
1
The fundamentals of survival 
and event history analysis

Objectives of this chapter

After reading this chapter, the researcher should be able to:
Defi ne, recognize and describe the  • fundamental concepts and terminology used in 

survival and event history analysis.

Recognize and describe the  • reasons why we use these methods and the types of 

problems that can be solved.

Defi ne and understand different types of  • censored and truncated data and 

different types of censoring.

Defi ne and recognize a  • density, survivor and hazard function.

Describe the  • relationship between a density, survivor and hazard function.

Be able to argue  • why it is necessary to use survival and event history models and 

their added value.

Recognize the  • different types of survival and event history models and classes.

Introduction: what is survival and event history analysis?

1.1 Survival and event history analysis is an umbrella term for a collection 
of statistical methods that focus on questions related to timing and 

duration until the occurrence of an event. The models examine the hazard 
rate, which is the conditional probability that an event occurs at a particular 
time interval (t). In other words, we examine how long it takes until the event 
of interest occurs. It is useful to note that survival models are actually just 
regression models with somewhat different likelihood estimators than OLS 
(ordinary least-squares regression). Students who know something about 
regression should therefore have little diffi culty understanding survival models. 

An event may take many forms, such as an organ transplant, marriage, birth, 
death, political revolution or bank merger. Due to fact that many research 
questions concern timing and duration, this method appeals to multiple sci-
entifi c disciplines. The techniques described in this book are often referred to 
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2 INTRODUCING SURVIVAL AND EVENT HISTORY ANALYSIS

as survival analysis in biostatistics, medical science and epidemiology, reliabil-
ity analysis in engineering, duration models within economics, and event his-
tory analysis within sociology, demography, psychology and political science. 

The goal of this book is to introduce these methods in an accessible, practi-
cal and engaging manner, starting from basic terminology and ranging to the 
most cutting-edge techniques used in the fi eld today. Written for accessibility, 
this book will appeal to students and researchers who want to understand the 
basics and apply these methods without getting entangled in the mathematical 
and theoretical technicalities. Readers are offered a blueprint for their entire 
research project from research question, study design and data preparation to 
model selection and diagnostics, allowing them to independently master these 
advanced methods. 

This book is written from the perspective of an applied researcher, with 
numerous examples and hands-on exercises, making it suitable as both a self-
learning text or textbook within a course. Readers are provided with guide-
lines and suggestions on how to prepare data, run various types of models and 
enhance the expression of results with impressive graphics. Exercises within 
the body of the text are shown using the powerful and free computer program 
R, with Appendices and on-line material replicating some of the analyses using 
Stata (Appendix 2) and reference to SPSS and SAS on the companion web 
site to this book http://www.gmw.rug.nl/~millssurvivaleha.

This chapter begins by describing the fundamental concepts and terminology 
of these techniques, which is useful for beginners and serves as the foundation 
for the rest of the book. There is a sizeable amount of terminology related to 
these models that might be new for some researchers. Readers can therefore 
also refer to the glossary at the end of this book for a quick reference to the 
defi nitions of key terms. The mathematical expressions and relation of statistical 
functions are then presented in a manner that requires only a basic background 
in mathematics and statistics. We then turn to the logic of why it is necessary 
to use these types of models with certain data and research problems. The fi nal 
section provides a brief overview of the different types of survival and event 
history models, which simultaneously serves as an overview of this book. 

Key concepts and terminology  

1.2 In survival and event history analysis, the dependent variable (also 
sometimes referred to as the response or outcome) is the hazard rate, 

which is the conditional probability that an event occurs at a particular time 
interval (t). In order to obtain statistical estimates of effects on this time to an 
event, most hazard rate results need to be transformed. Therefore, the depen-
dent variable is a rate. The goal of these models is not only to examine the 
effects on the time until an event occurs, but also to assess the relationship of 
survival time to explanatory variables. Explanatory variables (also often referred 
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 FUNDAMENTALS OF SURVIVAL ANALYSIS  3

to interchangeably as covariates or independent variables) assess the impact of 
certain characteristics (e.g. receiving treatment, size of tumour, level of educa-
tion) on the dependent variable. As we will explore in the chapters that follow, 
these variables may be fi xed or time-varying. Fixed variables do not change 
across time and include static variables such as sex or place of birth. Time-
varying variables have values that change over time such as age, labour force 
experience or size of a tumour. 

