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5
Subjective Probability

and Utility

Hank was feeling a little introspective. He, Betty, and Ralph had spent
more time than any of them could afford trying to choose the best appli-

cants from the pile. He had tried to behave as rationally as possible, but the
information on the applications always left him in doubt—he never had a feel-
ing that he was as well informed as he should be.

A while back he had told Betty that selecting new employees was a crap
shoot. Apparently she thought he meant it was sheer chance. What he really
meant was that there was a lot of uncertainty involved—he was convinced
that uncertainty was a big part of the whole process for him.

On the other hand, uncertainty was not the only part of the process. It also
was true that he tried to anticipate the outcomes that might result from hiring
a particular applicant. It wasn’t all that difficult. He merely tried to imagine
the applicant in various situations that might arise and how he or she would
handle them. Of course, he had very strong views about what was the right
thing to do in those hypothetical problem situations. If it seemed like applicants
would do what he preferred them to do, he liked them. lf not, he didn’t.

❖   ❖   ❖

�
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In decision research, riskiness, doubt, and uncertainty are captured
by probability and value is captured by utility. Recall from Chapter 4
that two (EV and EU) of the four variations on the normative theory of
choice use objective probability to represent the decision maker’s uncer-
tainty about whether the various outcomes actually will be attained if
the option is chosen, and two (SEV and SEU) use subjective probability
to represent this uncertainty. Similarly, two (EV and SEV) use value to
represent outcomes’ worth and two (EU and SEU) use utility.

❖ THE NATURE OF PROBABILITY

All four variations on the normative theory of choice assume that the
probabilities have the mathematical properties required by probability
theory—that is, that they are “real” probabilities and not just any old
decimal numbers. This is equivalent to saying that uncertainty is
appropriately represented as a probability.

While this assumption is not difficult to accept for objective proba-
bilities, it seems rather shaky for subjective probabilities: Who knows
where they come from? On the other hand, if subjective probabilities
are not “real” probabilities, the SEV and SEU models lose their claims
to normative (prescriptive) status. Because of this, a good deal of
research in the 1960s through the early 1980s centered on whether
those claims were valid by examining how well subjective probability
conforms to probability theory. To understand this research we must
briefly review the rudiments of probability theory.

A Brief Review of Probability

Probability theory is an abstract, axiomatic mathematical system
of rules for assigning numbers to sets of hypothetical elements
(Kolmogorov, 1950). As such, it has nothing to say about events in the
real world—that comes later when the user of the theory ties its con-
cepts to specific events of interest.

Mathematical probability theory begins with a set of hypothetical
elements, consisting of individual elements (A, B, etc.), unions of ele-
ments (A ∪ B), intersects of elements (A ∩ B), and complements of ele-
ments (A − B).1 A number can be assigned to each of these elements. The
number assigned to an empty set of elements is .00 (which defines the
lower limit of the range of acceptable numbers). The number assigned
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to a subset of elements is equal to the sum of the numbers assigned to
each of its constituent elements (which defines additivity). The number
assigned to the set of all elements is 1.00 (which defines the upper limit
of the range of acceptable numbers). Thus the numbers assigned to the
elements in question must lie between .00 and 1.00, and the system is
additive.

Assignment of numbers to individual elements occurs when we
attempt to use probability theory for real world applications. To do this
we use one of three definitions.

The first definition is necessary probability, exemplified by the prob-
ability of a three being observed on a roll of a single die being equal to
1/6 = .17. That is, because a die (one of a pair of dice) has six sides, only
one of which has three spots on it, and because we assume the die is
unbiased and the roll is fair, the probability of .17 is necessary given the
physical structure of the die. If we were speaking of a deck of cards, the
probability of drawing a three would be 4/52 = .08, because there are
four cards with threes on them in the deck of 52 cards.

