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In this chapter, useful analysis of variance (ANOVA) techniques for comparing group
means are presented. Specifically, the one-way ANOVA, two-way ANOVA, random-
ized block, Latin-square, repeated measures, and analysis of covariance techniques
are treated in depth. Statistical assumptions and their robustness are likewise dis-
cussed. Tests of planned or complex comparisons of means are also illustrated.
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13.1 Basic Concepts in Analysis of Variance ____________

The term analysis of variance probably sounds familiar to you, especially if
you have been schooled in at least one quantitative methodology course or
have been working in the field of social sciences for some time. Analysis of
variance (ANOVA), as the name implies, is a statistical technique that is
intended to analyze variability in data in order to infer the inequality among
population means. This may sound illogical, but there is more to this idea
than just what the name implies.

The ANOVA technique extends what an independent-samples t test can
do to multiple means. The null hypothesis examined by the independent-
samples t test is that two population means are equal. If more than two
means are compared, repeated use of the independent-samples t test will lead
to a higher Type I error rate (the experiment-wise α level) than the α level
set for each t test. A better approach than the t test is to consider all means
in one null hypothesis—that is, examining the plausibility of the null hypoth-
esis with a single statistical test. In doing so, researchers not only save time
and energy, but more important, they can exercise a better control of the
probability of falsely declaring significant differences among means. Such an
idea was conceived by Sir R. A. Fisher more than 50 years ago. In his honor,
the statistic used in ANOVA is called an F statistic.

The F statistic is a ratio. Its numerator and denominator are both esti-
mates. When the null hypothesis of equal population means holds up, both
estimates should be similar because they are estimates of the same quantity,
that is, the variance of sampling errors. Under the alternative hypothesis,
though, the numerator estimates not only the variance of sampling errors
but also the squared treatment effect. And the denominator still estimates the
error variance. Thus, the F ratio under the alternative hypothesis is notice-
ably larger than 1. The extent to which the observed F ratio is larger than 1
provides the basis for rejecting the null hypothesis in ANOVA.

Suppose that data were obtained from a typical state university on
students’ drinking behavior. The university had a policy banning hard
liquors and beer from university properties, including dorms and Greek
houses. But everybody knew somebody who drank while living on campus
at this university. Students living off campus were even more likely to drink,
perhaps. Let’s look at weekly average drinks consumed by four groups of
students and their variability:
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Notice from the printout that all sample means are different; so are sample
standard deviations. To what extent can one know that the variation among
these four means is not merely the variation that already existed among indi-
viduals, even in the same housing condition? The answer lies in an F test. The
F test is formed from the mean square between groups or conditions divided
by the mean square within groups. Both mean squares estimate the variance
of sampling errors under the null hypothesis, as alluded to before. Under the
alternative hypothesis, though, the mean square between groups will be larger
than the mean square within groups. This is so because the mean square
between groups, in this case, reflects not only sampling errors but also the
varying numbers of drinks consumed by students living in four conditions.
Thus, a significant F is indicated by a magnitude that is larger than 1 and sta-
tistically significant (see Example 13.1 for the F result and its p level).

The F test introduced in this chapter is associated with three statistical
assumptions. The first assumption is that observations are randomly or inde-
pendently selected from their respective populations. The second is that the
shape of population distributions is normal. And the third is that these nor-
mal populations have identical variances. The consequences of violating any
or all of these assumptions are discussed in Section 13.5: Tips. Suggestions
on how to compensate for violating the assumptions are also included in the
same section.

___ 13.2 An Overview of the GLM Procedure for ANOVA

The GLM procedure is particularly well suited for analyzing data collected in
any ANOVA design. The procedure name, GLM, stands for general linear
models, which is the type of statistical models imposed on data in all ANOVA
designs. A general linear model accounts for data in terms of main effects,
interaction effects, nested effects, time-related effects, or merely sampling
errors (or random errors). Correspondingly, types of ANOVA designs speci-
fied in the GLM procedure include completely randomized (Example 13.1),
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Example 13.0 Average drinks and variability                       1

 The MEANS Procedure

 Analysis Variable : score1 no. of drinks in spring break
 
Four housing N
conditions Obs Mean Std Dev Maximum         Minimum

 -------------------------------------------------------------------------------------
 Dorm 8 3.0000000       1.5118579       6.0000000       1.0000000

 Greek               8       3.5000000       0.9258201       5.0000000       2.0000000

 Off-campus apt 8 4.2500000       1.0350983       6.0000000       3.0000000

 Rented house 8 6.2500000       1.2817399       8.0000000       5.0000000
 -------------------------------------------------------------------------------------

1



randomized factorial (Examples 13.2 and 13.3), randomized block
(Example 13.4), Latin-square (Examples 13.5 and 13.6), repeated measures
(Example 13.7), analysis of covariance (ANCOVA) (Examples 13.8 and
13.9), and any combination of these designs. Designs can be balanced (or
orthogonal) or unbalanced. A balanced design is a design in which groups
or cells have an equal number or a proportional number of data points in
them. An unbalanced design does not have this property. Whenever possible,
you should strive for a balanced design. Reasons for this suggestion are given
in Section 13.5: Tips.

Two approaches, the univariate and the multivariate tests, for data col-
lected from repeated measures designs are available in PROC GLM. Both
are illustrated in Example 13.7.

Besides testing various null hypotheses with an F test, the GLM procedure
offers a variety of multiple comparison procedures for the means. These
include Dunn’s (or the Bonferroni t) test, the Dunn-Šidák test, the one- and
two-tailed Dunnett tests, the Scheffé test, the Newman-Keuls test, and
Tukey’s Honestly Significant Difference (or HSD) test. All are illustrated in
this chapter. Other comparison procedures are presented in the online docu-
mentation at www.sas.com under the GLM procedure. Each test can be per-
formed with a user-specified α level (see Section 13.4). Alternatively, you
may request that a confidence interval be constructed for each pair of means.
Tests of cell means for interactions or planned orthogonal contrasts are also
available in PROC GLM. These are demonstrated in Section 13.5.

13.3 Examples _____________________________________

Data used in the following nine examples are from the raw data file
design.dat. They are analyzed according to various ANOVA designs so as to
illustrate certain data analysis techniques. All examples assume that the
effects are fixed. Because of this, the interpretations of results presented in
this chapter are for illustrative purposes only.

Example 13.1 One-Way Analysis of Variance

Do college students drink on campus, even against university policy? You
bet, speaking from personal observations and the literature! But just how
much do they drink? Let’s investigate this issue by interviewing 32 students
from a state university. These 32 students were randomly selected in equal
numbers from (a) university dorms, (b) Greek houses, (c) off-campus apart-
ments, and (d) rented houses. These students were asked to keep an honest
record of drinks consumed during the spring-break week. To encourage
these students to be honest, they were told that their data would remain con-
fidential and be part of a national survey of college students’ life on campus.
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One intriguing question regarding college students’ drinking is whether
students in different housing arrangements exercised varying degrees of con-
straints on their drinking behavior and, hence, they drank varying amounts dur-
ing the spring break. This question can be answered by a one-way ANOVA.

The program below addresses the question of how housing arrangements
are related to weekly consumption of beer and hard liquor by college
students during the spring break (score1). It consists of four statements. The
first statement, PROC GLM, identifies a SAS data set design to be analyzed.
The second statement, CLASS, lists one independent variable, indep1. The
third statement, MODEL, specifies the design to be a one-way ANOVA
design. Following the MODEL statement, the MEANS statement is used to
carry out comparisons of group means. The two comparison procedures
listed after slash (/) are BON and TUKEY. BON stands for Bonferroni t test,
or the Dunn procedure, whereas TUKEY stands for Tukey’s Honestly
Significant Difference (or HSD) test.
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/* The following bolded SAS statements establish the SAS data set 'design' */

PROC FORMAT;
 VALUE resident 1='Dorm' 2='Greek' 3='Off-campus apt' 4='Rented house';
RUN;

DATA design;
 INFILE 'd:\data\design.dat';
 INPUT indep1 id score1 score2 score3 sex $ major;

LABEL indep1='four housing conditions'
id='student id no.'

 score1='no. of drinks during the spring break'
 score2='no. of drinks during the final week'
 score3='no. of drinks after the final week'
 major='student academic major';

FORMAT indep1 resident.;
RUN;

TITLE 'Example 13.1 One-way analysis of variance';

PROC GLM DATA=design;
 CLASS indep1;
 MODEL score1=indep1;
 MEANS indep1 / BON TUKEY;
RUN; QUIT;

Output 13.1 One-Way Analysis of Variance

Example 13.1 One-way analysis of variance 1

The GLM Procedure

Class Level Information

Class Levels Values

indep1 4 Dorm Greek Off-campus apt Rented house

Number of Observations Read 32
Number of Observations Used 32

1
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Example 13.1 One-way analysis of variance 2

The GLM Procedure
Part (A)

Dependent Variable: score1 no. of drinks in spring break

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 3 49.00000000 16.33333333 11.15 <.0001

Error 28 41.00000000 1.46428571

Corrected Total 31 90.00000000

Part (B)
R-Square Coeff Var Root MSE score1 Mean

0.544444 28.47239 1.210077 4.250000

Part (C)

Source DF Type I SS Mean Square F Value Pr > F

indep1 3 49.00000000 16.33333333 11.15 <.0001

Source DF Type III SS Mean Square F Value Pr > F

indep1 3 49.00000000 16.33333333 11.15 <.0001

Example 13.1 One-way analysis of variance 3

The GLM Procedure

Tukey's Studentized Range (HSD) Test for score1

NOTE: This test controls the Type I experimentwise error rate, but it generally has a
higher Type II error rate than REGWQ.

Alpha 0.05
Error Degrees of Freedom 28
Error Mean Square 1.464286
Critical Value of Studentized Range 3.86125
Minimum Significant Difference 1.6519

Means with the same letter are not significantly different.

Tukey Grouping Mean N indep1

A 6.2500 8 Rented house

B 4.2500 8 Off-campus apt
B
B 3.5000 8 Greek
B
B 3.0000 8 Dorm

2

3
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Example 13.1 One-way analysis of variance 4

The GLM Procedure
 

Bonferroni (Dunn) t Tests for score1

 NOTE: This test controls the Type I experimentwise error rate, but it generally has a
higher Type II error rate than REGWQ.

 Alpha                              0.05
 Error Degrees of Freedom 28

Error Mean Square 1.464286
 Critical Value of t 2.83893
 Minimum Significant Difference 1.7177

 Means with the same letter are not significantly different.
 

