obtaining the inferential statistics of the LRM. Violation of the
normality assumption can cause inaccuracy in standard errors. The QRM is
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robust to distributional assumptions because the estimator weighs the local
behavior of the distribution near the specific quantile more than the remote
behavior of the distribution. The QRM’s inferential statistics can be distri-
bution free (a topic discussed in Chapter 4). This robustness is important in
studying phenomena of highly skewed distributions such as income, wealth,
educational, and health outcomes.

Summary

This chapter introduces the basics of the quantile-regression model in
comparison with the linear-regression model, including the model setup,
the estimation, and the properties of estimates. The QRM inherits many of
the properties of sample quantiles introduced in Chapter 2. We explain how
LRM is inadequate for revealing certain types of effects of covariates on the
distribution of a response variable. We also highlight some of the key features
of QRM. We present many of the important differences between the QRM
and the LRM, namely, (a) multiple-quantile-regression fits versus single-
linear-regression fits to data; (b) quantile-regression estimation that minimizes
a weighted sum of absolute values of residuals as opposed to minimizing the
sum of squares in least-squares estimation; and (c) the monotone equivari-
ance and robustness to distributional assumptions in conditional quantiles
versus the lack of these properties in the conditional mean. With these basics,
we are now ready to move on to the topic of QRM inference.

Notes

1. The data are drawn from the 2001 panel of the Survey of Income and
Program Participation (SIPP). Household income is the annual income in
2001. The analytic sample for Chapters 3 through 5 includes 19,390 white
households and 3,243 black households.

2. Q (q)(y i ⎢x i) = Q (q)(β 0
( p) + x i β 1

( p) + ε i
( p)) = β 0

( p) + x i β 1
( p) + Q (q)  

(εi
(p)) = Q(p) (yi ⎢xi) + cp,q.
3. The number of distinct quantile solutions, however, is bounded by the

finite sample size.
4. Precisely, the percentage change is 100(e.115–1) = 12.2%.
5. The conditional mean is proportional to the exponential of the linear

predictor (Manning, 1998). For example, if the errors are normally distrib-
uted N(0, σε

2), then E(yi ⎢xi) = e
β0 + β1xi+ 0.5σ ε

2

. The term e0.5σ ε
2

is sometimes
called the smearing factor.

6. Note that this robustness does not apply to outliers of covariates.
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