The classic example of an event is death. The occurrence of an event is often 
referred to as a failure, usually attributed to fact that the event is death or disease. 
As Table 1.1 illustrates, an event could also be an infection, marriage, ‘death’ of 
a bank or the end of a United Nations peacekeeping mission. (The topic of cen-
soring shown in this table is described shortly.) Another way to understand sur-
vival is in terms of risk. Take the following question for example, given that an 
individual has remained in remission from cancer for three years, what is the risk 
that he or she will experience a relapse within each unit of time? 

Survival and event history analysis is highly interdisciplinary and used exten-
sively in epidemiology and health sciences. This includes the study of leukaemia, 
heart transplant survival and infections of kidney dialysis patients, primary 
biliary cirrhosis, the effects of air pollution on mortality or AIDS (e.g. Geskus, 
2000; Pope et al., 1995). In the social sciences, there are also numerous appli-
cations such as the study of organizational change (Hannan and Carroll, 1981), 
changes in hate crime law (Grattet et al., 1998), social insurance legislation 
(Usui, 1994), many applications in political science (see Box-Steffensmeier and 
Jones, 1997), social movements and the evolution of right-wing movements 
(Olzak, 1989), job mobility (Mills et al., 2006), marriage (Blossfeld and Mills, 
2001) and union decline (Western, 1995). 

Table 1.1 Examples of survival analysis showing starting time and event status

Start Survival time Event

Patient with acute myelogenous 
leukaemia enters remission 

(Miller, 1997) 

Death or ‘censored’ (i.e. still alive 
at last observation)

Patient joins waiting list for heart 
transplant

(Crowley and Hu, 1997)

Death or ‘censored’ (i.e. still alive 
at last observation)

Insertion of catheter in kidney 
dialysis patient

(McGilchrist and Aisbett, 1991)

Infection or ‘censored’ (i.e. no 
infection at last observation)

Woman in (non-marital) cohabiting 
relationship becomes pregnant

(Blossfeld and Mills, 2001)

Marriage or ‘censored’ (i.e. still 
cohabiting at last observation)

Commercial bank opens
(Bergström et al., 1997)

Closure of bank or ‘censored’ 
(i.e. bank still functioning at last 
observation)

Start of U.N. peacekeeping 
mission

(Green et al., 1998)

End of U.N. peacekeeping 
mission or ‘censored’ (i.e. mission 
still ongoing at last observation)
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4 INTRODUCING SURVIVAL AND EVENT HISTORY ANALYSIS

Since we are concerned with analysing the time to the occurrence of an 
event, time is an essential aspect of these models and can be measured in 
diverse units, such as seconds, days, weeks, months or years. The duration or 
time that it takes before an event occurs is referred to as survival time. It is the 
time that a person or other unit of analysis (e.g. bolt in a machine, bank, 
political regime) ‘survives’ the specifi ed duration. It is also often interchange-
ably referred to as a spell, episode, interval, waiting time, exposure time, risk 
period or duration.

The time axis may be continuous or discrete. If the time of the event is 
known precisely, it can be measured on a continuous scale (e.g. seconds, days, 
months). If the time units are unknown within larger units of years or decades, 
discrete-time methods are often used (Allison, 1982, 1984; Singer and Willet, 
2003b). Discrete-time methods are therefore used when we have imprecise 
measurements and only know that the event occurred within a particular 
interval (e.g. within a year), but not the exact time; this is discussed in more 
detail in Chapter 9. In both continuous- and discrete-time models, the risk of 
the event occurring at time t is being modelled. Whereas the dependent vari-
able in a continuous-time model is a hazard rate, in a discrete-time model it 
is the odds (if modelled using standard logit/probit models). The necessary 
precision of the timing of the event is highly dependent on the research ques-
tion and often related to data restrictions. Although most processes occur in 
continuous time, they are often measured in discrete time, resulting in many 
event history models applying the discrete-time approach. Continuous-time 
models include the exponential survival model and the Cox semi-parametric 
model (Cox, 1972, 1975; Cox and Oakes, 1984). Results from discrete-time 
and continuous-time methods will be virtually the same in most models; further-
more, discrete-time models can be used to approximate continuous-time models 
(Allison, 1982; Yamaguchi, 1991). 