Bon Grouping          Mean N indep1

 A 6.2500      8    Rented house  
 

B 4.2500      8    Off-campus apt
B
B 3.5000      8    Greek         

 B
B 3.0000      8    Dorm

Page 1 of the output summarizes the ANOVA design: four levels (or
groups) of the indep1 factor and 32 data points. According to page 2 of the
output, the F test of average drinks reaches a significance level of 0.0001.
This means that students living in various environments did drink unequal
amounts of beer and hard liquor during the spring break. This conclusion is
confirmed by Tukey’s HSD test (page 3) and the Bonferroni t test (page 4).
Both tests reveal that “Rented house” is the hardest drinking group, which
is followed, to a lesser degree, by “Off-campus apt”, “Greek”, and “Dorm”,
in that order. The average drink in the “Off-campus apt” group was found
to be statistically significantly different from “Rented house” but not signif-
icantly different from the other two groups. Likewise, the “Greek” group
was not statistically significantly different from the “Dorm” group. These
differences are identified by different letters, such as A and B, printed under
Tukey Grouping and Bon Grouping. Groups with the same letter are con-
sidered to be not statistically significantly different from each other.

Is it necessary to apply two comparison procedures, such as Tukey and
Bonferroni t? For exploration of data and for illustration of these procedures in
SAS, the answer is yes. For confirming a theory or cross-validating other find-
ings, no. Because this chapter is intended to expose you to various comparison
procedures available in the GLM procedure, two procedures were specified in
the program. Tukey’s HSD test was specifically developed to examine all possi-
ble simple (or pairwise) differences. It controls the Type I error rate at the
family-wise level, namely, for the set of all pairwise comparisons. The
Bonferroni t test (the Dunn procedure) is more flexible. It can be used to test
differences between two means as well as among three or more means. Both
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procedures can handle equal as well as unequal group sizes. Perhaps you’d ask,
“If the Bonferroni t test is more flexible than Tukey’s test, why will anyone need
Tukey’s procedure at all?” The answer lies in the statistical power. The statisti-
cal power of each test is best understood by the heading Minimum Significant
Difference. This value sets the criterion by which an observed mean difference
is judged to be statistically significant. So the smaller this number, the greater is
the power. For the current data, Tukey’s test is more powerful because its
Minimum Significant Difference (or MSD) of 1.6519 is smaller than 1.7177 for
the Bonferroni test. The latter procedure is definitely more flexible; but its flex-
ibility comes at a price. In general, Tukey’s test is the most powerful test for all
pairwise comparisons, and it controls the experiment-wise Type I error rate at
or below the α level specified by the researcher. The Bonferroni test is well
suited to a mixture of simple and complex comparisons, especially when the
total number of comparisons is neither too few nor too many, say, between 10
and 15. It is important to note that all comparison procedures programmed
into GLM examine pairwise differences only. If complex comparisons of means
are desired, alternative specifications are needed (see Section 13.5: Tips).

Let’s now return to page 2 of the output and pick up the rest of the infor-
mation. Part (A) assesses the overall significance with an F test (= 11.15) and its
p level (< 0.0001). Both Type I and Type III SS in Part (C) offer identical infor-
mation as Part (A). These two parts are identical only in a one-way ANOVA
design, because there is only one effect to be tested. Therefore, Part (C) can be
ignored for a one-way design. Part (B) presents four descriptive statistics. The
first is R-Square (= 0.544444), which is the ratio of SSmodel to SStotal, or 49/90.
The R-Square value indicates that 54.4444% of the variability of the number
of drinks consumed by students is explained by this one-way ANOVA model.
The second is Coeff Var (C.V.), which stands for coefficient of variation or the
ratio of standard deviation divided by the overall mean times 100 (= 1.210077
÷ 4.25 × 100 = 28.47239). The third is Root MSE or the square root of Mean

Square Error The root MSE is the sample

estimate for the population standard deviation. It is used to calculate the MSD
reported on pages 3 and 4 of the output. The fourth statistic, score1 Mean
(= 4.25), is the grand average of the dependent variable, that is, the average
number of drinks consumed by 32 college students in this study.

Example 13.2 Two-Way Analysis of Variance

Because there is a common perception that men drink more than women, let’s
see if gender is a factor in the student survey described above. Let’s suppose
that out of eight students randomly selected from each of the four housing
conditions, half were women and half were men. Hence, it is possible to
study the gender effect, the housing condition, and the joint effect of both
factors on college students’ drinking behavior. The SAS program written
below is much like the one presented in Example 13.1 except for the CLASS
and the MODEL statements. The CLASS statement now lists indep1 and sex

ð=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:46428571
p

= 1:210077Þ:
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as independent variables. The MODEL statement has three terms listed on
the right side of the equal sign (=): indep1, sex, and indep1*sex, which rep-
resent two main effects and one interaction, respectively. Thus, the corre-
sponding design is a two-way ANOVA.
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/* See Example 13.1 for the DATA step in creating the SAS data set 'design' */

TITLE 'Example 13.2 Two-way analysis of variance';

PROC GLM DATA=design;
 CLASS indep1 sex;
 MODEL score1=indep1 sex indep1*sex;
 MEANS sex indep1 / BON;
RUN; QUIT;

Output 13.2 Two-Way Analysis of Variance

Example 13.2 Two-way analysis of variance                        1

 The GLM Procedure

 Class Level Information
 

Class         Levels    Values

 indep1             4    1 2 3 4     

 sex 2 Female Male 

 Number of Observations Read          32
 Number of Observations Used          32

Example 13.2 Two-way analysis of variance 2

The GLM Procedure
Part (A)

Dependent Variable: score1   no. of drinks in spring break

 Sum of
 Source DF Squares     Mean Square F Value Pr > F

Model 7 60.00000000      8.57142857 6.86 0.0002

 Error 24 30.00000000      1.25000000                     

 Corrected Total 31 90.00000000                                     

Part (B)
R-Square     Coeff Var Root MSE score1 Mean

0.666667 26.30668      1.118034 4.250000

Part (C)

Source DF Type I SS Mean Square F Value Pr > F

indep1 3 49.00000000     16.33333333      13.07 <.0001
 sex                          1 8.00000000      8.00000000       6.40 0.0184

indep1*sex 3 3.00000000      1.00000000       0.80 0.5061

 Source DF Type III SS Mean Square F Value Pr > F

indep1 3 49.00000000     16.33333333      13.07 <.0001
 sex                          1 8.00000000      8.00000000       6.40 0.0184

indep1*sex 3 3.00000000      1.00000000       0.80 0.5061

1

2
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Example 13.2 Two-way analysis of variance 3

The GLM Procedure
Part (D)

Bonferroni (Dunn) t Tests for score1

 NOTE: This test controls the Type I experimentwise error rate, but it generally has a
higher Type II error rate than REGWQ.

 Alpha                              0.05
 Error Degrees of Freedom 24

Error Mean Square 1.25
Critical Value of t 2.06390

 Minimum Significant Difference 0.8158

Means with the same letter are not significantly different.
 

Bon Grouping Mean N sex

A 4.7500  16 Male

B 3.7500   16 Female

Example 13.2 Two-way analysis of variance 4

The GLM Procedure
Part (E)

Bonferroni (Dunn) t Tests for score1

 NOTE: This test controls the Type I experimentwise error rate, but it generally has a
higher Type II error rate than REGWQ.

 Alpha                              0.05
 Error Degrees of Freedom 24

Error Mean Square 1.25
Critical Value of t 2.87509

 Minimum Significant Difference 1.6072

 Means with the same letter are not significantly different.
 

Bon Grouping          Mean N indep1

 A 6.2500      8    Rented house  
 

B 4.2500      8    Off-campus apt
B
B 3.5000      8    Greek         

 B
B 3.0000      8    Dorm

Output 13.2 has the same appearance as Output 13.1. Therefore, there is
no need to explain many of the concepts again; only new terms are discussed
here. Page 2 of the output is divided into three parts. Part (A) presents the
F test for the overall design, its value (= 6.86), and the p level (= 0.0002); all
are indicative of some effect being statistically significant in the data. Hence,
Part (C) becomes relevant at this point. It shows that both main effects are

3
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significant at the p < 0.0001 and 0.0184 levels, respectively, yet the interac-
tion is not. Look for these results under the heading Type I SS and Pr > F.

Out of the two significant main effects, the sex effect is new and is fol-
lowed up by the Bonferroni t test—Part (D) on page 3—that shows males
(mean = 4.75) indeed drank significantly more than females (mean = 3.75).
One question for you to think over is this: Is it necessary to perform the
Bonferroni t test on the sex difference, if the F test of the same variable is
already statistically significant at α = 0.05, based on p = 0.0184?

The other statistically significant effect due to indep1 has a larger F ratio
(= 13.07) in Part (C), compared with 11.15 from Output 13.1, though the
significance level is identical (p < 0.0001). The Bonferroni t-test result
reaches the same conclusion as that shown in Output 13.1, namely, the 4th
group, living in rented houses, drank significantly more than the other three
groups [Part (E) on page 4].

Example 13.3 Confirming No
Interaction With a Plot of Cell Means

How can you cross-validate the lack of significant interactions in data?
There is an easy way: Calculate eight cell means and plot these means using
the symbols of the sex variable. Here is a program written for this purpose:
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/* See Example 13.1 for the DATA step in creating the SAS data set 'design' */

TITLE 'Example 13.3 Confirming no interaction with a plot of cell means';

PROC MEANS DATA=design NOPRINT;
 VAR score1;

OUTPUT OUT=out MEAN=meandrnk;
 CLASS sex indep1;
RUN;

PROC PRINT DATA=out;
RUN;

PROC PLOT DATA=out;
PLOT meandrnk*indep1=sex / HPOS=50 VPOS=20;

RUN;

The program uses three SAS procedures: MEANS, PRINT, and PLOT. The
purpose of PROC MEANS is to compute cell means and save them in a SAS data
set called out. Note that no printout is requested by the MEANS procedure.
Instead, PROC PRINT is used to list the grand mean, eight cell means plus four
group means of indep1 and two means of sex. This output (page 1 below) is
much simpler than what would have been generated by PROC MEANS. The
last procedure, PLOT, is used to graphically display eight cell means under four
housing conditions using symbols “F” or “M” of the sex variable. Two options,
HPOS= and VPOS=, are specified primarily to control the frame of the plot.
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Output 13.3 Confirming No Interaction With a Plot of Cell Means

Example 13.3 Confirming no interaction with a plot of cell means            1

 Obs sex indep1    _TYPE_    _FREQ_    meandrnk

 1 . 0 32        4.25  
 2 1 1 8 3.00  
 3 2 1 8 3.50  
 4 3 1 8 4.25  
 5 4 1 8 6.25  
 6 Female       .         2        16        3.75  
 7 Male . 2 16        4.75  
 8 Female       1         3         4        2.50  
 9 Female       2         3         4        3.50  
 10 Female       3         3         4        3.50  
 11 Female       4         3         4        5.50  
 12 Male 1 3 4 3.50  
 13 Male 2 3 4 3.50  
 14 Male 3 3 4 5.00  
 15 Male 4 3 4 7.00  

Example 13.3 Confirming no interaction with a plot of cell means            2

 Plot of meandrnk*indep1.  Symbol is value of sex.

meandrnk |
7.00 + M
6.75 +

 6.50 +
 6.25 +
 6.00 +
 5.75 +
 5.50 + F

5.25 +
 5.00 + M

4.75 +
 4.50 +
 4.25 +
 4.00 +
 3.75 +
 3.50 +M F F

3.25 +
 3.00 +
 2.75 +
 2.50 +F

-+---------------+---------------+---------------+-
Dorm Greek  Off-campus apt   Rented house

 four housing conditions

NOTE: 3 obs had missing values.  1 obs hidden.

