CONTENTS

PREFACE XI ABOUT THE AUTHOR XIII

CHAPTER I Research Strategies and the Control of Nuisance Variables I

	of redistrice variables	
1.1	Introduction 1	
1.2	Formulation of Plans for the Collection and Analysis of Data	2
1.3	Research Strategies 6	
1.4	Other Research Strategies 9	
1.5	Threats to Valid Inference Making 16	
1.6	Other Threats to Valid Inference Making 19	
1.7	Controlling Nuisance Variables and Minimizing	
	Threats to Valid Inference Making 21	
1.8	Ethical Treatment of Subjects 24	
1.9	Review Exercises 26	

CHAPTER 2 Experimental Designs: An Overview 30

2.2	Overview of Some Basic Experimental Designs	30
2.3	Classification of Analysis of Variance Designs	45
2.4	Selecting an Appropriate Design 48	

- 2.5 Review of Statistical Inference 49
- **2.6** Review Exercises 70

Introduction 30

2.1

CHAPTER 3 Fundamental Assumptions in Analysis of Variance 77

- **3.1** Sampling Distributions in Analysis of Variance 77
- **3.2** Partition of the Total Sum of Squares 86
- **3.3** Expectation of the Mean Squares 92
- **3.4** The *F* Statistic in Analysis of Variance 95

- **3.5** Effects of Failure to Meet Assumptions in Analysis of Variance 96
- **3.6** Transformations 103
- 3.7 Other Procedures for Dealing With Nonnormality, Unequal Variances, and Outliers 108
- **3.8** Supplement for Section 3.3 111
- **3.9** Review Exercises 117

CHAPTER 4 Completely Randomized Design 125

- **4.1** Description of the Design 125
- **4.2** Exploratory Data Analysis 127
- **4.3** Computational Example for CR-4 Design 131
- 4.4 Measures of Strength of Association and Effect Size 134
- **4.5** Power and the Determination of Sample Size 138
- **4.6** Random-Effects Model 145
- **4.7** Advantages and Disadvantages of CR-p Design 146
- **4.8** Review Exercises 146

CHAPTER 5 Multiple Comparison Tests 154

- **5.1** Introduction to Multiple Comparison Tests 154
- **5.2** Procedures for Testing p-1 a Priori Orthogonal Contrasts 170
- 5.3 Procedures for Testing p-1 Contrasts Involving a Control Group Mean 176
- **5.4** Procedures for Testing C a Priori Nonorthogonal Contrasts 179
- **5.5** Procedures for Testing All Pairwise Contrasts 187
- **5.6** Testing All Contrasts Suggested by an Inspection of the Data 198
- 5.7 Other Multiple Comparison Procedures 200
- **5.8** Comparison of Multiple Comparison Procedures 201
- **5.9** Review Exercises 201

CHAPTER 6 Trend Analysis 209

- **6.1** Introduction to Tests for Trends 209
- **6.2** Test for the Linear Trend Contrast 211
- **6.3** Tests for Higher-Order Trend Contrasts 218
- **6.4** Linear and Curvilinear Correlation 225
- **6.5** Variance Accounted for by Mean Contrasts 225
- **6.6** Review Exercises 227

CHAPTER 7 General Linear Model Approach to ANOVA 233

- 7.1 Comparison of Analysis of Variance and Multiple Regression 233
- **7.2** Operations With Vectors and Matrices 234
- 7.3 General Linear Model 244

7.4 Es	stimating the Parameters in a Regression Model 247
7.5 Re	egression Model Approach to ANOVA 253
7.6 Al	ternative Conception of the Test of $\beta_1 = \beta_2 = \cdots = \beta_{h-1} = 0$ 262
7.7 Ce	ell Means Model Approach to ANOVA 266
7.8 Su	ımmary 272
7.9 Re	eview Exercises 272
CHAPTER	R 8 Randomized Block Designs 280

	8.1	Description	of Randomized Block D	esign 28	80
--	-----	-------------	-----------------------	----------	----

- Computational Example for RB-p Design 288 8.2
- 8.3 Alternative Models for RB-p Design 296
- 8.4 Some Assumptions Underlying RB-p Design 303
- 8.5 Procedures for Testing Differences Among Means 314
- Tests for Trends 319 8.6
- 8.7 Relative Efficiency of Randomized Block Design 321
- 8.8 Cell Mean Model Approach to the RB-*p* Design 322
- 8.9 Generalized Randomized Block Design 336
- 8.10 Advantages and Disadvantages of RB-p and GRB-p Designs 343
- 8.11 Review Exercises 344