These terms provide the basic foundations for simple models, but later 
chapters will also examine more complex topics such as frailty and recurrent 
events, competing risks and multistate models and modelling entire trajecto-
ries, defi ned in more detail at the end of this chapter. Models are generally 
divided into non-parametric, semi-parametric and parametric models, also 
described within the last section. 

Censoring and truncation  

1.3 A distinguishing factor of survival and event history models is that 
they take censoring into account. A simple defi nition of censoring is 

that we have information about an individual’s survival time, but do not know 
the exact survival time (Kleinbaum and Klein, 2005). Various types of censor-
ing can occur, with the most common type being right-censoring, which will 
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 FUNDAMENTALS OF SURVIVAL ANALYSIS  5

also be the primary focus in this introductory textbook. In most cases, trunca-
tion refers to the complete lack of information about the occurrence of the 
event. 

There is often some confusion as to whether observations are censored or 
truncated. Strictly speaking, truncation refers to the cases where subjects do 
not appear in the data because they are not observed. Censoring refers to cases 
when subjects are known to fail within a particular episode, but the exact 
failure time is unknown. There are additional types of censoring (e.g. partially 
left-censoring), which are described in the glossary or in the detailed discus-
sions of censoring and truncation in sources such as Kalbfl eisch and Prentice 
(1980: 39–41), Allison (1984), Tuma and Hannan (1984: 118), Yamaguchi 
(1991: 3–9) and Vermunt (1997: 117–130).

Right-censoring  

1.3.1 As Figure 1.1 illustrates, uncensored cases represent the informa-
tion where we know both the starting and ending time of episodes. 

Most discussions of censoring and research projects involve right-censoring, 
which occurs when the event under study is not experienced by the last obser-
vation. This commonly occurs in the social sciences when survey data is used. 
Individuals are often questioned about their retrospective life histories, such as 
the birth dates of their children or start and end dates of jobs or education. If 
we were modelling the transition to second childbirth, for instance, using this 
type of retrospective data, all individuals who had a fi rst child but no second 
child at the time of observation would be ‘right-censored’ by the survey date. 
In certain medical studies and panel or longitudinal designs, the individual may 
not be present for follow-up (e.g. they have moved), dropped out of the study 
(e.g. due to bad side effects or refusal to participate) or the study simply ends. 
The fi rst two reasons are often considered as random. 

A special condition occurs when an episode is right-censored as a result of 
a non-random process, often referred to as Type I censoring. This type of 

Figure 1.1 Uncensored versus right-censored subjects

Uncensored subject

Right-censored subject

X Subject experiences
    event

X Subject experiences event

Onset of risk
t = 0

End of study
t = 24

Time

Observation
period

Subjects 
not observed

5555-Mills-Chap01.indd   55555-Mills-Chap01.indd   5 11/25/2010   1:12:32 PM11/25/2010   1:12:32 PM



6 INTRODUCING SURVIVAL AND EVENT HISTORY ANALYSIS

censoring comes about more in disciplines such as engineering or those that 
use experimental designs. In engineering applications, the focus is on the 
strength of materials, fatigue, rupture in solids and bearings. In these studies, 
tubes, chips or bearings for instance, are all started for testing at a particular 
time, and the time until event is recorded until their failure (i.e. breakdown) 
However, since some items may take a very long time to fail or break down, 
the experiment is sometimes prematurely terminated at a predetermined 
non-random time. 

An essential point is that although there is no information about the occurrence 
of the event for right-censored cases, there is information about the survival 
or exposure time until the last point of observation. Right-censored data con-
stitutes missing data insofar as we have information on the event history of the 
unit of analysis and the time at risk up to the last observation point. Therefore, 
we require the assumption that censoring is random and that the processes 
governing censoring and occurrence of events are independent of one another 
(Tsiatis, 1975). There are straightforward ways to deal with right-censoring 
during data analysis, which we explore in the chapters that follow.