1

2



Notice how, on the page 2 plot, the letter M always lies above F, except
for Greek houses where F and M collide because their corresponding means
are identical. As long as one gender group (males in this case) constantly
drank more than, or at least as much as, the other gender group (females)
across the four housing conditions, there is likely to be no statistically sig-
nificant interaction. Graphing cell means is a good way to infer the presence
or the absence of an interaction effect. Of course, if there is no interaction in
the population, these two groups will differ by the same magnitude across
the four housing conditions. As a general observation, if both main effects
are statistically significant, the interaction is unlikely to be also significant.
If the interaction is statistically significant, one or both main effects are
unlikely to be significant.

Example 13.4 Randomized Block Design

One tactic in conducting experimental or quasi-experimental studies is to con-
trol for the impact of extraneous variables that are not the researcher’s main
interest. One way to handle an extraneous variable is to match subjects on
such a variable so that its presence is well represented in all groups of the inde-
pendent variable. This type of design is called a randomized block design.

Suppose that the amount of drinks consumed by students could be a func-
tion of their academic majors. We, therefore, need to control for the varia-
tion of majors in each housing condition. Let’s factor students’ major
(major) into the analysis while keeping the housing arrangements (indep1)
as the sole independent variable in the study. Both variables are listed on the
CLASS statement as sources of effects.

The MODEL statement specifies indep1 and major as the two effects that
account for the variation in the dependent variable. There is no interaction
of indep1 by major listed on the MODEL statement because, in a block
design, the interaction between the independent variable and the matching
(or the blocking) variable is assumed nonexistent.

The MEANS statement specifies indep1 to test the mean differences due
to housing arrangements, and SIDAK requests the Dunn-Šidák comparison
procedure to test the mean differences.
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/* See Example 13.1 for the DATA step in creating the SAS data set 'design' */

TITLE 'Example 13.4 Randomized block design';

PROC GLM DATA=design;
 CLASS indep1 major;
 MODEL score1=indep1 major;
 MEANS indep1 / SIDAK;
RUN; QUIT;
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Example 13.4 Randomized block design                          1

 The GLM Procedure

 Class Level Information
 

Class         Levels    Values

 indep1             4    1 2 3 4         

 major              8    1 2 3 4 5 6 7 8 

 Number of Observations Read          32
 Number of Observations Used          32

Example 13.4 Randomized block design                          2

 The GLM Procedure
Part (A)

Dependent Variable: score1   no. of drinks in spring break

 Sum of
 Source DF Squares     Mean Square    F Value Pr > F

Model                       10 70.50000000      7.05000000       7.59  <.0001

 Error                       21 19.50000000      0.92857143

Corrected Total 31 90.00000000                                     

Part (B)
R-Square     Coeff Var      Root MSE score1 Mean
0.783333  22.67351      0.963624 4.250000

Part (C)

Source DF Type I SS Mean Square    F Value    Pr > F

indep1 3 49.00000000     16.33333333      17.59 <.0001
 major 7 21.50000000      3.07142857 3.31 0.0156

Source DF Type III SS Mean Square F Value Pr > F

indep1 3 49.00000000     16.33333333      17.59 <.0001
 major 7 21.50000000      3.07142857 3.31 0.0156

Example 13.4 Randomized block design                          3

 The GLM Procedure

Sidak t Tests for score1

NOTE: This test controls the Type I experimentwise error rate, but it generally has a
higher Type II error rate than REGWQ.

 

1

2
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Page 2 of the output is divided into three parts for easy explanation.
Part (A) shows the overall significance (F = 7.59, p < 0.0001) of the design
model to account for variance in score1. Part (B) supports the significant
finding with a high R-Square (= 0.783333) and a small Root MSE
(= 0.963624). Part (C) presents the F test of indep1 (= 17.59) and its p level
(< 0.0001). This F value is larger than the one reported in Output 13.1. It
is so because the denominator of the present F is slightly smaller than the
one before, due to model differences. In other words, by matching students
on their majors, we have effectively reduced the sum of squares of errors
to such an extent that its mean square (or the reduced SS divided by its
reduced degrees of freedom) is still smaller than the value derived from the
one-way ANOVA model. Thus, the effort to match subjects was fruitful.

The question, “How effective is the matching?” can also be answered by the
F test of the major effect. In Part (C), under Type I SS, it shows that such an
F test is statistically significant at α = 0.05 (p = 0.0156). Thus, we conclude that
matching students on majors effectively reduced the Mean Square Error from
1.46428571 (from Output 13.1) to 0.92857143, reported in Output 13.4.

On page 3 of the output, the SIDAK procedure follows up on the signifi-
cant F of indep1 by examining all pairwise differences in means. This test
result reaches the same conclusion as Output 13.1 or Output 13.2, namely,
the 4th group, living in rented houses, drank significantly more than the
other three groups. The Dunn-Šidák test is an improvement over the
Bonferroni t test (also called the Dunn procedure) because it requires a
smaller critical value in computing the MSD than the Bonferroni t test.

Example 13.5 Latin-Square Design

Have you heard of the phrase, “Statistics is Greek to me!”? Well, add
Latin on top of the Greek! In ANOVA, there is actually a design called
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Alpha                              0.05
 Error Degrees of Freedom 21

Error Mean Square 0.928571
 Critical Value of t 2.90270
 Minimum Significant Difference 1.3986

 Means with the same letter are not significantly different.
 

Sidak Grouping Mean N indep1

 A 6.2500      8    Rented house 

B 4.2500      8    Off-campus apt
B
B 3.5000      8    Greek         

 B
B 3.0000      8    Dorm



the Latin-square (or LS) design. The LS design is an extension of the ran-
domized block design. In a randomized block design, only one extrane-
ous variable is being controlled, whereas in a LS design, two are
controlled. Here is the layout of a LS design—suppose that in the data
file design.dat, variable a is the old indep1 variable, that is, the four
housing arrangements. Two other variables, b and c, denote two extra-
neous variables, academic standing and majors, respectively. Let’s further
suppose that the 32 data items were collected according to the 4 × 4 LS
design depicted below:
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As you probably recall from a statistics textbook, a LS design is one in
which the number of levels (or groups) of the treatment variable, as well as
that of the two extraneous variables, ought to be identical. For this reason,
variables b and c were artificially created to also contain four groups, like
the four housing conditions under variable a.

In the SAS program, the rearranged data are first read into a SAS data
set called ls, and then analyzed by the GLM procedure. On the MODEL
statement, three main effects plus one three-way interaction are specified.
These are followed by a MEANS statement with the SCHEFFE post hoc
procedure specified after the slash (/). You should be forewarned that the
three-way interaction is not supposed to reach significance because LS
designs assume that no interaction exists between the treatment factor and
one or all of the extraneous variables.

c1 c2 c3 c4

a1 a2 a3 a4

b1 3 4 4 5

2 4 4 5

a2 a3 a4 a1

b2 3 3 6 2

3 3 6 3

a3 a4 a1 a2

b3 4 7 1 2

6 8 3 3

a4 a1 a2 a3

b4 5 4 4 5

8 6 5 5
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Output 13.5 Latin-Square Design

/* The following bolded statements establish the SAS data set 'ls' */

DATA ls;
INPUT a b c score @@;

 LABEL a='Four housing conditions'
 b='academic standing'
 c='major'
 score='no. of drinks in spring break';
DATALINES;
1 1 1 3 1 1 1 2 2 2 1 3 2 2 1 3 3 3 1 4 3 3 1 6 4 4 1 5 4 4 1 8
2 1 2 4 2 1 2 4 3 2 2 3 3 2 2 3 4 3 2 7 4 3 2 8 1 4 2 4 1 4 2 6
3 1 3 4 3 1 3 4 4 2 3 6 4 2 3 6 1 3 3 1 1 3 3 3 2 4 3 4 2 4 3 5
4 1 4 5 4 1 4 5 1 2 4 2 1 2 4 3 2 3 4 2 2 3 4 3 3 4 4 5 3 4 4 5
RUN;

TITLE 'Example 13.5 Latin-square design';

PROC GLM DATA=ls;
 CLASS a b c;

MODEL score=a b c a*b*c;
MEANS b c / SCHEFFE;

RUN; QUIT;

Example 13.5 Latin-square design                            1

 The GLM Procedure

 Class Level Information
 

Class Levels    Values

 a 4 1 2 3 4

b 4 1 2 3 4

c 4 1 2 3 4

Number of Observations Read          32
 Number of Observations Used          32

1
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Example 13.5 Latin-square design                            2

 The GLM Procedure
Part (A)

Dependent Variable: score   no. of drinks in spring break

 Sum of
 Source DF Squares     Mean Square    F Value    Pr > F

Model                       15 77.00000000      5.13333333       6.32    0.0003

 Error                       16 13.00000000      0.81250000                     

 Corrected Total 31 90.00000000                                     

Part (B)
R-Square Coeff Var Root MSE    score Mean

0.855556 21.20913 0.901388 4.250000

Part (C)

Source DF Type I SS Mean Square    F Value    Pr > F

a 3 49.00000000     16.33333333      20.10    <.0001
 b 3 12.25000000      4.08333333       5.03    0.0121

c 3 5.25000000      1.75000000       2.15    0.1335
 a*b*c                        6 10.50000000      1.75000000       2.15    0.1031

 Source DF Type III SS Mean Square    F Value    Pr > F

a 3 49.00000000     16.33333333      20.10    <.0001
 b 3 12.25000000      4.08333333       5.03    0.0121

c 3 5.25000000      1.75000000       2.15    0.1335
 a*b*c                        6 10.50000000      1.75000000       2.15    0.1031

Part (D) Example 13.5 Latin-square design                            3

 The GLM Procedure

Scheffe's Test for score

 NOTE: This test controls the Type I experimentwise error rate.

 Alpha                              0.05
 Error Degrees of Freedom 16

Error Mean Square 0.8125
Critical Value of F 3.23887
Minimum Significant Difference 1.4049

 Means with the same letter are not significantly different.
 