CHAPTER 9 **Completely Randomized Factorial Design With Two Treatments 357**

9.1	Introduction	to	Factorial	Designs	357
/ · I	mudaction	w	1 uctoriur	Designs	221

- Description of Completely Randomized Factorial Design 357 9.2
- 9.3 Computational Example for CRF-pq Design 360
- 9.4 Experimental Design Model for CRF-pq Design 368
- 9.5 Procedures for Testing Differences Among Means 372
- 9.6 More on the Interpretation of Interactions 373
- 9.7 Tests for Trends 386
- 9.8 Estimating Strength of Association, Effect Size, Power, and Sample Size 395
- 9.9 Rules for Deriving Expected Values of Mean Squares 400
- 9.10 Quasi F Statistics 404
- 9.11 Preliminary Tests on the Model and Pooling Procedures 406
- Analysis of Completely Randomized Factorial Designs With n = 1 409 9.12
- Cell Means Model Approach to 9.13 Completely Randomized Factorial Design 411
- 9.14 Analysis of Completely Randomized Factorial Designs With Missing Observations and Empty Cells 422
- 9.15 Advantages and Disadvantages of Factorial Designs 431
- 9.16 Review Exercises 432

CHAPTER 10 Completely Randomized Factorial Design With Three or More Treatments and Randomized Block Factorial Design 439

- **10.1** Introduction to CRF-pqr Design 439
- **10.2** Computational Example for CRF-pqr Design 441
- **10.3** Patterns Underlying Sum-of-Squares Formulas 448
- **10.4** Formulating Coefficient Matrices for the Cell Means Model 451
- 10.5 Introduction to Randomized Block Factorial Design 458
- **10.6** Computational Example for RBF-pq Design 460
- 10.7 Expected Value of Mean Squares and the Sphericity Conditions 465
- 10.8 Cell Means Model Approach to Randomized Block Factorial Design 469
- **10.9** Minimizing Time and Location Effects by Using a Randomized Block Factorial Design 484
- 10.10 Review Exercises 485

CHAPTER II Hierarchical Designs 489

- 11.1 Introduction to Hierarchical Designs 489
- 11.2 Computational Example for CRH-pq(A) Design 492
- 11.3 Experimental Design Model for CRH-pq(A) Design 496
- 11.4 Procedures for Testing Differences Among Means 498
- 11.5 Estimating Strength of Association, Effect Size, Power, and Sample Size 500
- **11.6** Description of Other Completely Randomized Hierarchical Designs 502
- 11.7 Cell Means Model for Completely Randomized Hierarchical Design 515
- 11.8 Cell Means Model for Randomized Block Hierarchical Design 521
- 11.9 Advantages and Disadvantages of Hierarchical Designs 530
- 11.10 Review Exercises 531

CHAPTER 12 Split-Plot Factorial Design: Design With Group-Treatment Confounding 541

- 12.1 Description of Split-Plot Factorial Design 541
- **12.2** Computational Example for SPF-p·q Design 544
- **12.3** Experimental Design Model for SPF-p-q Design 550
- 12.4 Some Assumptions Underlying SPF- $p \cdot q$ Design 555
- **12.5** Procedures for Testing Differences Among Means 560
- **12.6** Procedures for Testing Hypotheses About Simple Main Effects and Treatment-Contrast Interactions 566
- 12.7 Relative Efficiency of Split-Plot Factorial Design 569
- **12.8** Computational Procedures for SPF-pr-q Design 570
- **12.9** Computational Procedures for SPF-*prt*·*q* Design 579
- **12.10** Computational Procedures for SPF-*p*·*qr* Design 583
- **12.11** Computational Procedures for SPF-*p*·*qrt* Design 590
- **12.12** Computational Procedures for SPF-*pr*·*qt* Design 595

12.13 Evaluation of Sequence Effects 595
12.14 Cell Means Model Approach to SPF-p·q Design 597
12.15 Advantages and Disadvantages of Split-Plot Factorial Designs 613
12.16 Review Exercises 613