A second definition is frequentistic probability, exemplified by actu-
arial tables used in the insurance industry. For example, by knowing the
past relative frequency of thefts of the kind of car you want to insure,
your insurance company can judge the probability that your car will be
stolen—“The probability (past relative frequency) of theft of this kind of
car is X.” Then they can set the premium high enough to make it worth
taking the risk of insuring you. Similarly, when a particular weather
pattern is observed, the weather service can use the past relative fre-
quency of rain under these conditions as the probability that it will rain
this time—“The probability (past relative frequency) of rain under these
conditions is X.” Note the conceptual leap in going from the relative fre-
quencies of past events to the probabilities of future events. It depends
heavily on the assumption that however the process operated in the
past, it will continue to operate in the same way in the future—thieves
will continue to have the same taste in cars and climatic systems will
continue to operate as they have before. Moreover, it assumes that the
relative frequency for a collective of past events is applicable to a single
future event (theft of your particular car or occurrence of rain today).

The third definition is subjective (personal) probability, exemplified
by my statement that “I think the probability is about .75 that Senator
Smog will run for President.” This is a statement about my certainty
(uncertainty) about future events. It is not at all clear where these
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probabilities come from, but they are quite distinct from necessary and
frequentistic probability. There is no necessity for Senator Smog to run
for President (except perhaps in his own mind), and it is not at all clear
how relative frequency would apply. If he had never run before, the
relative frequency would be undefined (because you would have to
divide by zero), so does that mean that there is no way of assessing a
probability that he will run in the future? If he ran in the last election,
would it mean the probability of his running this time is 1.00? But even
then, he only ran one time out of the something like 50 U.S. presiden-
tial elections, so does that make the probability that he will run again
1/50 = .02? Neither necessary nor frequentistic probability make any
sense in this kind of situation.

Probability theory is deceptive in its simplicity. Exploring the logi-
cal implications of those few rules for assigning numbers to elements
has permitted mathematicians to derive the useful tools of modern sta-
tistics. One aspect of these logical implications, conditional probability,
has been of particular interest in behavioral research on probability
judgment. To understand conditional probability, let us begin with an
intuitive description, then move to a formal statement, and then explore
its importance to research on subjective probability.

Conditionality and Bayes’ Theorem

When the probability of one event is modified by the fact that some
other event already has occurred, the modified probability is called a
conditional probability. Thus Hank may think that the probability that a
new job seeker will be successful is .50, if only because he does not know
anything to sway his opinion one way or another. Then he reads the
answer to the first question on the person’s application. The information
in that answer modifies Hanks uncertainty—making him less uncertain
about success or more uncertain. The new probability of success is cor-
respondingly higher or lower than the beginning probability—let us say
that it goes up to .65. Then Hank reads the second answer and modi-
fies the .65 either upward or downward, and so on until he has read
the answers to all the questions on the application or until he becomes
sufficiently certain about success to hire the person or sufficiently
uncertain about success to turn the person down. That is, Hank’s sub-
jective probability (uncertainty) is conditional upon the answers in the
application.
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Formally, conditional probability is an algebraic consequence of
the axioms we described above. Let us consider two events that, for
reasons that will be clear in a moment, we will call H and D rather than
A and B. The numbers (probabilities) assigned to elements H and D
will be written as P(H) and P(D). Conditional probability, written
P(H|D), is defined in terms of the intersect of H and D, written
P(H ∩ D) as well as P(H) and P(D). Thus the conditional probability of
H given that D has occurred is defined as P(H|D) = P(H ∩ D) ÷ P(D),
which is read as “the conditional probability of H given D is equal to
the probability of the intersection of H and D divided by the probabil-
ity of D.” Conversely, the conditional probability of D given that H has
occurred is defined as P(D|H) = P(H ∩ D) ÷ P(H), which is read as “the
conditional probability of D given H is equal to the probability of the
intersection of H and D divided by the probability of H.” Multiplying
both sides of the two equations by P(D) or P(H), respectively, and rear-
ranging terms, yields:

P(H ∩ D) = P(H|D) P(D), and

P(H ∩ D) = P(D|H) P(H)

Because the left sides of both of these equations are the same, the
right sides must be equal to one another:

P(H|D) P(D) = P(D|H) P(H)

and, dividing both sides by P(D),

P(D|H) P(H)

P(D)

Equation 3 is called Bayes’ Theorem, after the Reverend Thomas
Bayes (1958) who first recognized its primary implication. To make that
implication clear, let us say that H stands for hypothesis and D stands for
data. Starting on the right, we begin with the probability that a hypoth-
esis is true before we procure data about it, P(H), called the prior proba-
bility. Then we gather some data, D, and compute the probability that
these data would have been obtained if the hypothesis were indeed
true, P(D|H), and divide it by the probability that these data would

Subjective Probability and Utility      67

(eq. 3)P(H|D) =

05-Beach.qxd  11/22/2004  9:54 AM  Page 67



have been obtained whether or not this hypothesis were true. This
fraction is called the likelihood. Then we multiply the prior probability
by the likelihood to arrive at P(H|D), the posterior probability that hypoth-
esis H is true in light of the observed data, D.