Scheffe Grouping Mean N b

A 5.2500      8    4
 A

B A 4.2500      8    3
 B A

B A 3.8750      8    1
 B

B 3.6250      8    2

2

3



Page 1 and Parts (A) and (B) of page 2 should be familiar to you by now;
therefore, there is no need to explain them again. Beginning with Part (C), Type
I SS, four F tests of main effects and the interaction effect are presented. The
main effect of a (the four housing conditions) on drinking behavior is statisti-
cally significant as before. The F value is larger than before due to a smaller
mean square error. The effect of b is also statistically significant at 0.0121, but
the effect of c is not significant (p = 0.1335). This means that factor b, but not
factor c, was an effective matching variable that accounted for a substantial por-
tion of variance in the number of drinks. The significant F test for factor b is fol-
lowed up by the Scheffé post hoc test. Part (D) on page 3 reveals that the Scheffé
test found that the fourth level (seniors) of factor b (academic standing) yielded
a significantly higher average number of drinks than the second level (sopho-
mores). So it would be interesting to trace back to data and figure out who were
these seniors and sophomores that contributed to this significant difference. In
Part (E) on page 4, analysis of factor c did not detect any pair of means to be
significantly different, as the overall F test of the same effect is not significant.

Earlier in this example, it was pointed out that any LS design assumes that
no interaction exists. Fortunately, the interaction was not significant for the
present data (p = 0.1031). Therefore, the assumption is met.

Example 13.6 Collapsing the Interaction
With Residuals in a Latin-Square Design

Because the three-way interaction is tested to be nonsignificant, it becomes
another estimate for the variance of sampling errors. One estimate already
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Part (E) Example 13.5 Latin-square design                             4

 The GLM Procedure

Scheffe's Test for score

 NOTE: This test controls the Type I experimentwise error rate.

 Alpha                              0.05
 Error Degrees of Freedom 16

Error Mean Square 0.8125
 Critical Value of F 3.23887
 Minimum Significant Difference 1.4049

 Means with the same letter are not significantly different.
 

Scheffe Grouping          Mean N c

A 4.8750      8    2
 A

A 4.2500      8    1
 A

A 4.1250      8    3
 A

A 3.7500      8    4

4



exists; it is the mean square error, printed in Part (A). Some statistics text-
books suggest that these two be combined in order to increase the degrees of
freedom. This recommendation can be easily implemented in a SAS pro-
gram. Note here that the three-way interaction is removed from the MODEL
statement. The removal implies that the three-way interaction is pooled with
the error term. The combined mean square may be called the residual mean
square or mean square residual.

346 STATISTICAL PROCEDURES

/* See Example 13.5 for the DATA step in creating the SAS data set 'ls' */

TITLE 'Example 13.6 Collapsing the interaction with residuals in a Latin-square design';

PROC GLM DATA=ls;
 CLASS a b c;

MODEL score=a b c;
MEANS b c / SCHEFFE;

RUN; QUIT;

Output 13.6 Collapsing the Interaction
With Residuals in a Latin-Square Design

[Page 1 output is omitted]

Example 13.6 Collapsing the interaction with residuals in a Latin-square design     2

 The GLM Procedure

Dependent Variable: score   no. of drinks in spring break

 Sum of
 Source DF Squares     Mean Square    F Value Pr > F

Model                        9 66.50000000      7.38888889 6.92 0.0001

 Error                       22     23.50000000      1.06818182

Corrected Total 31 90.00000000                                     

 R-Square Coeff Var Root MSE    score Mean

0.738889 24.31833      1.033529 4.250000

 Source DF Type I SS Mean Square F Value Pr > F

a 3 49.00000000     16.33333333      15.29 <.0001
 b 3 12.25000000      4.08333333       3.82 0.0241

c 3 5.25000000      1.75000000       1.64 0.2093

 Source DF Type III SS Mean Square F Value Pr > F

a 3 49.00000000     16.33333333      15.29 <.0001
 b 3 12.25000000      4.08333333       3.82 0.0241

c 3 5.25000000      1.75000000       1.64 0.2093

2
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Example 13.6 Collapsing the interaction with residuals in a Latin-square design     3

 The GLM Procedure

Scheffe's Test for score

 NOTE: This test controls the Type I experimentwise error rate.

 Alpha                              0.05
 Error Degrees of Freedom 22

Error Mean Square              1.068182
 Critical Value of F 3.04912
 Minimum Significant Difference 1.5629

 Means with the same letter are not significantly different.
 

Scheffe Grouping Mean      N    b

 A 5.2500      8    4
 A

B A 4.2500      8    3
 B A

B A 3.8750      8    1
 B

B 3.6250      8    2

Example 13.6 Collapsing the interaction with residuals in a Latin-square design     4

 The GLM Procedure
 

Scheffe's Test for score

 NOTE: This test controls the Type I experimentwise error rate.

 Alpha                              0.05
 Error Degrees of Freedom             22
 Error Mean Square              1.068182
 Critical Value of F             3.04912
 Minimum Significant Difference   1.5629

 Means with the same letter are not significantly different.
 

Scheffe Grouping          Mean      N    c

 A 4.8750 8 2
A
A 4.2500 8 1
A
A 4.1250 8 3
A
A 3.7500 8 4

3

4



The output conveys identical messages, as in Output 13.5, in terms of
significant results of a and b main effects. One thing is different, though;
the Model F value increases from 6.32 to 6.92, yet the F values of a, b,
and c decrease in magnitude. The reduction in these F values is due to an
increase in MS for the error term, which is not offset by an increase in
degrees of freedom.

Example 13.7 Repeated Measures Design (SPFp.q)

This example illustrates analytical approaches for a repeated measures
design. Let’s suppose that three data points were collected from each
student: one during the spring break (score1), one during the final week
(score2), and another after the final week (score3). With these additional
measures, it is possible to determine whether college students’ drinking
habits were related to their stress, assuming greater stress was felt at the end
of a semester than during the spring break or after the finals. A repeated
measures design is a type of split plot factorial design for which between-
block and within-block differences and their interactions are investigated.
Plot is an agricultural term that refers to a parcel of land, divided into sub-
plots that are called blocks. Within a block, the soil condition, irrigation,
plants, and so on are homogeneous. By the same token, a repeated measures
design regards observations in the same treatment level (or group) to be
homogeneous. Differences observed within blocks are explained by the
repeated factor (time in this example). Differences observed between blocks
are explained by the between-block factor, or the four housing arrange-
ments coded as indep1. A repeated measures design with one between-
block factor and one within-block factor is denoted as SPFp.q, where p is the
number of levels for the between-block factor (p = 4 in this example) and q
is the number of levels for the within-block factor (q = 3 in this example).
An SPFp.q design yields three effects to be examined: two main effects of the
between-block factor and the within-block factor and one interaction effect
of these two factors.

In the program below, the CLASS statement lists indep1 as the sole inde-
pendent variable. The MODEL statement lists score1, score2, and score3 as
dependent variables on the left and indep1 on the right-hand side of the
equal sign (=). This statement will cause PROC GLM to apply multivariate
analyses to the three dependent variables. The next statement, REPEATED,
applies univariate analyses to the data. The repeated factor, time, is the
overarching variable under which score1, score2, and score3 are its three
levels.
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Output 13.7 Repeated Measures Design (SPFp.q)
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/* See Example 13.1 for the DATA step in creating the SAS data set 'design' */

TITLE 'Example 13.7 Repeated measures design (SPF p.q)';

PROC GLM DATA=design;
 CLASS indep1;
 MODEL score1-score3=indep1;
 REPEATED time;
RUN; QUIT;

Example 13.7 Repeated measures design (SPF p.q)                     1

 The GLM Procedure

 Class Level Information
 

Class Levels    Values

 indep1             4    1 2 3 4 

 Number of Observations Read          32
 Number of Observations Used          32

Example 13.7 Repeated measures design (SPF p.q)                     2

 The GLM Procedure
 
Dependent Variable: score1 no. of drinks in spring break

 Sum of
Source DF Squares     Mean Square    F Value    Pr > F

 Model 3 49.00000000 16.33333333      11.15    <.0001

 Error 28 41.00000000 1.46428571                     

 Corrected Total 31 90.00000000

R-Square     Coeff Var      Root MSE    score1 Mean

 0.544444      28.47239      1.210077       4.250000

 Source DF Type I SS Mean Square    F Value    Pr > F

 indep1 3 49.00000000 16.33333333      11.15    <.0001

 Source DF Type III SS Mean Square    F Value    Pr > F

 indep1 3 49.00000000 16.33333333      11.15    <.0001

1

2
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Example 13.7 Repeated measures design (SPF p.q)                     3

 The GLM Procedure

Dependent Variable: score2   no. of drinks in final week

 Sum of
 Source DF Squares     Mean Square    F Value Pr > F

Model                        3 52.7500000      17.5833333       7.11 0.0011

 Error                       28 69.2500000       2.4732143

Corrected Total 31 122.0000000                                     

 R-Square     Coeff Var Root MSE score2 Mean

0.432377      44.93273      1.572646       3.500000

 Source DF Type I SS Mean Square    F Value Pr > F

indep1 3 52.75000000     17.58333333       7.11    0.0011

 Source DF Type III SS Mean Square    F Value Pr > F

indep1 3 52.75000000     17.58333333       7.11    0.0011

Example 13.7 Repeated measures design (SPF p.q)                     4

 The GLM Procedure

Dependent Variable: score3   no. of drinks after final week

 Sum of
 Source DF Squares     Mean Square    F Value Pr > F

Model                        3 29.6250000       9.8750000       2.11 0.1219

Error                       28 131.2500000       4.6875000                     

 Corrected Total 31 160.8750000                                     

 R-Square     Coeff Var Root MSE score3 Mean

0.184149 46.18802      2.165064 4.687500

 Source DF Type I SS Mean Square F Value Pr > F

indep1 3 29.62500000      9.87500000       2.11 0.1219

Source DF Type III SS Mean Square F Value Pr > F

indep1 3 29.62500000      9.87500000       2.11 0.1219

3

4
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Example 13.7 Repeated measures design (SPF p.q) 5

The GLM Procedure
 Repeated Measures Analysis of Variance

 Repeated Measures Level Information
 

Dependent Variable score1   score2   score3

 Level of time 1 2 3

Part (A)

MANOVA Test Criteria and Exact F Statistics for the Hypothesis of no time Effect
 H = Type III SSCP Matrix for time
 E = Error SSCP Matrix
 

S=1 M=0 N=12.5

Statistic Value    F Value    Num DF Den DF Pr > F

Wilks' Lambda               0.23666320 43.54 2 27 <.0001
Pillai's Trace 0.76333680 43.54 2 27 <.0001
Hotelling-Lawley Trace      3.22541397      43.54 2 27 <.0001
Roy's Greatest Root         3.22541397      43.54 2 27 <.0001

Part (B)

MANOVA Test Criteria and F Approximations for the Hypothesis of no time*indep1 Effect
 H = Type III SSCP Matrix for time*indep1
 E = Error SSCP Matrix
 

S=2 M=0 N=12.5

Statistic Value    F Value    Num DF Den DF Pr > F

Wilks' Lambda               0.79355122 1.10 6 54 0.3727
Pillai's Trace 0.21628459       1.13 6 56 0.3561
Hotelling-Lawley Trace      0.24776343 1.10 6 34.278    0.3844
Roy's Greatest Root         0.17821404 1.66 3 28 0.1975

NOTE: F Statistic for Roy's Greatest Root is an upper bound.
 NOTE: F Statistic for Wilks' Lambda is exact.

