
CHAPTER 3. SPECIALIZED EXTENSIONS

We have by no means exhausted the possibilities of LGM with the exam-
ples presented thus far. As scientific hypotheses become more complex, 
the models used to represent those hypotheses will show a concomitant
increase in complexity and flexibility. In this chapter, we present several
interesting and useful extensions and specialized applications of traditional
growth curve models that take advantage of both recent advancements in
statistical theory and recent software improvements. These applications
include growth mixture models, piecewise growth curve models, modeling
change in latent variables, structured latent curve models, autoregressive
latent trajectory models, and modeling change in categorical outcomes.

Growth Mixture Models

In most of the models described to this point, we assumed that a single
latent trajectory would be sufficient to characterize the pattern of change in
the population while allowing for random error in that trajectory. In Model 5,
we noted that discrete classes (such as male and female) could follow dif-
ferent latent trajectories. That is, separate growth trajectories may be esti-
mated simultaneously within each of several known groups, with or without
cross-group constraints on key parameters. However, it need not be the case
that the classification variable is observed; it is quite possible that latent
(unobserved) classes could give rise to heterogeneous trajectories. If more
than one such class exists, but only one trajectory is specified, significant
bias likely will be introduced and the resulting trajectory may misrepresent
all trajectory classes (Sterba, Prinstein, & Cox, 2007; von Eye & Bergman,
2003).

If it is reasonable to assume the existence of latent sources of hetero-
geneity in trajectories, then the researcher may wish to employ latent
growth mixture modeling (LGMM). In a growth curve mixture model, the
population is assumed to consist of a mixture of K homogeneous sub-
groups, each with its own distinct developmental trajectory. There are two
popular approaches to fitting growth curve mixture models (B. Muthén,
2001; Nagin, 1999; Nagin & Tremblay, 2001). Both versions involve
regressing the latent intercept and slope factors onto a latent classification
variable, and both versions permit the form of the trajectory to differ across
classes (i.e., the trajectory could be linear in one class and quadratic in another).
The primary difference between the two approaches is that Muthén’s
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(2001) permits variability in trajectories within classes, whereas Nagin’s
(1999) requires trajectory variability to lie at the between-class level. As a
consequence, Nagin’s (1999) method usually results in concluding that
more latent classes exist than does Muthén’s (2001).

One potential disadvantage of LGMM is that growth mixture models
may lead researchers to believe that multiple homogeneous subgroups
exist, when in fact only one group exists in which the data are distributed
nonnormally or follow a nonlinear trend (Bauer & Curran, 2003a). In other
words, the groups identified as a result of growth mixture modeling may
not represent true groups, but rather components of a mixture distribution
of trajectories that together approximate a single nonnormal distribution.
Because the existence of heterogeneous subpopulations is a basic assump-
tion of LGMM, the method cannot prove that there are K classes, just as the
implicit extraction of one class in traditional LGM does not prove there is
only one population trajectory (Bauer & Curran, 2003a, 2003b, 2004).
More generally, there is considerable evidence that a variety of assumption
violations will produce artifactual latent classes (Bauer, 2005, 2007).

Growth mixture models are not easy to understand or to implement.
Improper solutions are common, overextraction of classes is routine, and
parameter estimation tends to be sensitive to starting values. In addition,
model evaluation and model selection are not straightforward. Models
specifying different numbers of classes may be compared using informa-
tion criteria such as the Bayesian information criterion (BIC), but the
application of information criteria to mixture models remains an active
area of research. Several subjective decisions need to be made at various
points in the process, and mixture modeling typically requires much larger
sample sizes than standard applications. In addition, although assumption
violations are always a potential hazard in latent variable analysis, LGMM
is particularly vulnerable. Violation of distributional assumptions and mis-
specification of trajectory form can result in the extraction of multiple
classes even in a homogeneous population. Nevertheless, there are excit-
ing possibilities afforded by these methods. For example, LGMM can
be used to test developmental theories involving equifinality, in which
different initial conditions result in the same outcome, and multifinality,
in which identical initial conditions lead to different outcomes (e.g.,
Cicchetti & Rogosch, 1996).