Recalling Hank and the new job seeker, Hank’s prior probability
of .50 for the success was revised to .65 in light of the job seeker’s answer
to the first question on the application, indicating that the answer had
a large impact on Hank’s opinion—called the diagnosticity of the data,
which is reflected in the likelihood. In effect, Hank had to ask himself,
“How probable is it that this applicant would have given this partic-
ular answer if he were going to succeed, relative to the probability he
would have given it whether or not he were going to succeed?”

❖ SUBJECTIVE PROBABILITY, BAYES’
THEOREM, AND DECISION RESEARCH

Because the normative legitimacy of the SEV and SEU models rest on
the legitimacy of subjective probability, for 20 years or more the agenda
for many behavioral decision researchers was set by the question of
how closely subjective probability conformed to probability theory.
This work addressed three issues: measurement of subjective probabil-
ity, subjective probabilities for simple events, and the revision of sub-
jective probabilities in light of data.

Measurement Issues

Before you can do reasonable research on how closely subjective
probability conforms to probability theory, you have to decide how to
measure subjective probability. Clearly, if different measurement meth-
ods yield different results, it is going to be difficult to evaluate confor-
mity. This is not the place for a tutorial on methodology; suffice it to say
that many methods have been tried (direct assessment, psychophysical
measurement, inferences from bets, confidence ratings, and verbal
statements such as “sure thing” or “toss up”). Early on, comparisons
were made among these (e.g., Beach, 1974; Beach & Phillips, 1967; Beach
& Wise, 1969; Galanter, 1962; Wise, 1970). Of course, the measurement
technique one uses is going to be dictated in part by the demands of the
research setting and task, but based on the research, and judging from
the frequency with which researchers use it, direct assessment appears
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about as good as any other method (von Winterfeldt & Edwards, 1986).
That is, simply asking people to give a number to represent their opin-
ion about the probability of an event appears to produce data that are
not markedly different from data produced by the other methods, and
the procedure is simpler than for most other methods. The least attrac-
tive method involves verbal statements—individuals may be consis-
tent in what they mean when they use statements like “sure thing,”
“very likely,” “unlikely,” but there is very little agreement across indi-
viduals about the level of probability represented by the statements
(Lichtenstein & Newman, 1967). The irony of this is that many experi-
ments, both in behavioral decision research and in other areas, rely on
rating scales anchored with verbal statements of this kind.

Direct assessment can be done in two ways. One way is to ask
people to state the probability. The other way is to ask them to state the
relative frequency (or proportion) with which an event might be
expected to occur (“The probability of a given person having character-
istic X is .10” versus “Ten people out of 100 can be expected to have
characteristic X” or “Ten percent of these people have characteristic X”).
For a long time it was assumed that all direct assessments were equiv-
alent, but as we will see later, this may not be true, and what one con-
cludes about the nature of subjective probability depends upon which
kind of assessment, stated probability, or relative frequency (propor-
tion) one asks decision makers for.

Accuracy and Coherence for Simple Events

One way of evaluating the conformity of subjective probability to
probability theory is to study areas in which it is possible to calculate
objective probabilities (necessary or frequentistic) and then compare
decision makers’ assessments with them. This is called accuracy. It
frequently is found that people tend to give assessments that are a bit
too high for objectively low probability events and a bit too low for
objectively high probabilities (e.g., Preston & Baratta, 1948). This gen-
eralization ignores many exceptions, but as a summary it is roughly
correct.

Sometimes participants’ assessments bear almost no discernible
relationship to objective probabilities, but that does not mean that they
do not conform to probability theory. It is quite possible for a person’s
probabilities to be coherent (i.e., interrelated in the ways demanded by
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probability theory) even if they are inaccurate—it merely means that
the person is not well informed about the necessary probabilities or the
relative frequencies for the domain in question. Ignorance is not the
same as incoherence.