Example 13.7 Repeated measures design (SPF p.q) 6

The GLM Procedure
Repeated Measures Analysis of Variance

Tests of Hypotheses for Between Subjects Effects

Source DF Type III SS Mean Square F Value Pr > F

indep1 3 128.2083333      42.7361111       5.74 0.0034
 Error 28 208.4166667       7.4434524   

5

6



This output probably causes your eyes to cross! Let’s begin with page 2.
This page is identical to page 2 of Output 13.1, based on a one-way ANOVA
design. Thus, you can conclude that during the spring break, students drank
more or less liquor depending on where they lived.

Pages 3 and 4 display the second and third one-way ANOVA result based
on score2 and score3, respectively. Like score1, the F test of students’ drink-
ing during the final week is statistically significant at α = 0.05 (F = 7.11,
p = 0.0011). The R-Square is lower and MSE is higher in score2, compared
with score1. However, the F test of score3 (i.e., the number of drinks after
the final week) is not statistically significant (p = 0.1219).

Page 5 is devoted entirely to the multivariate analysis of score1, score2,
and score3. Part (A) presents four multivariate tests of the main effect, time.
Part (B) presents tests of the interaction between time and indep1. Each of the
four multivariate tests is based on a slightly different alternative hypothesis.
The time factor was tested to be statistically significant at α = 0.05 by all four
multivariate tests. However, none uncovers statistically significant differences
in the number of drinks due to the interaction between time and indep1.

The univariate tests are presented on pages 6 and 7. Page 6 displays test
results of the between-block factor (indep1). According to the magnitude of
the F value (= 5.74) and its p level (= 0.0034), the four housing conditions
had an impact on the students’ drinking behaviors. This finding has been
shown in previous examples.

Page 7 of the output contains univariate analyses of the repeated factor,
time, and its interaction with the between-block factor, indep1. Both are
tested using the denominator called Error (time). This term is usually
referred to in statistics textbooks as the interaction of the repeated factor,
time, with the error term of the between-block factor. This error term is
smaller than the between-block error term. Verify this by comparing
0.59077381 (page 7) with 7.4434524 (page 6). Using this smaller error term
as the denominator, the F test for the time factor in Part (C) is significant
(F = 19.54, p < 0.0001). However, the F test for the time*indep1 interaction
is not significant (F = 0.89, p = 0.5062).
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Example 13.7 Repeated measures design (SPF p.q) 7

The GLM Procedure
Repeated Measures Analysis of Variance

Univariate Tests of Hypotheses for Within Subject Effects
Part (C)

Adj Pr > F
Source                    DF Type III SS Mean Square F Value  Pr > F G - G H - F

time 2 23.08333333   11.54166667    19.54 <.0001  <.0001  <.0001
time*indep1                6 3.16666667 0.52777778     0.89 0.5062 0.4817  0.4916
Error(time)               56 33.08333333    0.59077381

Greenhouse-Geisser Epsilon 0.7068
Huynh-Feldt Epsilon 0.8131

7



You may have noticed that there are three p values listed after the F value
in Part (C) on page 7. Besides the one you are familiar with (i.e., Pr > F), there
are two additional column headings that read as “Adj. Pr > F” according to
the “G-G” and “H-F” correction formulae, respectively. The G - G correction
formula refers to the conservative approach proposed by Geisser-Greenhouse,
whereas H - F refers to the Huynh-Feldt approach. Both approaches seek to
correct the p levels of univariate F tests performed on the repeated factor and
its interaction with the between-block factor. The corrections are needed
because both F tests assume that the variance-covariance matrix of repeated
measures is of a certain type. Violation of this assumption results in a posi-
tive bias in the F statistic; hence, it is inflated. These correction formulae
adjust the significance level downward, by multiplying the degrees of freedom
with the Epsilon coefficient (Epsilon = 0.7068 for the G-G correction formula,
and Epsilon = 0.8131 for the H-F formula), when data do not satisfy this
assumption. And data almost always violate this structural requirement
assumed for the variance-covariance matrix. In our example, the corrections
do not change the significant conclusion reached for the time factor or the
nonsignificant conclusion for the time*indep1 interaction.

Example 13.8 Analysis of Covariance (ANCOVA)

Given the purpose of Example 13.7 and its null hypotheses, there exists an
alternative way of examining the data to determine if, in fact, time makes
a difference in students’ drinking behavior. This example demonstrates this
alternative analysis strategy, namely, the analysis of covariance, or
ANCOVA. To demonstrate this strategy, the first measure, score1, is treated
as a covariate. The second measure, score2, is treated as the dependent vari-
able, and indep1 is the independent variable or the treatment factor.

The idea behind ANCOVA is simple. If a variable, namely, the covariate,
is linearly related to the dependent variable, yet it is not the main focus of a
study, its effect can be partialled out from the dependent variable through the
least-squares regression equation. The remaining, or the adjusted, portion of
the dependent variable is subsequently analyzed according to the usual
ANOVA designs. In this example, students’ drinking during the final week is
adjusted for their spring break drinking. The adjusted number of drinks is
subsequently analyzed by four housing arrangements in a one-way ANOVA.

In programming an ANCOVA design into PROC GLM, it is better to
write score1 (the covariate) before indep1 (the independent variable) on the
MODEL statement. In doing so, you will only need to interpret the TYPE I
sum of squares result from page 2 of the output. Furthermore, the LSMEANS
statement replaces the MEANS statement. LSMEANS stands for the least-
squares means. The least-squares means are average number of drinks dur-
ing the final week after they are adjusted for average number of drinks
consumed during the spring break (the covariate). Two options, PDIFF and
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STDERR, are specified to make a comparison between each pair of adjusted
means. PDIFF requests significance levels for tests of all pairs of adjusted
means. STDERR requests the t test of each adjusted mean against 0 and
prints the significance level of the t test.
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/* See Example 13.1 for the DATA step in creating the SAS data set 'design' */

TITLE 'Example 13.8 Analysis of covariance (ANCOVA)';

PROC GLM DATA=design;
CLASS indep1;

 MODEL score2=score1 indep1;
 LSMEANS indep1 / PDIFF STDERR;
RUN; QUIT;

Output 13.8 Analysis of Covariance (ANCOVA)

Example 13.8 Analysis of covariance (ANCOVA) 1

The GLM Procedure

Class Level Information

Class Levels Values

 indep1             4    1 2 3 4

Number of Observations Read 32
Number of Observations Used 32

Example 13.8 Analysis of covariance (ANCOVA) 2

The GLM Procedure
Part (A)

Dependent Variable: score2   no. of drinks in final week

 Sum of
 Source DF Squares     Mean Square F Value Pr > F

Model 4 104.3597561      26.0899390 39.93 <.0001

 Error 27 17.6402439 0.6533424                     

 Corrected Total 31 122.0000000                                     

Part (B)
R-Square     Coeff Var Root MSE score2 Mean

0.855408 23.09417      0.808296 3.500000

P

1

2



Pages 2 and 3 of Output 13.8 are part and parcel of ANCOVA, although
not all results are equally relevant. The MS error (= 0.6533424) and its
df (= 27) in Part (A) are relevant; they will be referred to later. Part (B) depicts
four descriptive statistics. The first (R-Square=0.855408) describes a strong
linear relationship between the dependent variable (score2) and the indepen-
dent variable (indep1) and the covariate (score1) jointly.

Part (C) tells us that the covariate, score1, is an effective covariate because
it accounts for a substantial portion of the sum of squares (Type I) in the
dependent measure, score2. The substantial sum of squares translates into
a large F value (=156.73), significant at p < 0.0001. The remaining variance
in score2 that is explained by indep1 is, therefore, negligible (F = 1.00,
p = 0.4080).
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Part (C)

Source DF Type I SS Mean Square    F Value Pr > F

score1 1 102.4000000     102.4000000     156.73    <.0001
 indep1 3 1.9597561 0.6532520 1.00 0.4080

Part (D)

Source DF Type III SS Mean Square    F Value Pr > F

score1 1 51.60975610     51.60975610      78.99 <.0001
 indep1 3 1.95975610 0.65325203 1.00 0.4080

Example 13.8 Analysis of covariance (ANCOVA) 3

The GLM Procedure
Part (E) Least Squares Means

 score2 Standard                  LSMEAN
 indep1 LSMEAN Error Pr > |t| Number

 1 3.77743902 0.32644527 <.0001 1
2 3.21646341 0.30105039 <.0001 2
3 3.75000000 0.28577578 <.0001 3
4 3.25609756 0.38132468 <.0001  4

Part (F) Least Squares Means for effect indep1
 Pr > |t| for H0: LSMean(i)=LSMean(j)
 

Dependent Variable: score2
 

i/j              1 2 3 4

1 0.1815        0.9500 0.3733
 2 0.1815 0.2096        0.9412
 3 0.9500        0.2096 0.3092
 4 0.3733        0.9412        0.3092              

NOTE: To ensure overall protection level, only probabilities associated with pre-planned
comparisons should be used.

3



The nonsignificant effect of indep1 on score2 is confirmed by compar-
isons of least squares means (Part (F) of page 3). None of these comparisons
reaches the α level of 0.05 or even 0.10. Part (E) displays the least squares
means (or adjusted means) of score2. All are above 3 (ounces or bottles?).
Each is further tested against a null hypothesis of zero adjusted mean in the
underlying population. All tests yield a highly significant result at p <
0.0001. These results indicate that students’ drinking during the final week
was definitely prevailing in all four housing conditions. The drinking
recorded at the end of the semester was evident even after it was adjusted
for the amount consumed during the spring break. Too much stress, maybe?

• On the LSMEANS statement, there can be other options besides PDIFF
and STDERR. Specifically, the option ALPHA= (a small probability, such as
0.10) can be used to specify the confidence level (which equals 1 − p) of each
adjusted mean or difference in a pair of adjusted means. The default is 0.05.
The ALPHA= option is specified simultaneously with the PDIFF or the CL
option. The CL option is similar to the PDIFF option in that the CL option
computes a confidence interval for each adjusted mean, whereas the PDIFF
option computes the confidence interval for the difference in each pair of
adjusted means.

• If you wish to control the Type I error rate in simultaneous tests of
adjusted means, you may specify the ADJUST= option on the LSMEANS
statement, after the slash (/). If ADJUST= SIDAK, then the adjusted means
are tested by the Dunn-Šidák procedure with a family-wise Type I error con-
trolled at 0.05 (the default) or the level specified by the ALPHA= option. If
ADJUST=DUNNETT, adjusted means are tested by the Dunnett procedure,
which compares each adjusted mean with a reference mean (the default is the
adjusted mean of the last group), at a family-wise α level of 0.05 or the level
specified by the ALPHA= option.