CHAPTER 13 Analysis of Covariance 621

- **13.1** Introduction to Analysis of Covariance 621
- **13.2** Rationale Underlying Covariate Adjustment 625
- **13.3** Layout and Computational Procedures for CRAC-p Design 633
- **13.4** Some Assumptions Underlying CRAC-*p* Design 637
- 13.5 Procedures for Testing Differences Among Means in CRAC-p Design 640
- **13.6** Analysis With Two Covariates 642
- 13.7 Analysis of Covariance for Randomized Block Design 646
- **13.8** Analysis of Covariance for Factorial Designs 648
- 13.9 Covariance Versus Stratification 654
- **13.10** Regression Model Approach to Analysis of Covariance 656
- **13.11** Cell Means Model Approach to Analysis of Covariance 660
- **13.12** Advantages and Disadvantages of Analysis of Covariance 663
- **13.13** Review Exercises 664

CHAPTER 14 Latin Square and Related Designs 671

- **14.1** Description of Latin Square Design 671
- **14.2** Construction and Randomization of Latin Squares 672
- **14.3** Computational Example for Latin Square Design 675
- **14.4** Computational Procedures for n = 1 681
- 14.5 Experimental Design Model for Latin Square Design 684
- **14.6** Procedures for Testing Differences Among Means 687
- **14.7** Relative Efficiency of Latin Square Design With n = 1 687
- **14.8** Analysis of Covariance for Latin Square Design 690
- **14.9** Cell Means Model Approach to Latin Square Design 692
- **14.10** Graeco-Latin Square Design 700
- **14.11** Hyper-Graeco-Latin Square Designs 702
- **14.12** Crossover Design 703
- **14.13** Advantages and Disadvantages of Designs Based on a Latin Square 710
- **14.14** Review Exercises 711

CHAPTER 15 Confounded Factorial Designs: Designs With Group-Interaction Confounding 719

- **15.1** Group-Interaction Confounding 719
- **15.2** Use of Modular Arithmetic in Constructing Confounded Designs 722
- **15.3** Computational Procedures for RBCF-2² Design 726

15.4	Experimental Design Model for RBCF-2 ² Design 729
15.5	Layout and Analysis for RBCF-2 ³ Design 732
15.6	Complete Versus Partial Confounding 739
15.7	Computational Procedures for RBPF-2 ³ Design 740
15.8	Computational Procedures for RBCF-3 ² and RBPF-3 ² Designs 749
15.9	Analysis Procedures for Higher-Order Confounded Designs 760
15.10	Alternative Notation and Computational Systems 772
15.11	Computational Procedures for RBPF-32 ² Design 775
15.12	Cell Means Model Approach to RBCF-p ^k Design 785
15.13	Group-Interaction Confounding by Means of a Latin Square 787
15.14	Advantages and Disadvantages of Confounding in Factorial Designs 793
15.15	Review Exercises 796
CHAPT	TER 16 Fractional Factorial Designs: Designs With Treatment-
	Interaction Confounding 803
16.1	Introduction to Fractional Factorial Designs 803
16.2	General Procedures for Constructing Completely
	Randomized Fractional Factorial Designs 805
16.3	Computational Procedures for CRFF-2 ⁴⁻¹ Design 810
16.4	Computational Procedures for CRFF-3 ⁴⁻¹ Design 814
16.5	Cell Means Model for CRFF- p^{k-i} Design 820
16.6	General Procedures for Constructing RBFF- p^{k-i} Designs 823
16.7	Other Types of CRFF and RBFF Designs 824
16.8	Introduction to Latin Square Fractional Factorial Designs 825
16.9	Computational Procedures for LSFF-p-p ² Design 828
	Computational Procedures for LSFF- p^3t Design 832
	Computational Procedures for LSFF- p^4u Design 838
	Computational Procedures for GLSFF-p ³ Design 840
	Advantages and Disadvantages of Fractional Factorial Designs 841
16.14	Review Exercises 842
APPEND	Rules of Summation 847
APPEND	•
APPEND	Orthogonal Coefficients for Unequal Intervals and Unequal ns 858
APPEND	X D Matrix Algebra 863
APPEND	
APPEND	Answers to Starred Exercises 952
	Answers to Starred Exercises 952