Coherence among subjective probabilities that are inaccurate, or
for which there are no objective counterparts, can be measured by
having participants assess the probabilities for each of the events and
each of the compounds (unions, intercepts, or conditionals) in a set.
Then the experimenter analyzes the degree to which the assessments
“fit together” in ways dictated by probability theory.

For example, Peterson, Ulehla, Miller, Bourne, and Stilson (1965)
presented participants with a list of personality traits and for each
asked a question of the form, “How many people in a hundred are
witty, brave, and so on,” for P(A), P(B), and so on. Then they asked for
conditional probabilities with questions of the form, “One hundred
persons are known to be brave, how many would you expect to be
witty?” for P(A|B) and, “One hundred persons are known to be witty,
how many would you expect to be brave?” for P(B|A). Recall from our
previous definition of conditionality that P(A|B) P(B) = P(B|A) P(A).
Therefore the product of the participants’ assessments of P(A|B) and
their assessments of P(B) ought to be equal to the product of their
assessments of P(B|A) and their assessments of P(A). To test this,
Peterson and his colleagues merely correlated the two products across
participants; the mean correlation was .67. This may not seem very
high, but the experimenters recognized that asking people to do a
strange task like this is unlikely to produce very stable assessments, so
they measured the reliability of the assessments; the mean reliability
correlation was .72. Because response unreliability (.72) places an
upper limit on coherence, the correlation of .67 for the latter is quite
encouraging. Even higher coherence for assessments of familiar, con-
crete events was obtained in other studies. For example, Barclay and
Beach (1972) obtained correlations in the high .70s, .80s, and .90s both
for group data and for individual participants.

Accuracy and Coherence in Probability Revision

Recall that Bayes’ Theorem follows directly from the definition of
conditional probability, and it can be interpreted as a mechanism for
revising probabilities in light of data. As a result, it affords a way of
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examining the accuracy and coherence of subjective probabilities in a
more dynamic situation than for single events. Edwards and his col-
leagues were the first to do “Bayesian” studies of accuracy and coher-
ence. They used variations on what was called “the bookbag-and-poker
chips task.” This consisted of showing participants two or more cloth
bags (bookbags were the forerunners of backpacks as the conveyance of
choice for students’ textbooks). Each bag contained a mixture of blue
and red poker chips. The proportion of blue chips differed from one bag
to another, and participants were told the proportions for each bag.

Out of the participants’ view, the experimenter randomly selected
one of the bags, drew a sample of chips from it and told participants
the proportion of blue chips in the sample. Then, for each of the bags
of chips, the participants assessed the probability that that bag was the
one that had been selected.

Because the bag to be sampled was randomly selected, the number
of bags determined the prior probability for each being the selected bag:
If there were two bags the prior probability for each was .50, if there were
three the prior probability for each was .33, and so on. The proportion of
blue chips in the bag determined the likelihood; if a bag’s proportion
was high and the sample had lots of blue chips in it, the likelihood was
high that the bag was the one that had been selected—if the proportion
was low but the sample had lots of blue chips in it, the likelihood was
low that the bag had been selected. Thus the posterior probability (each
bag’s probability of having been selected in light of the composition of
the sample of chips) was jointly determined by the prior probability and
the likelihood, and this should have been reflected in the probability
assessments given by the participants for each of the bags.

There were two major findings (Phillips & Edwards, 1966). First,
participants tended to treat the prior probabilities of the bags as if they
were more equal than they actually were. Second, participants tended
to be less influenced by the data (the blue chips in the sample) than
they should have been. As a result, their posterior probability assess-
ments were conservative relative to the posterior probabilities that a
statistician would arrive at using Bayes’ Theorem. Close examination
of the data showed that participants’ posterior probabilities after the
first data were moderately accurate, but that successive draws from the
same bag (remember that the posterior after one observation of data
becomes the prior for the next observation of data) led to increasingly
severe conservatism (Peterson, Schneider, & Miller, 1965).
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Conservatism was robust in that it was obtained in many
replications of and variations upon the bookbag-and-poker chips
experiments, and in even more realistic tasks of comparable logical
structure. Although training sometimes reduced conservatism in a
specific task (e.g., Christensen-Szalanski & Beach, 1982; Peterson,
DuCharme, & Edwards, 1968; Wheeler & Beach, 1968), the general con-
clusion remains that, compared to Bayes’ Theorem, decision makers’
revised subjective probabilities are neither accurate nor coherent.