Example 13.9 Examining ANCOVA Assumptions

The ANCOVA approach comes with a price. It requires (a) that a linear
relationship exist between the covariate and the dependent measure and
(b) that there be no interaction between the covariate and the independent
variable. The first assumption can be checked by drawing a scatter plot
based on score1 and score2 and computing a Pearson correlation to deter-
mine if the relationship is indeed linear and substantial. The second assump-
tion needs to be examined by a statistical test. This example demonstrates
how both assumptions can be examined. Note that the interaction of score1
with indep1 is added to the MODEL statement and the option SOLUTION
is inserted after the slash (/).
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Output 13.9 Examining ANCOVA Assumptions

/* See Example 13.1 for the DATA step in creating the SAS data set 'design' */

TITLE 'Example 13.9 Examining ANCOVA assumptions';

PROC GLM DATA=design;
CLASS indep1;

 MODEL score2=score1 indep1 score1*indep1 / SOLUTION;
RUN; QUIT;

[Page 1 output is not shown])

Example 13.9 Examining ANCOVA assumptions 2

The GLM Procedure

Dependent Variable: score2   no. of drinks in final week

 Sum of
 Source DF Squares     Mean Square    F Value Pr > F

Model                        7 105.2498188      15.0356884 21.54    <.0001

 Error                       24 16.7501812       0.6979242                     

 Corrected Total 31 122.0000000                                     

 R-Square     Coeff Var Root MSE score2 Mean

0.862703      23.86910      0.835419 3.500000

 Source DF Type I SS Mean Square    F Value Pr > F

score1 1 102.4000000     102.4000000     146.72    <.0001
 indep1 3 1.9597561 0.6532520 0.94 0.4386
 score1*indep1                3 0.8900627 0.2966876       0.43 0.7368  NS

Source DF Type III SS Mean Square    F Value    Pr > F

score1 1 45.24687984 45.24687984      64.83    <.0001
 indep1 3 0.69189216 0.23063072 0.33 0.8034
 score1*indep1                3 0.89006274 0.29668758       0.43 0.7368

Standard
 Parameter Estimate Error t Value    Pr > |t|

 Intercept -1.565217391 B 1.56777135 -1.00      0.3281
 score1 (β weight) 1.130434783 B 0.24635150 4.59 0.0001
 indep1 1 0.752717391 B 1.71398072 0.44 0.6645
 indep1 2 0.731884058 B 1.99250499 0.37 0.7166
 indep1 3 -0.634782609 B 2.05571926 -0.31      0.7601
 indep1 4 0.000000000 B . . .

score1*indep1 1 -0.067934783 B 0.32296954 -0.21      0.8352
 score1*indep1 2     -0.213768116 B 0.42072528      -0.51      0.6160
 score1*indep1 3      0.269565217 B 0.39210410 0.69 0.4984
 score1*indep1 4      0.000000000 B . . .

NOTE: The X'X matrix has been found to be singular, and a generalized inverse was used to 
 solve the normal equations. Terms whose estimates are followed by the letter 'B' 
 are not uniquely estimable.

2



The F test of the interaction effect is, fortunately, not statistically signifi-
cant. This implies that there is no sufficient evidence in the present data to
support an interaction between the covariate (score1) and the independent
variable (indep1). In the section where you find “Parameter” and
“Estimate”, the label (β weight) is inserted next to score1. This label is
meant to draw your attention to the estimate (1.130434783), which is the
regression weight of score2 (the dependent variable) regressing on score1.
Technically speaking, this regression weight is βw, which stands for the
regression weight that is assumed equal in all treatment conditions. Suffice it
to say, the magnitude of βw suggests a strong and linear relationship between
the covariate and the dependent variable.

13.4 How to Write the PROC GLM Codes ____________

Based on the examples presented so far, you probably have recognized that
the GLM procedure is more complex than the TTEST procedure, even
though both are used to compare means. The GLM procedure is versatile for
a variety of experimental designs and linear models. It provides diverse com-
parison procedures to examine pairwise as well as complex contrasts among
means. The GLM procedure consists of eight essential statements. Seven are
explained here; the eighth statement, CONTRAST, is explained in Section 13.5:
Tips. Statements not introduced here can be found from the online docu-
mentation at www.sas.com.

PROC GLM DATA= sas_dataset_name <options>;

CLASS independent_ or blocking_variable(s);

MODEL dependent_variable(s) = effects;

MEANS main_effects / comparison_procedures <options>;

LSMEANS main_effects / <options>;

REPEATED repeated_factor(s);

TEST H= effects E= error_term;

BY classification_variable(s);

The first statement, PROC GLM, initializes the procedure and specifies
the data set to be analyzed. In addition, you may specify the option
MANOVA. This option requests that the GLM procedure rely on a multi-
variate method of removing observations from the analysis, namely, the list-
wise deletion method. In other words, if an observation has a missing value
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on one or more independent or dependent variables, the SAS system
removes such an observation from the analysis. This option is applied in
multivariate analyses, such as Example 13.7, or in the interactive mode of
data analysis.

The second statement, CLASS, is to identify independent or blocking vari-
ables in a design. This statement is required; it must precede the MODEL
statement.

The third statement, MODEL, is to specify an ANOVA design, also a lin-
ear model, for the data. On the left side of the equal sign (=), dependent vari-
able(s) are listed. On the right side, effects such as main effects, interactions,
blocking effects, nested effects, and covariates are listed. These effects decom-
pose the total sum of squares of the dependent variable. Below are examples
of the MODEL syntax for several commonly used designs:

Main-Effect Design
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MODEL score=a b;   (two-way ANOVA)   or
MODEL score=a b c; (three-way ANOVA)

Completely Factorial Design

MODEL score=a b a*b; same as MODEL score=a | b;
(both are two-way)
MODEL score=a | b | c; same as MODEL score=a b c a*b a*c b*c a*b*c;
(both are three-way)

Nested Design

MODEL score=a c(b) a*c(b)     same as MODEL score=a | c(b);
MODEL score=a c a*c b(a) c*b(a) same as MODEL score=a | b(a) | c;
MODEL score=a(b) c(b) a*c(b) same as MODEL score=a(b) | c(b);

Randomized Block Design

MODEL score=a block;

It is sometimes necessary to examine differences among group means.
This is accomplished by the MEANS statement. A variety of comparison
procedures are available; each is sensitive to mean differences under a
particular circumstance. These procedures are listed after a slash (/). A few
other options are likewise listed after the slash. Interaction effects listed on



the MEANS statement, before the slash, will not be tested, however; they are
described instead in terms of cell means.

Below is a list of comparison procedures and options for the MEANS
statement, listed after the slash (/):

BON performs a two-tailed Dunn’s procedure based on the
Bonferroni inequality.

DUNNETT performs a two-tailed Dunnett’s procedure that compares a
control group with any other group. The control group is
defaulted to the first group. If you wish to change the con-
trol group from the first to another, you specify the control
group in parentheses as follows:
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MEANS drug / DUNNETT (2);

MEANS drug / DUNNETT ('placebo');

According to the statement above, the second group is specified to be the
control group of the drug factor. For character factors, single quotes are
needed around the group name. For example, the statement below identifies
the placebo group as the control group.

A one-tailed Dunnett’s test is also possible with a minor modification of
the keyword to DUNNETTL or DUNNETTU.

DUNNETTL executes a one-tailed Dunnett’s test with the alternative
hypothesis stating that the experimental group mean is
less than the control mean.

DUNNETTU executes a one-tailed Dunnett’s test with the alternative
hypothesis stating that the experimental group mean is
greater than the control mean.

SCHEFFE performs a two-tailed Scheffé procedure. The Scheffé
procedure is based on the same F distribution as the over-
all F test. So if the overall F test is significant at, say, α =
0.05, the Scheffé test will surely find either a pair of
means or three or more means to be different at the same
α level.

SIDAK performs a two-tailed Dunn-Šidák procedure, based on
the t distribution.



SNK performs a two-tailed Newman-Keuls’ modified t test of
ordered mean differences.

TUKEY performs a two-tailed Tukey’s HSD test.

HOVTEST performs the Levene test of homogeneity of variance.

CLDIFF builds a 95% confidence interval for each pair of means
for all comparison procedures, except for the SNK pro-
cedure. The 95% confidence can be changed using the
next option, ALPHA=.

ALPHA= a that specifies the α level for carrying out all comparison
small probability procedures listed above. The specification also changes

the confidence level for the CLDIFF option since confi-
dence level = (1 − ALPHA) × 100%.

E= specifies the denominator for all comparison procedures
listed above. If omitted, the default is the mean square
residual (MSResidual).

The fifth statement, LSMEANS, tests single or pairs of least-squares
means. This statement is relevant to ANCOVA designs and comparisons of
adjusted means (i.e., least-squares means) between groups. Two options are
illustrated in Example 13.8: PDIFF and STDERR. The other three options
are the following:

ALPHA= (a specifies the α level for the test of least-squares means;
small probability) the default is 0.05.

CL requests the (1 − ALPHA) × 100% confidence level to
be constructed for each least-squares mean.

ADJUST=T or requests that a t test (specified by T), or Bonferroni t test
BON or SIDAK (BON), or the Dunn-Šidák test (SIDAK), or Tukey’s HSD
or TUKEY or test (TUKEY), or the DUNNETT test (DUNNETT) be
DUNNETT applied to pairs of least-squares means.

The sixth statement, REPEATED, names a factor for which repeated mea-
sures are analyzed by either a univariate or a multivariate approach (see
Example 13.7 for an illustration).

The seventh statement, TEST, is used to specify effects to form the numer-
ator and the denominator of an F ratio. In Example 13.5, it was mentioned
that for the 4 × 4 × 4 LS design, two estimates for the variance of sampling
errors could be considered. One is the mean square of the three-way inter-
action and the other is the mean square residuals. The latter was used as a
denominator for all F tests carried out in Example 13.5. Had we been inter-
ested in using the second estimate as the denominator, we would have spec-
ified the TEST statement as follows on the next page.
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squesenberry
Pencil

squesenberry
Text Box
<this is part of the definition and belongs in the right column>

squesenberry
Text Box
<this is part of the definition and belongs in the right column>

squesenberry
Pencil



TEST H=a b c E=a*b*c;

Finally the last statement, BY, serves the same purpose as in all other
SAS procedures. It divides the data set into subgroups according to diverse
values of the BY variable. Within each subgroup, the same ANOVA design
is applied and the same analysis follows accordingly. If more than one BY
variable is listed, all possible combinations of the BY variables’ values are
used in dividing up the entire data set. Be sure to presort the data set in the
ascending order of all the BY variables, if the BY statement is included in
the GLM procedure. Presorting a data set can be accomplished using the
SORT procedure.