Interval censoring  

1.3.2 Interval censoring refers to the case where we only have informa-
tion that the event occurred between two known time points, but 

not the exact timing of the event. This type of censoring comes about when 
subjects are questioned or tested at fi xed time-points during a specifi ed fol-
low-up period. In a longitudinal panel study, for example, data might be col-
lected from subjects once every 2 years. Consider if we were studying 
employment status (e.g. employed, unemployed, out of labour force), and 
only the employment status categories were asked every two years and not the 
timing of changes. If someone were unemployed at the fi rst data collection 
wave but employed at the second wave we would know that there was a 
change in employment status, but not exactly when the event occurred during 
this period. In clinical research, patients may be required to visit a clinic once 
every month for a period of several years. It might be that a patient tested 
negative at month 9 and positive at month 10, leaving us with the knowledge 
that the event occurred between the 9th and 10th clinic visit, but we would 
have no information about exactly when the event occurred. 

Truncation  

1.3.3 Truncation is a condition other than the event of interest that is, 
for example, used to screen respondents or patients (Klein and 

Moeschberger, 1997). The most common type of truncation is left-truncation, 
such as when subjects enter the study at a random age. In the case of left-
truncation, we do not have information from before the onset of risk to some 
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 FUNDAMENTALS OF SURVIVAL ANALYSIS  7

time after the onset of risk. In other words, the subject was not observed for 
some time at the beginning of the process but then came under observation. 

Another type of truncation is interval or gap truncation, which is similar to 
left-truncation. This could occur in a clinical study if, for example, a patient is 
under observation for the fi rst 3 months of the study, drops out for 2 months and 
then rejoins the study again for the last 7 months. Dropping out of the study for 
2 months creates an interval or gap in the period of observation. Both left and 
interval truncations are dealt with during analyses by omitting the subject from 
all individual binary-outcome analyses during the truncation period (or gap) due 
to the fact that they could not have experienced the event during those periods. 

Right-truncation can also occur, but is less frequent. Klein and Moeschberger 
(1997) provide the example of the examination of an episode from HIV infec-
tion until the development of AIDS. If the sample only includes those who 
have developed AIDS prior to the end of the study, those HIV-infected indi-
viduals who have not yet progressed to AIDS are excluded from the sample. 

Mathematical expression and relation of basic 
statistical functions  

1.4 This section provides a brief outline of the key statistical concepts of 
survival analysis. The text is written at the level of a non-

mathematician and primarily for applied researchers, and for this reason does 
not go into extensive mathematical or theoretical depth. That being said, under-
standing these expressions and how they are calculated are key 
for your general understanding and interpretations of these methods. Non-
mathematicians can refer to Box 1.1 for a review of some of the basic notation 
used in the equations. The mathematical expression may at fi rst glance appear 
to be somewhat abstract, but will become clearer in the upcoming chapters 
when we estimate models and explicitly show calculations using real data.

Box 1.1 A REVIEW OF NOTATION FOR 
       NON-MATHEMATICIANS

T Random variable of survival time (T ≥ 0)

T ≥ 0 Means that T can be any number equal to or greater than zero (i.e. cannot 
have negative values)

t Specifi c value for T

δ (0,1) Random variable = 1 if failure, = 0 if censored (Greek lower-case 
letter delta)

(Continued)
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8 INTRODUCING SURVIVAL AND EVENT HISTORY ANALYSIS

The starting point is to defi ne T as a positive random variable that represents 
the survival times. It is assumed to be continuous (except where we examine 
discrete-time models). The actual survival time is a value of T, which 
is denoted as t. The values of T have a particular probability distribution, 
denoted by a probability density function represented by f(t) and a cumulative 
density function, F(t). The distribution function of random variable T is 
given by: 

 F(t) = ∫
t

0

 
 f(u)d(u) = Pr(T ≤ t) (1.1)

where Pr(T ≤ t) is the probability that a survival time T is less than or equal 
to some value t. For all points at F(t), the probability density function f(t) is 
defi ned as: 

 f(t) = 
dF(t)