❖ REEXAMINATION OF SUBJECTIVE PROBABILITY

By the late 1980s, it was generally agreed that probability theory does
not adequately describe subjective probability—or, put another way,
subjective probability does not conform to probability theory. However,
most investigators persisted in their belief that the four variants of
the expected value model were descriptive of choice, and subjective
probability is a component of two of those variants. One might think,
therefore, that these researchers would move from testing the fit with
probability theory to investigating the nature of subjective probability
itself, in the hope of salvaging the SEV and SEU models. This is not
what happened. For the most part, interest in subjective probability sim-
ply evaporated. It disappeared from the agendas of conferences, both in
the United States and abroad. It was as though everyone simply was
bored with the topic and anxious to move on to something else. And
then a new voice, with new data, was heard calling for a reexamination
of our conclusions about subjective probability judgments.

The new voice belonged to Gerd Gigerenzer. In the late 1980s he
and his colleagues undertook a reexamination of the literature on
subjective probability. Their conclusion was that it is necessary to dif-
ferentiate between decision makers’ assessments of relative frequency,
which implies long-run probabilities of events, and assessments of the
probabilities of unique events (Gigerenzer, 1991).

It has long been known that people are very good at assessing
proportions (Peterson & Beach, 1967), and Gigerenzer’s studies show that
when decision makers make assessments in the form of relative frequen-
cies or proportions, many of the problems with subjective probability are
greatly reduced or disappear. However, when asked for probabilities for
unique events, the problems are strongly in evidence. Gigerenzer’s
conclusion is that frequentistic judgments made by people who are
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reasonably familiar with the domain of interest are apt to conform
reasonably well to the demands of probability theory. Probability
assessments for unique events are not very apt to conform to probabil-
ity theory. This conclusion makes sense in light of many statisticians’
strong opinions that applied probability theory only addresses long-
run relative frequencies, and has no meaning for single events (e.g.,
von Mises, 1957).

In fact, it has been clear for quite a long time that it is necessary to
differentiate between judgments for long-range and for unique events
(Lopes, 1981). Beach, Barnes, and Christensen-Szalanski (1986) pro-
posed that decision makers use different judgment strategies for differ-
ent judgment tasks encountered in different judgment environments, and
that the final judgment is contingent upon all three. The strategies
fall into two categories, aleatory and epistemic. (An aleator is a dice
player, hence aleatory refers to necessary and frequentistic probability.
Epistemology means knowledge, hence epistemic refers to the use of
knowledge to derive subjective probabilities.) The general idea is that
the decision maker selects one or the other strategy depending upon
how he or she frames the judgment task (whether chance appears to be
an important component, whether repeated versus unique events are
involved, whether statistical or causal logic is the norm for the domain
in question). He or she then applies the selected strategy with more or
less rigor depending upon the demands of the judgment environment
(the payoff for accuracy, whether the judgment can be revised later, the
degree to which the decision maker’s credibility is on the line, the qual-
ity of the information with which he or she must work).

More recently, Gigerenzer, Hoffrage, and Kleinbolting (1991) pro-
posed a process model for both aleatory and epistemic judgment based
on work by Egon Brunswik. Thus things have come full circle; we began
with Brunswik in Chapter 3 and we seem to have come back to Brunswik.

❖ THE NATURE OF UTILITY

We now turn to the fit between subjective worth and utility theory.
Unfortunately, the research on subjective worth does not provide as
clear a test of its fit with theory as the research on subjective probabil-
ity provides; the evidence is more indirect.