LGMM is an area of active study, and advances continue to be made. For
example, Klein and Muthén (2006) describe an extension to LGMM that
permits heterogeneity in growth to depend on initial status and time-invariant
covariates. Their method results in more accurate prediction intervals than
standard LGM without being as highly parameterized as LGMM. The
method is not yet implemented in widely available software.
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At present, growth mixture modeling can be accomplished with MECOSA
for GAUSS (Arminger, Wittenberg, & Schepers, 1996), Mplus (L. K. Muthén
& Muthén, 1998–2006), Mx (Neale et al., 2003), and SAS PROC TRAJ
(Jones, Nagin, & Roeder, 2001). Mplus is currently the most flexible of these
applications. Interested researchers are referred to Bauer (2005, 2007), Bauer
and Curran (2003a, 2003b, 2004), T. E. Duncan et al. (2006), Li, Duncan,
Duncan, and Acock (2001), and M. Wang and Bodner (2007).

Piecewise Growth

Suppose theory or prior research suggests that growth should proceed at a
different—but still linear—rate during the middle school years than during
the elementary school years (due to differences in school funding, for
example). Both phases of growth may be modeled within a single LGM
using a piecewise growth model (T. E. Duncan et al., 2006; Sayer & Willett,
1998) or discontinuity design (Hancock & Lawrence, 2006). Piecewise
growth models are specified by including two or more linear slope factors
in one model. For example, if we had continued to collect data for Grades
7, 8, and 9 and hypothesized that growth would decelerate in the middle
school years, the loading matrix Λy may look like Equation 3.1:

In Equation 3.1, the first column represents the intercept, the second col-
umn represents linear growth up to the sixth grade (the fifth occasion of
measurement), and the mean of the first linear slope factor will represent
the rate of linear growth characterizing the elementary school years. The
third column of Λy represents linear growth during the middle school years,
treating the last year of elementary school as a second origin for the time
scale. The mean of the second linear slope factor will reflect the middle
school rate of growth. An alternative (but statistically equivalent) specifica-
tion might be to use the Λy matrix in Equation 3.2 (Hancock & Lawrence,
2006). In Equation 3.2, the first slope factor represents linear growth across
Grades 1 to 9, and the second slope factor represents any additional linear

Λy =

1 0 0

1 2 0

1 3 0

1 4 0

1 5 0

1 5 1

1 5 2

1 5 3

2
66666666664

3
77777777775
:
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change, beginning in Grade 7, above and beyond that captured by the 
second linear slope:

Recent methodological work suggests exciting possibilities for modeling
change that occurs in discrete segments. Cudeck and Klebe (2002) describe
multiphase models for longitudinal data within the multilevel modeling
framework. Multiphase regression models can be used to model change in
multiple growth periods, each characterized by different functional forms
(e.g., a downward linear slope followed immediately by an upward linear
slope). The point of transition from one period (or regime) to another is
known as a change point or knot. In theory, these change points may be
modeled as aspects of change in their own right—as fixed parameters, esti-
mated parameters, or random coefficients. For example, Cudeck and Klebe
model the sharp quadratic growth, and subsequent gradual linear decline, in
nonverbal intelligence across the life span. They estimated the age of tran-
sition from the first phase to the second phase as a random coefficient with
a mean of 18.5 years and a Level 2 variance of 9.25.