 = F ́ (t) (1.2)
 d(t)

This implies: 

 f (t) = 
lim F((t + Δt) − F(t))

 (1.3)
   

Δt→0      Δt

The density function f(t) expresses the unconditional instantaneous probability 
that an event occurs in the time interval (t, Δt) and is formally specifi ed as:

 f (t) = 
lim Pr(t ≤ T ≤ t + Δt)

 (1.4)
   

Δt→0      Δt

We can see from both Equations 1.3 and 1.4 that the density function is 
an unconditional failure rate. In other words, it describes the unconditional 

(Continued)

Ŝ (t) Survivor function

h(t) Hazard function

f(t) Density function

∞ Infi nity

P Probability

⎜ Given

Δt Small time interval (Greek upper-case letter delta)

lim Limit

  lim
Δt→0

Instantaneous potential
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 FUNDAMENTALS OF SURVIVAL ANALYSIS  9

(i.e. not conditioned on covariates) instantaneous (at any given instant t) 
probability of the event (i.e. failure rate). 

The survivor function is another core concept in survival and event history 
models and is specifi ed as:

 Ŝ(t) = 1 – F(t) = Pr(T ≥ t) (1.5)

which expresses the probability that a survival time T is equal to or greater 
than some time t. Ŝ(t) denotes the proportion of subjects surviving beyond t. 
At origin time t = 0, S(0) = 1, which simply means that all subjects in the study 
are surviving at t = 0. As we will see in the upcoming chapters, Ŝ(t) is a func-
tion that strictly decreases over time as the surviving subjects fail over time. 

The occurrence of an event (e.g. failure) and survival are related to each 
other, which is encapsulated by the hazard rate, which also goes by the name 
of the instantaneous transition or hazard function:

 �
( )

( )
( )

f t
h t

S t
=  (1.6)

The hazard rate indicates the rate at which subjects fail by t given that the 
subject has survived until t. It is therefore a conditional failure rate, which can 
be seen by: 

 0

Pr( | )
( ) lim

t

t T t t T t
h t

t→

≤ < + ≥
=

�

�
�  (1.7)

where the transition rate h(t) represents the instantaneous risk that the 
event occurs in the time interval [t, t + Δt], given survival at or beyond 
time t. The hazard therefore focuses on failing (i.e. experiencing the event) 
whereas the survivor function focuses on surviving (i.e. not experiencing the 
event).

Why use survival and event history analysis?  

1.5 A core question you need to ask with this (and arguably with any type 
of data analysis) is: Why is it necessary to engage in this type of analy-

sis? What does it offer that ordinary regression models such as ordinary least-
squares regression or logistic regression do not? 

Potential problems that might arise if censored data is ignored

1.5.1 Anyone working with censored data should seriously consider 
using these types of methods. To illustrate the serious problems 

that may occur when you ignore censored data, we can refer to the study 
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10 INTRODUCING SURVIVAL AND EVENT HISTORY ANALYSIS

discussed in Miller (2007) previously shown in Table 1.1 and which is often 
used in this book as an example dataset, since it is compact and easy to deci-
pher and is also part of the ‘survival’ library package in R. The dataset is 
described in more detail in the Appendix. The study contains the results from 
a clinical trial that examined the effi cacy of maintenance chemotherapy for 
individuals with acute myelogenous leukaemia (AML). The goal was to see 
whether maintenance chemotherapy extended the time until relapse. Once 
patients entered into remission after treatment by chemotherapy, they were 
randomly assigned into two groups: ‘maintained’ (continued to receive main-
tenance chemotherapy) and ‘nonmaintained’ (control group who received no 
chemotherapy). 

Figure 1.2 illustrates how the simple mean duration of the time until the 
event (death or censoring) would be calculated if we ignored censoring (i.e. 
removed censored observations) versus accounting for censoring. Using the 
fi rst approach, which does not take censoring into account, the difference 
between the two groups appears to be negligible (and the medians that are 
identical – 23.0 – for both groups). We might conclude from the analysis that 
the survival time for the group that received maintenance chemotherapy was 
only slightly more skewed to the right, or in other words had only a marginally 
higher survival time than the control group. When we calculate the mean 
properly by also accounting for censored data, we see a markedly larger gap 
between mean in the maintained versus the non-maintained group. Here the 
medians have strikingly different values, 31.0 and 23.0 for the maintained and 
non-maintained groups respectively. In fact, the actual distribution of the 
maintained group is far more right-skewed and the survival difference between 
the two groups is very large. 