As we have seen, the methods for comparing decisions with nor-
mative prescriptions are inherent in the nature of the normative theory
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itself. Because prescriptive theory views choices as gambles, and the
usual prescription is to maximize expectation, it is widely accepted that
studying choice means studying how people deal with gambles. As in
Bernoulli’s example in Chapter 4, the decision about sending a ship to
the New World, this can consist of deciding to take or not to take a
gamble (send the ship or not), or deciding on a fair price for a gamble
(insurance). Or, as in the example of the lumber executive and Mount
Saint Helens, it can consist of choosing the best from among two (or
more) bets. In the laboratory, participants might be presented with a
pair of gambles for which the expected value of gamble M is greater
than that of gamble N, in which case they are predicted to choose M. In
successive presentations, the payoffs can be systematically changed so
that at some point the expected value for gamble M becomes less than
that of gamble N. Of interest is the point at which decision makers
switch from preferring gamble M to preferring gamble N, from which,
with a little algebra, one can infer the utilities underlying their choice
of one bet over the other.

❖ UTILITY THEORY

Just as formal probability theory is a way of assigning numbers to
events, and not a theory about decision makers’ uncertainty, utility
theory is another way of assigning numbers to events and not a theory
about what is valuable to decision makers. In application, however,
utility theory is used to represent preferences among potential (or
obtained) outcomes of a decision, and the question is how usefully it
does its job.

As Yates (1990) has pointed out, there are two ways of relating pref-
erence to the “objective” value of outcomes. The first is called a value
function, which represents the increase in the strength of the decision
maker’s preferences as a function of the outcomes’ objective value. It is
as if there were a scale in the decision maker’s head on which the vari-
ous outcomes are placed, such that the ordering of their locations are
consistent (higher scale values mean higher preference), and the dis-
tances between the ordered outcomes on the scale represent meaningful
differences in preference for the outcomes (the scale is ordinal). This first
kind of scale is the most common view of utility—the relative preference
of various outcomes.
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The second way of relating preference to the objective value of
outcomes is called a utility function. Here the assumption is that prefer-
ence reflects both the value of the outcome to the decision maker and
his or her feelings about risk (i.e., uncertainty about whether the out-
come will or will not occur). Using conventional expected value logic,
this means that preference is for gambles rather than merely for the
outcomes. Hence it is as if there were a scale in the decision maker’s
head on which the various gambles are placed such that the ordering
of their locations is consistent and the distances between them are
meaningful. This second kind of scale is the one used in most discus-
sions of utility in decision theory and research.

There are numerous versions of utility theory (von Winterfeldt &
Edwards, 1986), but they all make three fundamental assumptions:

Connectivity. They assume that the decision maker can judge his or
her preferences (or indifference) when faced with two gambles.

Transitivity. They assume that preferences among gambles are con-
sistent such that if gamble M is preferred to gamble N, and gamble
N is preferred to gamble O, gamble M is preferred to gamble O.

Summation. They assume that the preference for a gamble is greater
than the preferences for any of its component parts. For example,
the preference for a gamble that offers a payoff of $50 and a movie
ticket must be greater than the preference for the $50 alone or for
the movie ticket alone. That is, the preference for a compound out-
come of a gamble is a combination (usually the sum) of the prefer-
ences for the component outcomes.

If these and some ancillary enabling assumptions are met, it can be
formally shown that gambles can be arrayed according to preference
on an underlying scale of utility.

Because utility theory is an abstract method of attaching numbers
to events, it is not altogether meaningful to talk of testing it. However,
it is meaningful to talk of testing the degree to which decision makers’
preferences conform to its assumptions and implications, and it is here
that the behavioral decision research has focused, but—to repeat—the
tests, which are far fewer than one might expect, have been less direct
than in similar research on probability theory.
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Research Results

• If the connectivity assumption holds, decision makers’ prefer-
ences ought to be robust because connectivity means that they know
what they prefer. Instead, it is found that preferences change depend-
ing upon task characteristics, measurement methods, context, and the
probabilities with which they are associated (e.g., Fischhoff, Slovic, &
Lichtenstein, 1980; Fryback, Goodman, & Edwards, 1973; Schoemaker,
1980; Slovic & Lichtenstein, 1983).

• If the transitivity assumption holds, the order of decision makers’
preferences should be reliable. Research shows that this frequently is not
the case and that intransitivity is easily induced (e.g., Tversky, 1969).

• If the summation assumption holds, preferences for compound
gambles ought to be a function of the sum of their component gambles.
Again, research finds that this is not always the case (e.g., Shanteau &
Anderson, 1969).