Specifying multiphase models in the LGM framework is not always pos-
sible, but the ability to examine model fit, use aspects of change as predic-
tor variables, and assess multiphase change in latent variables makes it a
worthwhile topic to explore. Multiphase models with known change points
may be examined by using partitioned Λy matrices, with each partition con-
taining the basis curves for the corresponding segment of the trajectory. For
example, the Λy matrix in Equation 3.3 represents a model for equally
spaced occasions with an intercept and linear slope in the first segment
(with means α1 and α2), a different intercept and linear slope in the second
segment (with means α3 and α4), and a change point where time = 2.3.
Alternatively, an unknown change point ω may be estimated as a function
of model parameters when the Λy matrix is specified as in Equation 3.4, in
which the time metric picks up in the fourth column where it left off in the
second. Assuming that the segments (α1 + α2time) and (α3 + α4time) are
continuous at time = ω, the values implied for y by both segments of the

Λy =

1 0 0

1 2 0

1 3 0

1 4 0

1 5 0

1 6 1

1 7 2

1 8 3

2
66666666664

3
77777777775
:
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multiphase trajectory must be equal at ω. One of the parameters (say, α3) is
therefore redundant and can be eliminated by constraining it to equal a
function of the other parameters, α3 = α1 + (α2 − α4)ω, and estimating ω as
a parameter. Similar algebra may be used in growth models with more com-
plicated growth functions in multiple segments. There is currently no
straightforward way to model change points as random coefficients in the
LGM framework, although this can be done with multilevel modeling (see
Cudeck & Klebe, 2002).

(3.3)

(3.4)

Modeling Change in Latent 
Variables With Multiple Indicators

None of the models presented earlier takes full advantage of one of the most
basic and useful features of SEM—the ability to model relationships among
latent variables with multiple measured indicators. Up to this point, we have
said nothing about reliability or measurement error, but in fact, it is rare to
encounter variables with near-perfect reliability in the social sciences. Routine
applications of SEM explicitly model unreliability by partitioning observed
variability into common variance (variance shared by a group of measured
variables) and unique variance (a combination of measurement error and reli-
able variance specific to a variable). In most SEM applications, the diagonal
elements of Θε represent unique variance, but in LGM, the diagonal elements
of Θε represent a combination of measurement error and departure from the
mean trend at each measurement occasion. To separate common from unique
variance, repeated measures may be represented by latent variables and mul-
tiple time-specific indicators may be directly incorporated in the model.

Λy =

1 0 0 0

1 1 0 0

1 2 0 0

0 0 1 3

0 0 1 4

0 0 1 5

2
6666664

3
7777775
:

Λy =

1 0 0 0

1 1 0 0

1 2 0 0

0 0 1 0:7
0 0 1 1:7
0 0 1 2:7

2
6666664

3
7777775

,
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These models are sometimes known as curve-of-factors models (S. C.
Duncan & Duncan, 1996; McArdle, 1988), latent variable longitudinal curve
models (Tisak & Meredith, 1990), or second-order latent growth models
(Hancock, Kuo, & Lawrence, 2001; Hancock & Lawrence, 2006; Sayer &
Cumsille, 2001); the repeated-measure latent variables are termed first-order
factors and the growth factors (i.e., intercept and slope) are termed second-
order factors. An example is presented in Figure 3.1.

Several advantages accrue by using latent repeated measures when multi-
ple indicators are available. First, the second-order LGM explicitly recog-
nizes the presence of measurement error in the repeated measures and models
growth using latent variables adjusted for the presence of this error. Second,
second-order growth curve models allow the separation of disturbance varia-
tion due to departure from the mean trend (temporal instability, reflected by
ψ33–ψ66 in Figure 3.1) and unique variation due to measurement error (unre-
liability, reflected by Θε in Figure 3.1). Third, second-order growth curve
models permit tests of longitudinal factorial invariance, or stationarity (Sayer
& Cumsille, 2001; Tisak & Meredith, 1990). It is extremely important that
the latent variable of interest retain its meaning throughout the period of mea-
surement (Willett, 1989). For this assumption to be supported, the factor
structure should be invariant over repeated occasions (Chan, 1998; Meredith
& Horn, 2001). That is, at the very least, factor loadings for similar items
should be the same over repeated measures. Although it is beyond the scope
of this book to delve into issues surrounding longitudinal factorial invariance,
we cannot overemphasize its importance for studies of growth over time. For
more details on specifying second-order growth curve models, consult Chan
(1998), Hancock et al. (2001), and Sayer and Cumsille (2001).