13.5 Tips __________________________________________

• How to handle missing or invalid data

By default, PROC GLM does not include observations that have miss-
ing information on either the dependent variable(s) or any of the CLASS
variables.

When the REPEATED statement is specified to analyze data from a
repeated measures design, you are advised to also specify the MANOVA
option in the PROC GLM statement.

• What are the statistical assumptions associated with the F test con-
ducted in one-way fixed-effects ANOVA?

The F test carried out in a one-way fixed-effects ANOVA is closely
related to the independent-samples t test introduced in Chapter 12. If the
one-way linear model presumed for data captures all sources of variations
in the dependent variable, the F test assumes, first of all, that subjects are
randomly selected from their respective populations, or that they are ran-
domly assigned to conditions of the independent variable. Second, the
underlying populations are normally distributed. Third, variances of nor-
mal populations are assumed to be equal. These assumptions are referred
to in the literature as the independence assumption, the normality assump-
tion, and the equal variance assumption.

Beyond the one-way fixed-effects ANOVA, factorial ANOVA designs,
randomized block ANOVA designs, LS designs, repeated measure designs,
and ANCOVA make additional statistical assumptions. For a detailed dis-
cussion of these assumptions and their robustness, refer to Box (1954),
Clinch and Keselman (1982), Glass, Peckham, and Sanders (1972), Kirk
(1995), Rogan and Keselman (1977), Tan (1982), and Tomarken and
Serlin (1986).
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• What to do if data do not satisfy the statistical assumptions in
one-way fixed-effects ANOVA

For one-way fixed-effects ANOVAs, statisticians in general agree that
the independence assumption is not robust to its violation. It is an impor-
tant assumption because its violation renders the interpretation of the F
test inexact and biased.

The normality assumption is quite robust, especially when the under-
lying populations are symmetric and sample sizes are equal and greater
than 12 in all conditions. Even if population distributions are asymmetric
and/or more peaked or flatter than the normal curve, the normality
assumption is still robust as long as the population distributions are shaped
the same and sample sizes are equal. One way to check the normality
assumption is demonstrated in Chapter 9, Example 9.4.

The equal variance assumption is robust in balanced designs if samples are
taken from underlying normal populations in which the ratio of the largest
variance to the smallest variance is no more than 3. Unfortunately, this
assumption is not robust when the ratio of the largest to the smallest variances
exceeds 3, even if equal sample sizes are maintained. Under these conditions,
alternative parametric tests, such as the Brown-Forsyth test, exist to compen-
sate for the violation of the equal variance assumption. These alternative
parametric tests are discussed and illustrated in Clinch and Keselman (1982).

In the worst possible scenario, in which sample sizes are unequal and
terribly small and the populations are far from normal, you can still fall
back on nonparametric tests. These are explained in Chapter 14.

• What if the research design is unbalanced?

An unbalanced design is a design in which cell sizes are unequal, or
some cells have missing observations. For the unbalanced designs, tests of
main effects and of interactions are nonorthogonal or statistically depen-
dent. For discussions of these designs and their treatments in SAS, refer to
the Four Types of Estimable Functions and the GLM chapters in
SAS/STAT 9.1 User’s Guide (SAS Institute Inc., 2004d) or the online doc-
umentation at www.sas.com.

• How to test planned contrasts in PROC GLM

As stated before, PROC GLM is capable of carrying out planned contrasts
of main effects and interactions. These planned contrasts are specified by the
CONTRAST statement. Suppose a 2 × 3 factorial design includes IQ as the
row factor and the method of learning a foreign language as the column fac-
tor. The row factor, iq, has two levels, (high and average), and the column fac-
tor method, has three levels: the aural method, the translation method, and
the combined method. The dependent score is students’ comprehension of a
passage written in the foreign language they studied. The diagram below may
help you grasp the 2 × 3 design and six hypothetical cell means:
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The graph below depicts hypothetical means of the six cells:
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Based on the design and means graphed above, let’s suppose that five
orthogonal contrasts are of interest:

c1 =YHigh IQ −YAverage IQ

c2 =YAural −YTranslation

c3 =YAural +YTranslation − 2×YCombined

c4 = ðYAural −YTranslationÞHigh IQ − ðYAural −YTranslationÞAverage IQ

c5 = ðYAural +YTranslation − 2×YCombinedÞHigh IQ −
ðYAural +YTranslation − 2×YCombinedÞAverage IQ



The first contrast is a test of the main effect of iq, the second and the third
are tests of main effects of method, and the last two are tests of interactions.
To implement these planned orthogonal contrasts into PROC GLM, five
CONTRAST statements are written as follows:
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PROC GLM DATA=ortho ORDER=DATA;
 CLASS iq method;
 MODEL score=iq method iq*method;
 CONTRAST 'psy1'    iq 1 -1;

CONTRAST 'psy2'    method        1    -1    0;
CONTRAST 'psy3'    method        1     1   -2;
CONTRAST 'psy4'    iq*method 1 -1 0 -1 1 0;
CONTRAST 'psy5'    iq*method 1 1 -2 -1 -1 2;

Note that each CONTRAST statement is independent of all others; thus,
each ends with a semi-colon (;). Each statement is written according to the
following syntax:

CONTRAST ‘title of the contrast’ effect_name
coefficients_to_be_applied_to_group_means;

For a main effect, it is easy to figure out how coefficients are applied to
each group (level) under that main effect. Simply multiply successive coeffi-
cients, from left to right, with group means that are ordered according to the
way data were read. This is the reason why, in the PROC GLM statement,
the option ORDER=DATA is included.

It is tricky, however, with interaction effects. Take the iq*method inter-
action, for example. How does SAS know to multiply −2 in ψ5 with the mean
of the High IQ students in the combined condition? The key lies in the order
in which the two variables (or factors) are listed. In the program above, iq
precedes method. Therefore, the first three coefficients, namely, 1, 1, and
−2, are applied to the high iq group, whereas the last three, −1, −1, and 2,
are applied to the average iq group. Within the high iq group, coefficients 1
and 1 are further applied to the first two conditions of method, whereas −2
is applied to the last condition, that is, the combined method. Try using this
logic to interpret the coefficients in ψ4 to make sure that you can write CON-
TRAST statements for interactions on your own.

After executing the five contrasts, the output shows the following results.
Each contrast is tested with 1 and 24 degrees of freedom—the degrees of
freedom for the MS error. Four contrasts are statistically significant at α =
0.01, but ψ4 is not. This nonsignificant result is confirmed by the graph and
by the cell mean difference (27 – 12 = 20 – 5).



The CONTRAST statement is applicable to (a) orthogonal contrasts,
such as the five tested here, (b) nonorthogonal contrasts, (c) simple or pair-
wise contrasts, and (d) complex contrasts of means.

• How to use ODS with the GLM procedure

To use the ODS, you need to know ODS table names corresponding with
various portions of the output. Table 13.1 presents selected ODS table
names for the GLM procedure and their descriptions.
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Contrast                   DF Contrast SS   Mean Square  F Value Pr > F

psy1-on iq                 1   2000.833333   2000.833333   800.33  <.0001
 psy2-on method 1 1125.000000   1125.000000   450.00  <.0001
 psy3-on method 1 201.666667    201.666667    80.67 <.0001
 psy4-on iq by method 1 0.000000      0.000000     0.00  1.0000
 psy5-on iq by method 1 1306.666667   1306.666667   522.67  <.0001

ODS Table Name Description GLM Procedure Statement

OverallANOVA Overall ANOVA (default)

Fitstatistics R-square, C.V., Root MSE, and
dependent variable’s mean

(default)

ModelANOVA ANOVA for model terms (default)

Means Group means MEANS

MCLinesInfo Multiple comparison information MEANS
/ comparison procedure options

MCLines Multiple comparison output MEANS
/ comparison procedure options

MultStat Multivariate statistics REPEATED or MANOVA

Epsilons Greenhouse-Geisser and Huynh-
Feldt epsilons

REPEATED

LSMeans Least-squares means LSMEANS

Diff Significance levels for tests of all
pairs of least-squares means

LSMEANS / PDIFF

Table 13.1 Selected ODS Table Names and Descriptions for the GLM Procedure



Based on the list of ODS table names, you may select certain results to be
displayed in the Output window. For example, the following program selects
the BON procedure’s result of Example 13.1 to be included in the output:
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ODS SELECT Bon.MCLinesInfo Bon.MCLines;
PROC GLM DATA=design;

CLASS indep1;
 MODEL score1=indep1;
 MEANS indep1 / BON TUKEY;
RUN;

Likewise, you may select certain result(s) to be exported as a SAS data set.
For example, the following program exports R-square, C.V., Root MSE, and
dependent variable’s mean of Example 13.1 to the SAS data set fit:

ODS OUTPUT FitStatistics = fit;
PROC GLM DATA=design;

CLASS indep1;
 MODEL score1=indep1;
 MEANS indep1 / BON TUKEY;
RUN;

Furthermore, you may select certain results to be saved in file formats
other than the SAS standard output. For example, the following program
saves the output of Example 12.1 in HTML format in its default style:

ODS HTML BODY = 'd:\result\Example13_1Body.html'
CONTENTS = 'd:\result\Example13_1TOC.html'
PAGE = 'd:\result\Example13_1Page.html'

 FRAME = 'd:\result\Example13_1Frame.html';

PROC GLM DATA=design;
CLASS indep1;

 MODEL score1=indep1;
 MEANS indep1 / BON TUKEY;
RUN;

ODS HTML CLOSE;
RUN;

For additional information about the ODS feature, consult with SAS
9.1.3 Output Delivery System: User’s Guide (SAS Institute Inc., 2006c) and
SAS/STAT 9.1 User’s Guide (SAS Institute Inc., 2004d) or the online docu-
mentation at www.sas.com.



13.6 Summary ______________________________________

Haven’t you felt like you have had enough of ANOVA? Almost! The
ANOVA technique is versatile for testing population mean differences, and so
is the GLM procedure—a comprehensive tool for handling a variety of
ANOVA designs. The null hypothesis tested in these designs is always the
same: that population means are equal. In other words, there is no effect of
any kind. The alternative hypothesis states that some means are unequal.
The statistic conceptualized by Sir R. A. Fisher to test the null hypothesis is
an F value. The F value is a ratio of two estimates. These two estimates
should give the same variance of sampling errors under the null hypothesis.
Under the alternative hypothesis, though, the numerator should be larger
than the denominator because it contains a portion that reflects the effect
being tested under the null hypothesis.

Once the null hypothesis is rejected by an F test at a preset α level, one
concludes that some means are most likely different from each other. At this
point, it is necessary to apply a comparison procedure to pinpoint the spe-
cific source of differences among means. PROC GLM provides many such
procedures for testing pairs of means. All are performed as a two-tailed test,
except for the DUNNETT procedure, which can be performed as a one-
tailed test.