Figure 1.2 Difference in mean in AML study by removing (ignoring) censored observations 
versus accounting for censoring
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 FUNDAMENTALS OF SURVIVAL ANALYSIS  11

What does survival analysis offer that ordinary regression 
models do not?  

1.5.2 These techniques have several unique features that distinguish 
them from other types of methods. What is the added value of 

these models? First and foremost, survival analysis adds information about 
timing. As previously described, this in turn makes it possible to account for 
‘censoring’. Unlike other techniques, it also takes a different approach by not 
only focusing on the outcome but also analysing the time to an event. This 
enables us to compare the survival between two or more groups and to assess 
the relationship between explanatory variables and survival time. Another 
unique feature is the ability to include time-varying covariates (i.e. explana-
tory variables that change their values over time such as age or education), 
which is not possible in OLS or logistic regression. For this reason, these 
models are often referred to as dynamic or process models (Aalen et al., 2008; 
Willekens, 1991). 

Overview of survival and event history models and 
this book  

1.6 This book will introduce you to various types of survival and event 
 history models, which are summarized in Table 1.2 in terms of the 

class and type of model, a brief description and the advantages and disadvan-
tages, and in which chapter they are covered. Do not feel disheartened if you 
do not understand some of the terminology or subtle differences between the 
models at this point. As you continue to read each chapter, the key aspects of 
each class of models should become clear. You can also refer to the glossary 
at the end of this book for terms that might still be unfamiliar at this point. 
The table is not intended to be exhaustive, but rather to provide you with a 
brief synopsis or ‘helicopter view’ of the possibilities. 

Non-, semi- and parametric models  

1.6.1 A common distinction often made in survival and event history 
modelling, shown and also in Table 1.2, is between non-, semi- 

and parametric models. In non-parametric models, which include life table 
and Kaplan-Meier estimates, there is no assumption about the shape of the 
hazard function or about how covariates may affect that shape. As described 
in Chapter 4, this is often an excellent preliminary descriptive technique to 
use at the beginning of your data analysis. Due to the fact that non-parametric 
methods cannot handle the inclusion of multiple covariates, researchers 
then often turn to regression techniques of semi-parametric and parametric 
models. Semi-parametric models such as the Cox and the piecewise constant 
exponential model discussed are particularly fl exible since they make no 
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14 INTRODUCING SURVIVAL AND EVENT HISTORY ANALYSIS

assumption about the shape of the hazard. Contrary to non-parametric meth-
ods, you are able to include multiple covariates. They are, however, part of 
the proportional hazards family of models, which (as described in detail in 
Chapter 5) means that they make a strong assumption about how the covari-
ates affect the shape of the hazard function between groups over time. 

The parametric models discussed in Chapter 6 include models such as the 
exponential, Weibull, Gamma, Gompertz and others (see Table 1.2). Leaving 
theory and mathematical details aside, the main difference between these 
models and a semi-parametric specifi cation is that the researcher is required 
to decide in advance about the shape of the hazard function and how covari-
ates might impact the function. The decision process for choosing between 
a semi-parametric and a parametric model is discussed in more detail in 
Chapter 7 (see also Figure 7.1). 

Outline of this book  

1.6.2 Since the goal of this book is to provide a highly practical approach, 
after the theoretical aspects of the models are defi ned in each 

chapter, researchers can continue to actively estimate and interpret the results. 
When describing the content of the chapters, I realize that I sometimes 
‘jump ahead’ and use terminology that may be unfamiliar to some (e.g. ‘lagged 
covariates’, ‘episode-splitting’). This type of terminology is covered in detail 
in the chapters that follow, with key terms described briefl y within the 
glossary. 