Structured Latent Curves

The polynomial growth functions considered earlier are characterized by 
a property known as dynamic consistency. Loosely, dynamic consistency
refers to the property that the “average of the curves” follows the same func-
tional form as the “curve of the averages” (Singer & Willett, 2003). This
property holds for linear growth, quadratic growth, and indeed any growth
function that consists of a weighted linear composite of functions of time. A
convenient consequence of dynamic consistency is that the first derivatives
of the growth function with respect to growth parameters (if expressed in tra-
ditional polynomial form) are simply numbers, which can be coded directly
into the Λy matrix using virtually any SEM software application. But growth
functions in LGM need not be limited to the polynomial curves suggested
by Meredith and Tisak (1990).
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Browne and du Toit (1991) and Browne (1993) propose and illustrate a
structured latent curve (SLC) approach to modeling nonlinear growth func-
tions not characterized by dynamic consistency. In SLC models, the load-
ings in Λy may assume values consistent with any hypothesized growth
function f(t, θ) (a function of time, t, and growth parameters, θ), referred to
as the target function (Blozis, 2004). The function f(t, θ) is assumed to be
smooth and differentiable with respect to elements of θ. The SLC method of
specifying growth models is a direct extension of Rao’s (1958) EFA method
of obtaining parameters for growth functions. The elements of Λy are not
specified as fixed values. Rather, they are estimated, but are required to con-
form to basis curves consistent with f(t, θ). The polynomial curves consid-
ered in previous examples are special cases of this more general framework.

To understand the SLC framework, it is helpful to recognize that the
loadings specified in the Λy matrix for polynomial growth curve models
correspond to the first partial derivatives of the hypothesized growth func-
tion with respect to each growth parameter. For example, for the quadratic
growth curve specified in Model 10, the target function is

(3.5)

The first derivatives of this function with respect to each growth para-
meter are, respectively,

(3.6)

(3.7)

and

(3.8)

which are known quantities. Thus,

(3.9)

∂ŷit

∂θ3

= t2,

∂ŷit

∂θ2

= t,

∂ŷit

∂θ1

= 1,

ŷit = θ1 + θ2tit + θ3t2
it; t= f0, 2, 3, 4, 5g:

Λy =

1 0 0

1 2 4

1 3 9

1 4 16

1 5 25

2
66664

3
77775:
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More complex—but dynamically inconsistent—growth functions, such
as exponential, Gompertz, and logistic curves, may be specified in a simi-
lar manner. For growth functions that are not dynamically consistent, the
growth parameters in θ may not reduce to simple functions of t, and may
instead require more complicated specifications of Λy. For example, con-
sider exponential growth. If an exponential process were appropriate for the
mother–child closeness data (it is not, but let us pretend), the target func-
tion would be

(3.10)

The first derivatives of this function with respect to each growth para-
meter are, respectively,

(3.11)

(3.12)

(3.13)

Thus, if we let the initial occasion tit = 1,

(3.14)

For polynomial curves, θ1, θ2, and θ3 are estimated as means of three
basis curve factors. In the exponential SLC, however, θ1 and θ2 are esti-
mated as means but θ3 is estimated using LISREL’s additional parameter
feature. Detailed treatments of this kind of model are presented in Browne
(1993) and Blozis (2004). Blozis (2006) extends this method to model non-
linear trends in latent variables measured with multiple indicators, and
Blozis (2007) extends the method to explore multivariate nonlinear change.
Specialized software (e.g., AUFIT; du Toit & Browne, 1992) is required to
estimate most SLC models, but LISREL can be used to estimate many such
models using complex equality constraints.