To convey the flavor of the research that leads to these conclusions,
consider a study by Tversky (1967). Using inmates in a federal prison as
participants, Tversky asked each inmate to state the price he would ask
to sell his right to play a particular gamble. Everyone in the room was
given the same gamble, and the idea was that each inmate should ask a
price lower than anyone else’s so they, and not someone else, could sell
the gamble to the experimenter. (Because the experiment was set up so
that the inmates might not get the opportunity to play their gamble, in
which case it became worthless, it was better to sell it and make at least
the sale price.) On the other hand, they should not sell the gamble for
less than the worth of the gamble (i.e., for less than its expected value).

The gamble’s probabilities were presented as a pie diagram with a
spinner attached to the center. If the spinner landed on one section of
the pie, the inmate who got to play would win some stated amount,
and if it landed on the other section he would win nothing. Thus the
expected value of the bet was the product of the probability of winning,
from the pie diagram, and the inmate’s value for the payoff. The
payoffs were in cigarettes and candy, which were used by inmates as
currency within the prison. There were simple gambles and compound
gambles—the latter had compounds of the payoffs that had been
offered for some of the simple gambles and were designed to test the
summation assumption described above.
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The presumption was that the competition to sell the bet would
drive down the inmates’ selling prices until the lowest price asked
would be equal to the subjective expected utility of the gamble. That is,
$s = (P × V), where $s is the lowest price any inmate in the group asked
for the bet (in cigarettes or candy), P is the probability of winning (from
the pie diagram), and V is the inmate’s private value for winning what-
ever has been offered as the payoff. Because Tversky knew the proba-
bility of winning and the price asked by the inmate who under-priced
everyone else, he could figure out what that inmate’s value must have
been for the payoff:

$s = P × V,

V = $s/P,

which is to say, the price divided by the probability reveals the inmate’s
value for the payoff.

To state the complex results rather simply, Tversky found that
inmates’ asking prices suggested that they in fact evaluated the gam-
bles in terms of the product of the probability and the value of the
payoff, and that value appeared to be additive, both of which are con-
gruent with utility theory. However, the inmates consistently set selling
prices higher than the expected value of the gambles. In any strict
sense, utility theory does not allow for what appears to be the inmates’
desire for a profit margin or, interpreted another way, their value for
retaining the gamble (a value for gambling). On the other hand,
common sense finds both of these explanations reasonable.

Utility theory generally assumes that the value for a payoff must be
the same whether it is a “sure thing” or whether it is part of a gamble.
To test this, in one condition of the experiment Tversky’s inmates sim-
ply set a price on each of the payoffs. Later, when these same payoffs
were then included in gambles, the inferred value for them (using the
equation) was not the same as the simple prices. This result contradicts
the utility theory assumption and implies that value is not independent
of risk, which means that the simple expected value equation is not an
adequate description of the determinants of participants’ utility for the
gamble.

This is but one of a number of studies that obtain data suggesting
that utility theory is not a very good description of human preferences,
even in well-controlled experimental conditions.
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❖ SUMMARY

We have been examining the two components of the expected utility
model: subjective probability and utility. We began with the mathemat-
ical formulation of probability and then moved on to examine Bayes’
Theorem, which is a consequence of the definition of conditionality.
Behavioral studies comparing subjective probability with the demands
of formal probability theory show that some similarity often is found
for simple events but that there is consistent error for more complex
events and for the revision of subjective probability.

After a hiatus, research on subjective probability returned in a new
line of work by Gigerenzer (1991) that claims to refute many of the neg-
ative conclusions previously reached. It appears that both accuracy and
consistency may be linked to decision makers’ use of different strategies
for assessing subjective probabilities, depending on the demands of the
problem and the environment in which the problem is encountered.

Finally, we examined some of the basic assumptions of utility
theory and described the general results of attempts to evaluate its ade-
quacy as a description of human preferences. In fact, it does not come
off too well. All in all, what with the unsettled question about whether
probability theory adequately describes human uncertainty, the failure
of utility theory makes acceptance of the expected value approach to
choice highly tenuous.

❖ NOTE

1. Recall that the union of elements is both A and B, that the intersect
is either A or B, and the complement is what remains when B is subtracted
from A (or vice versa).
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