If an ANOVA design is balanced, PROC ANOVA can also be specified
to test null hypotheses and compare mean differences. And the syntax
illustrated in this chapter is equally valid for the ANOVA procedure.
There are, however, differences between ANOVA and GLM procedures.
In the case of ANCOVA, the GLM procedure can treat a continuous
variable as an independent variable, whereas the ANOVA procedure
cannot. The GLM procedure provides the CONTRAST statement for
testing planned comparisons of main effects and of interactions. These
planned comparisons can be complex, based on three or more means.
They can be orthogonal as well as nonorthogonal. Yet the CONTRAST
statement is not available in the ANOVA procedure, although PROC
ANOVA is efficient and versatile for analyzing data collected from a
balanced ANOVA design.

13.7 Exercises

1. Four department stores, Macy’s, J. C. Penney, Sears, and Target, were selected for
a marketing research study of their advertising success. Advertising success was
operationally defined as the number of items purchased by four typical customers
randomly selected at each store on the second Saturday in July. The following data
represent their purchasing behavior:
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a. What is the average number of items purchased by all customers?
b. What are the values of MSbetween and MSwithin?
c. Is there any significant difference in the number of items purchased by customers

at these four stores?
d. Use the Tukey’s method to assess the significance in the number of items bought

at Macy’s versus J. C. Penney. Write a sentence to help your grandma understand
this statistical result.

2. A curious and bright graduate student carried out an investigation of a possible link
between the size and wall colors of professors’ offices and professors’ research pro-
ductivity. She constructed a reliable and valid measure to quantify the productivity
and used it to gather the following data; the higher the number, the greater was the
professor’s productivity:
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Subject Macy’s J. C. Penney Sears Target

1 3 0 1 4

2 7 2 3 6

3 5 0 4 2

4 5 10 8 8

Room Color

Peach Cream Gray Blue

Room
Size

Small
71

80

50

63

104

112

110

105

Medium 175

164

159

152

133

128

154

141

Large 105

103

109

113

79

83

66

58

a. What is the average productivity by professors located in gray offices?
b. If the president of the unnamed university wished to standardize all professors’

offices, what size of offices should this graduate student recommend?
c. Overall, which office wall color is most helpful to professors’ productivity?
d. Does size of offices interact with room color in affecting the professors’ research

productivity? If so, how strong is the interaction?
e. If your answer to (d) above is yes, which combination of room color and size is

most conducive to professors’ productivity and which combination is the least?



3. A teacher wants to know if computerized instruction is better than the traditional
method for teaching elementary school students. After applying these two methods
in two different classes for one semester, the teacher administered tests in three
subjects, arithmetic, arts, and reading, and obtained the following scores:
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Computerized Traditional

Boys Girls Boys Girls

Arithmetic 85, 70, 90,
82, 63, 84

68, 72, 65,
72, 79, 80

95, 89, 92,
66, 75, 60

75, 82, 78,
69, 70, 75

Arts 77, 89, 69,
82, 70, 87

92, 65, 75,
83, 82, 78

92, 88, 86,
70, 96, 60

77, 82, 79,
85, 72, 80

Reading 68, 75, 85,
92, 66, 80

74, 82, 76,
93, 82, 87

72, 74, 69,
85, 60, 83

82, 86, 77,
72, 74, 88

Answer the following questions based on these data:

a. Do students score differently in the three subjects? (Hint: One-way ANOVA)

b. Apply Tukey’s procedure to examine differences in three subjects.

c. Do students score differently under two teaching methods? (Hint: One-way ANOVA)

d. Do boys and girls score differently?

e. Is there an interaction between and among teaching methods, subject matters,
and gender? (Hint: Three-way ANOVA)

4. A group of young children has recently been diagnosed as severely depressed beyond
the normal acceptable level. A study is therefore proposed and funded by the First
Lady’s Pocket Grant to investigate whether three antidepression drugs can improve
children’s depression. Three hospitals are randomly selected (a1, a2, a3) to administer
these drugs (t1, t2, t3) to depressed children who come from either single-parent homes
(b1), divorced-then-remarried homes (b2), or intact families (b3). Data show the fol-
lowing trend (the higher the score, the better is the drug’s effect):

b3 b2 b1

a2 6 (t1) 7 (t2) 8 (t3)

a1 2 (t2) 1 (t3) 5 (t1)

a3 0 (t3) 4 (t1) 1 (t2)



Perform a suitable statistical analysis on these data and summarize your results in an
ANOVA table with α = 0.05. Write a sentence to interpret the results.

5. Eight graduate students living on midwestern university campus were surveyed
with regard to the government policy on phone wiretapping as a mechanism
against terrorism. The survey was carried out at two times: on September 11,
2007, and shortly after Thanksgiving, also in 2007. The instrument used to
collect data asked students about their attitude toward the necessity of such a
government policy to fight against terrorism. The higher the score, the more sup-
portive was the attitude. In addition, the researcher also collected information
from each student regarding his or her stand on a national gun control law. Data
exhibit the following trend:
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Subject ID Group
On September

11, 2007
After Thanksgiving,

2007

1 For gun control 4 7

2 For gun control 7 8

3 For gun control 3 5

4 For gun control 2 5

5 Against gun control 10 11

6 Against gun control 8 10

7 Against gun control 9 9

8 Against gun control 7 5

What are different analysis strategies that a data analyst can employ to find out if
differences in students’ attitudes could be explained by their stands on the national
gun control law, time of the survey, and an interaction of these two?

6. In a computer literacy class, the instructor wished to determine if students’ learn-
ing was different due to different teaching methods. Three methods (encourage-
ment, practice and drill, and self-directed learning) were used in three classes. To
better account for the teaching method effect, the instructor decided to measure
students’ IQ as a covariate. He administered an IQ test at the beginning of the
study and a computer literacy test after the study was concluded. Is there any dif-
ference in students’ computer literacy from three classes after IQ is taken into
consideration?



372 STATISTICAL PROCEDURES

Encouragement Practice and Drill Self-Directed Learning

Test Score IQ Test Score IQ Test Score IQ

16 124 17 137 13 112

15 123 15 116 11 104

14 115 18 148 14 111

15 120 17 135 11 105

17 136 19 147 12 103

13 104 18 135 14 113

1. a. The average number of items purchased by all subjects (also customers) = 4.25.

b. MSbetween = 3.66666667 and MSwithin = 10.16666667.

c. No, because the F test, F(3, 12) = 0.36, p = 0.7825 is not statistically significant
at the α level of 0.05.

d. Tukey’s test is used to examine if pairs of means are statistically significantly
different from each other. In this case, the difference between these two
means must be at least 6.6935 (= HSD = MSD) in order to be considered statisti-
cally significant. Since the mean difference between Macy’s (= 5) and J. C. Penney
(= 3) is 2, they are not considered significantly different from each other. Therefore,
grandma, customers at Macy’s and J. C. Penney bought approximately the same
amount of stuff on a Saturday in July. Where do you want me to take you to shop?

2. a. 106.50

b. The medium-sized offices should be recommended because these offices yielded
the highest mean level of productivity (= 150.75).

c. The color “peach” should be recommended for office walls because professors
in peach-colored offices produced the most research (mean = 116.333), com-
pared with professors in offices painted in cream, gray, or blue.

d. Yes, the room size did interact statistically significantly with room colors in
affecting professors’ research productivity, F(6, 12) = 39.86, p < 0.0001. ω2 for
the interaction effect = 0.9067, effect size = 3.117. Statistical power for detect-
ing the significant interaction effect is nearly 100%. Both ω2 and the statistical
power were obtained by hand calculation, not from SAS directly.

e. The most conducive combination is a peach-colored and medium-sized office
(mean productivity = 169.5); the least is a cream-colored and small office (mean
productivity = 56.5).

13.8 Answers to Exercises



3. a. No, because the F test of the subject factor, F(2, 69) = 0.83, p = 0.4404 is not sta-
tistically significant at the α level of 0.05.

b. Tukey’s test is used to examine if pairs of means are statistically significantly dif-
ferent from each other. To be considered statistically significant, the observed dif-
ference between any two group means should be at least as large as 6.2211 (=
HSD = MSD). Results from Tukey’s test indicate that none of the pairwise com-
parisons is statistically significant. These results are consistent with the overall F
test.

c. No, because the F test of the method factor, F(1, 70) < 0.01, p = 0.9586 is not
statistically significant at the α level of 0.05.

d. No, because the F test of the sex factor, F(1, 70) = 0.06, p = 0.3313 is not sta-
tistically significant at the α level of 0.05.

e. No, because the result of the F test of the three-way interaction among subject,
method, and sex, F(2, 60) = 0.12, p = 0.8878 is not statistically significant at the
α level of 0.05. Furthermore, none of the two-way interactions is statistically
significant at α = 0.05: (i) subject*method, F(2, 60) = 0.49, p = 0.6132; (ii)
subject*sex, F(2, 60) = 2.10, p = 0.1313; and (iii) method*sex, F(1, 60) = 0.00,
p = 1.0.

4. This research project calls for the application of the Latin-square (LS) design for
which factors a and b are nuisance variables and factor t is the treatment factor.
According to this LS design, the SS total is decomposed as follows:
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Source SS df MS F p

a 48.222 2 24.111 7.75 .1143

b 6.222 2 3.111 1.00 .5000

t 6.889 2 3.444 1.11 .4746

Error 6.222 2 3.111

Total 67.556 8

Because the F test of the t main effect is not statistically significant, it is concluded
that three antidepression drugs did not produce noticeable differences in improv-
ing children’s depression after controlling for differences in hospitals and family
backgrounds.

5. Strategy A: Apply an SPFp.q design for which the Group variable is the between-block
factor and the two measures as levels of the within-block factor.

Strategy B: Perform a one-way ANOVA using the Group variable as the independent
variable and the difference between the two measures as the dependent variable.



Strategy C: Perform two one-way ANOVAs using the Group variable as the inde-
pendent variable and each of the two measures as the dependent variable. Discuss
any discrepancy in findings due to the time of the measures.

Strategy D: Perform a one-way ANCOVA for which the first measure, taken on
September 11, 2007, is the covariate and the second measure, taken after
Thanksgiving 2007, is the dependent variable. The Group variable is the indepen-
dent variable.

Strategy E: Apply the nonparametric test of Strategy B.

Strategy F: Apply the nonparametric test of Strategy C.

6. The ANCOVA result is summarized as follows:

From the ANCOVA result, we can conclude that IQ is an effective covariate, F(1, 8)
= 89.48, p < 0.0001. After adjusting for IQ, the effect of methods is not statistically
significant, F(2, 8) = 1.91, p = 0.2096. However, the appropriateness of using
ANCOVA to analyze data for this study is questionable because IQ is found to inter-
act with the method, F(2, 6) = 6.59, p = 0.0306.
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Source SS df MS F p

IQ 48.2862 1 48.2862 89.48 <0.0001

Method 2.0633 2 1.0317 1.91 0.2096

Error 4.3172 8 0.5396

Total 54.6667 11