Λy =

0 1 0

1− e−2θ3 e−2θ3 2ðθ1 − θ2Þe−2θ3

1− e−3θ3 e−3θ3 3ðθ1 − θ2Þe−3θ3

1− e−4θ3 e−4θ3 4ðθ1 − θ2Þe−4θ3

1− e−5θ3 e−5θ3 5ðθ1 − θ2Þe−5θ3

2
66664

3
77775:

∂ŷit

∂θ3

= ðθ1 − θ2Þðtit − 1Þeθ3ð1−titÞ:

∂ŷit

∂θ2

= eθ3ð1−titÞ,

∂ŷit

∂θ1

= 1− eθ3ð1−titÞ,

ŷit = θ1 − ðθ1 − θ2Þeð1−titÞθ3 ; t= f1, 3, 4, 5, 6g:
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Autoregressive Latent Trajectory Models

Although LGM is a useful and flexible approach for investigating change
over time, there are alternative SEM-based strategies. One alternative model
is the autoregressive or Markov simplex model proposed by Guttman
(1954), in which each repeated measure is regarded as a function of the
preceding measure and a time-specific disturbance term. Unlike the tradi-
tional LGM, the simplex model is not concerned with trends in the mean
structure over time, but rather with explaining variance at each wave of
measurement using the previous wave. Curran and Bollen (2001) and
Bollen and Curran (2004, 2006) propose the autoregressive latent trajec-
tory (ALT) model that combines features of both the LGM and simplex
models. One example of an ALT model is depicted in Figure 3.2. The ALT
model differs from the standard LGM model in two main respects. First,
in the pictured parameterization of the ALT model, there is no disturbance
term associated with the first repeated measure. Second, like the autore-
gressive or simplex model, directional paths (the ρ parameters in Figure 3.2)
are specified to link adjacent repeated measures. It is common practice in
specifying both the simplex model and ALT models to constrain the ρt,t − 1

parameters to equality, although this constraint is by no means necessary.
The ALT model is related to one of the TVC models presented earlier
(Model 9; see Table 2.12), in which the value of the outcome variable at
time t − 1 is used as a predictor of the outcome at time t. Applications of
univariate and multivariate ALT models can be found in Rodebaugh,
Curran, and Chambless (2002) and Hussong, Hicks, Levy, and Curran
(2001). A closely related model is the latent difference score model
(McArdle, 2001; McArdle & Hamagami, 2001).

Categorical and Ordinal Outcomes

Our discussion so far has assumed that the repeated-measures possess inter-
val or ratio characteristics. However, many variables in the social sciences
are more properly treated as ordinal. It is difficult to conclude, for example,
that dichotomous items or Likert-type scales with only three or four choices
have interval properties (although with a sufficient number of choices,
many rating scales may be treated as if they were continuous). When the
repeated observed variable is ordinal, the data consist not of means and
covariances but rather a potentially large contingency table, with each cell
containing the number of respondents matching a particular response pat-
tern. If the ordinal data can be assumed to reflect an underlying normally
distributed latent variable, a multistage estimation procedure may be used
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to model growth (Mehta, Neale, & Flay, 2004). This procedure assumes
that unobserved thresholds on the latent distribution at each occasion deter-
mine the multivariate probabilities associated with all response patterns. In
the first stage, a link function is specified to model the multivariate ordinal
response probabilities and a likelihood function is estimated for each case.
In the second stage, a common measurement scale is established for the
unobserved latent response variates, which are assumed to be normally dis-
tributed. Response thresholds are assumed to remain invariant over time. In
the third stage, a growth model is fit to the scaled latent response variables.
Currently, only a few software programs are capable of estimating such
models, for example, Mplus and Mx. If some data are missing, Mx is the
only option currently available. Jöreskog (2002) describes a similar proce-
dure using LISREL, which involves fitting the model to a polychoric
covariance matrix and means estimated from raw ordinal data.

67

Figure 3.2 An Autoregressive Latent Trajectory Model for Five Repeated
Measures.
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The application of LGM to categorical data is receiving much attention
in the methodological literature. For example, Liu and Powers (2007)
recently described a method to model zero-inflated count data within the
LGM framework. Many interesting advances are expected to occur in the
foreseeable future. For more detail on methods for estimating growth
models using binary or ordinal data, see Jöreskog (2002), Mehta et al.
(2004), and B. Muthén and Asparouhov (2002).