To allow you to estimate the models, it is essential to fi rst understand the 
basics of R, which is the primary statistical program accompanying this book. 
Chapter 2 is written for researchers with little or no experience using R, with 
an Appendix for users of other statistical programs. The fi rst part of the 
chapter provides an accessible introduction to R, followed by basic descrip-
tive statistics and graphics. Those already familiar with R, or desiring to 
estimate models in other programs, can skip this chapter. 

Chapter 3 addresses different types of data for survival and event history 
analysis and tackles the often-daunting task of data restructuring. Such a 
practical chapter is rare in textbooks on this topic and will be of interest to 
those who need to restructure their own data independently. Those with 
experience in event history data and data restructuring can proceed directly to 
Chapter 4. 

Survival and event history analysis often begins with non-parametric 
models, explored in Chapter 4, which include life-table and Kaplan-
Meier (KM) estimates. After describing the fundamentals of the KM approach, 
this chapter describes how to produce and interpret estimates, plot survival 
curves, test differences between two groups and stratify the analysis by a 
covariate. 
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 FUNDAMENTALS OF SURVIVAL ANALYSIS  15

Semi-parametric models in the form of the Cox regression model are cov-
ered in Chapter 5. The Cox proportional model with fi xed and time-varying 
covariates is fi rst described and then models are estimated for each. In this 
chapter, you will learn how to estimate and interpret a Cox regression model, 
understand signifi cance and plot the survival function. This is followed by a 
description of how to create a subject-period data fi le to accommodate time-
varying covariates, adding lagged time-varying covariates to reduce problems 
of causal ordering. A fi nal section describes how to model interactions with 
time by using episode-splitting at time intervals. 

We then turn to parametric models in Chapter 6, where it is necessary to 
specify the shape of the hazard function in advance. After a description of 
the mathematical underpinnings of these models, the discussion turns to 
the distinction between models with a proportional hazards (PH) parameter-
ization versus models that have an accelerated failure time (AFT) approach. 
The chapter then describes how to estimate and interpret the PH and AFT 
parameterizations of the exponential, piecewise constant exponential and 
Weibull models and the AFT estimation of log-logistic and lognormal 
models. 

There are a variety of models to choose from and various decisions that you 
need to make when choosing an appropriate model. For this reason, Chapter 7 
provides a detailed discussion of model-building and model diagnostics. This 
chapter focuses on model-building and the selection of covariates, assessing 
the overall goodness of fi t of your model, testing overall model adequacy 
via Cox-Snell residuals, testing the proportional hazards assumption via 
Schoenfeld residuals, checking for infl uential observations with score residuals 
and assessing nonlinearity via Martingale residuals and component-plus-
residual plots. 

In recent years, there has also been growing attention to recurrent event 
and frailty models, sometimes also referred to as multi-level or random effect 
models or unobserved heterogeneity, which is the focus of Chapter 8. This 
chapter demonstrates how to examine recurrent events such as multiple 
relapses from remission, repeated heart attacks or infections, multiple mar-
riages, births, cabinet durations or unemployment episodes. This relates to the 
broader topic of correlated survival data, which is often discussed in relation 
to frailty and unobserved heterogeneity. Correlation of event times can occur 
in the case of recurrent events or if subjects that experience a single event 
belong to a particular group or cluster (e.g. family, clinic). Frailty entails that 
some subjects may be more ‘frail’ and exhibit a higher likelihood of experienc-
ing an event than others do. The assumption therefore is not that all subjects 
are homogeneous (i.e. similar), but that they are heterogeneous (i.e. differ-
ent). Frailty models thus account for the unobserved heterogeneity that arises 
due to the potentially unobserved ‘frailty’ (Aalen, 1988, 1992; Hougaard, 
1984, 2000; Vaupel et al., 1979). After description of modelling recurrent 
events and clustering in groups with shared frailty models, the discussion turns 
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16 INTRODUCING SURVIVAL AND EVENT HISTORY ANALYSIS

to the identifi cation of additional frailty models, including unshared, nested, 
joint and additive. Frailty models are then estimated and interpreted, assum-
ing both Gamma and Gaussian distributions. 