Modeling Causal Effects Among Aspects of Change

To this point, intercept and slope (co)variances have been “unstructured”
in the sense that they have been permitted to freely covary. We may instead
elect to estimate directional effects among aspects of change; that is, we
can model aspects of change as functions of other aspects of change. For
example, if the time metric is centered at the final occasion of measure-
ment, it may be of interest to model “endpoint” as a function of rate of change
by regressing the intercept factor onto the slope factor. Alternatively, we
could elect to center time at the initial occasion and model slopes as a lin-
ear function of intercepts. Caution is warranted here, however. Causes
must logically precede effects, so it would be causally inconsistent to
regress slopes on intercepts unless the time origin occurs at or before the
initial measurement.

Muthén and Curran (1997) creatively capitalize on this feature of SEM
to model treatment effects in situations where participants are randomly
assigned to (at least) two groups and repeatedly measured on some out-
come of interest, such as in intervention studies. They suggest fitting the
same growth curve to both groups, constraining the linear growth parame-
ters to equality across groups (see Figure 3.3). A second slope factor (Tx
Slope) is added to the model for the experimental group. The control group
thus provides a baseline trajectory against which the experimental group’s
trajectory may be compared. Any additional change observed beyond that
associated with the first slope factor is due to the treatment effect. An
important aspect of their model is that the additional treatment slope fac-
tor may be regressed on the intercept factor (initial status), allowing the
examination of an intercept × treatment interaction. For example, it may
be the case that mother–child pairs with relatively low initial closeness
may benefit more over time from an intervention targeting the prevention
of externalizing behaviors. In Muthén and Curran’s model, the intercept
factor would influence a third latent variable (intervention), which in turn
would affect the measured variable across time, but only in the experi-
mental group.
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70

Summary

In this chapter, we have described several specialized extensions of LGM
that demonstrate its generality and flexibility as an analytic tool.

It is possible to combine features of the models discussed here and to
expand these models in other ways, depending on the researcher’s require-
ments. For example, it is feasible to explore growth mixture models applied
to cohort-sequential data and to examine the effects of TVCs or exogenous
predictors in parallel process ALT models (Bollen & Curran, 2004; Curran
& Willoughby, 2003). Simons-Morton, Chen, Abroms, and Haynie (2004)
model three parallel processes (adolescent smoking, friend smoking, and
parental involvement), including time-invariant predictors and specifying
effects of intercepts on slopes both within and between processes. Sayer
and Willett (1998) combine piecewise and parallel process growth models,
fitting them simultaneously in two groups. McArdle (1989) describes a
multiple-groups parallel process model. Finally, we did not present an
example of this kind of model, but it is straightforward to treat intercepts
and slopes as predictors of outcome variables. For example, it might be
important to test the hypothesis that rate of acquisition of a skill predicts
individual differences in ability years later. Muthén and Curran (1997) pre-
sent some models in which intercept and slope factors are used to predict a
distal outcome or to predict intercept and slope factors associated with a
different repeated-measures variable.

The LGM framework permits specification and testing of several kinds
of interaction or moderation hypotheses. For example, researchers can test
hypotheses about the interaction among two or more exogenous predictors
of slope (Curran et al., 2004; Li, Duncan, & Acock, 2000; Preacher et al.,
2006), between initial status and time in determining an outcome (Muthén
& Curran, 1997), or between time and a TVC (see discussion of Model 9
in Chapter 2). LGM can be extended to three (or more) levels of hierarchi-
cally organized data by employing multilevel SEM (Mehta & Neale, 2005;
B. Muthén, 1997). At the other end of the spectrum, it is also possible to fit
simple ANOVA, MANOVA, and simplex models in LGM as special cases
(Meredith & Tisak, 1990).
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