Another category of models that is common in contemporary research com-
prises discrete-time models, addressed in Chapter 9. In discrete-time models, 
the dependent variable is dichotomous (i.e. 0, 1) and data is arranged in the 
form of a subject-period fi le of discrete time units. After formal specifi cation 
and description of the model, the chapter discusses data restructuring to pre-
pare discrete-time fi les. We then move to the estimation of logit, probit and 
complementary log-log (cloglog) models, concluding with a refl ection on the 
advantages and disadvantages of these types of models. 

Chapter 10 introduces competing risks, but also the more advanced method 
of multistate models, the later of which is rarely integrated in introductory 
event history textbooks. This chapter acknowledges that different types of 
events can occur because there is more than one underlying process; in other 
words, there may be several competing causes, often referred to as competing 
risks (Crowder, 2001; Hachen, 1988; Larson, 1984). After discussing the 
three central techniques used to model competing risks, we discuss, and then 
estimate and compare, the more common latent or cause-specifi c approach 
against cumulative incidence curve (CIC) estimates. This is followed by an 
example of regression analysis with competing risks. 

It is rare to fi nd an accessible and practical introduction to multistate models, 
which are models that recognize that the subject may not only be at risk for 
more than one kind of competing event, but that this event can also occur 
more than once. These models focus on the evolution of the process and 
sequence of events and are often assumed to take the form of Markov models. 
After a brief introduction, the preparation of data to estimate these models is 
discussed, followed by estimation of Markov multistate models with stratifi ed 
and proportional hazards and an extended Markov proportional hazards 
model. 

Finally, Chapter 11 covers the more advanced method of sequence 
analysis, which models entire event histories. Just as multistate models, it is 
intuitively related to event history models, yet this technique has not been 
introduced in previous introductory textbooks. It is the analysis of categorical 
sequences of events and concerned with the order in which events occur. 
These techniques allow researchers to identify typical sequential patterns, 
establish why certain sequential patterns exist and establish the effects of a 
given sequential pattern on other outcomes (Abbott, 1995). After a brief 
review, this chapter describes how to prepare data and describe and 
visualize sequence data sets, measure similarities and distances between 
sequences using optimal matching (OM) distances, produce typologies of 
clusters using cluster analysis and engage in event sequence analysis. The 
chapter concludes with a discussion of critiques of OM and new advances 
in the fi eld. 

5555-Mills-Chap01.indd   165555-Mills-Chap01.indd   16 11/25/2010   1:13:32 PM11/25/2010   1:13:32 PM



 FUNDAMENTALS OF SURVIVAL ANALYSIS  17

The book concludes with an Appendix that describes the datasets used 
throughout this book (Appendix 1). Although the focus of all applications in 
this book use the statistical package R, Appendix 2 replicates virtually all of 
the commands in Stata (up to and including Chapter 9). Readers can refer to 
the companion website to this book for examples of estimation in other pack-
ages such as SPSS and SAS. The book also contains a glossary of the terminol-
ogy most commonly used in survival and event history models, described in a 
non-technical and introductory manner. 

Exercises
1 Focusing on your own research topic, draw a basic survival model, including an uncensored 

and right-censored case as shown in Figure 1.1. If you are already working with existing 

data and a research question, focus on that topic. If you are not yet working with specifi c 

data, think of an ideal analysis that you would like to focus on. What is the event? What are 

the starting and the ending times of the process? Do you have right-censoring or any other 

types of censoring? Will you need to deal with truncation issues? 

2 Do a brief literature review and fi nd at least two studies in your area of research that use 

survival and event history models. What is the dependent or outcome variable? How is 

censoring defi ned? Which type of statistical model do they use and why? What are the key 

independent variables? Are these variables fi xed or time-varying? Do they discuss any 

advantages or limitations of their approach? 

3 What is the difference and relationship between the survival, hazard and density function? 

4 Why would you arrive at different mean and median durations of the time until an event if 

you (a) did or (b) did not include censored observations? 

5 Name at least two differences between Cox and parametric regression models.

6 What is the difference between a fi xed and a time-varying covariate? Provide at least one 

example of each type of covariate. 

7 What is the added value of survival analysis over other regression models such as OLS or 

logistic regression? 
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