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Nonlinear Methods
for the Social Sciences

Stephen J. Guastello

T heories concerning attractors, bifurcations,
chaos, fractals, and self-organization need

to be tested eventually. Although the literature
on nonlinear methods is vast, most of it has
been written for applications that do not share
the concerns or intellectual traditions of the
social sciences, especially when short time series
are concerned. This chapter is thus written for
researchers who have a basic understanding
of dynamical concepts and who want to test
hypotheses concerning them in social psycho-
logical research, particularly for problems in
group dynamics.

Fortunately, knowledge has evolved to a point
where some important connections between
fractal dimensions, Lyapunov exponents, chaos
and other dynamics, Shannon information and
entropy, catastrophes, and self-organization are
now understood. These relationships can be
exploited to produce a concise set of analytic
tools that can be used with available software and

with sufficient flexibility. Sprott (2003), Heath
(2000), and Puu (2000), nonetheless serve as
valuable supplementary resources on dynamics
and time series analysis.

The following section of this chapter
describes commonly used graphic techniques
for nonlinear analysis. Next, I present some
important relationships among dynamical con-
structs that give rise to useful statistical analysis.
The statistical theory encompasses hypothesis
construction, measurement theory, and two
series of structural models that have wide flexi-
bility; they involve continuously valued vari-
ables. The last section of this chapter describes
analyses for nominally coded system states that
are also changing in a time series.

Because the concentration of this chapter is
on the analysis of real data, simulation tech-
niques are not included here. Conceptual issues
and relevant techniques for nonlinear analysis
can be found in Elliott and Kiel (in press),
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Epstein and Axtell (1996), and Wolfram (2002).
Chapter 16 of this volume (Nielsen, Sundstrom,
& Halfhill, 2005) is devoted to simulation tech-
niques for group research.

Graphic Techniques

Phase Portraits

The graphic of the control points’ paths in
the neighborhood of one or more attractors is
called its phase portrait. Phase portraits can be
drawn by plotting a behavior value at time t on
the Y-axis against the value of the same behavior
at time t – 1 on the X-axis. For more complex
dynamics, the change in behavior from time
t – 1 to t can be plotted on the Y-axis against the
value of behavior differences at a previous pair
of time frames (t – 2, t – 1) on the X-axis. A
phase portrait of a fixed-point attractor would
show trajectories moving into the center. A limit
cycle would be round or elliptic.

Phase portraits need not be restricted to the
one-variable case. One might then plot Yt versus
Xt, or ∆Y versus ∆X. Often, however, researchers
have a time series that should be projected
into more than two dimensions, but exactly how
many of these embedding dimensions are appro-
priate is unknown. Some work in progress uses
methods based on principal components analy-
sis for finding the most appropriate embedding
dimension (Abarbanel, 1996; Abraham, 1997;
Guastello & Bock, 2001). Until then, however,
a convenient theorem to rely on states that all
information about the dimensional complexity
of a time series is contained in the time series
itself. Information would include the embed-
ding dimension and lag structures (Packard,
Crutchfield, Farmer, & Shaw, 1980).

In the early days of applied chaos theory,
some attempts were made to interpret dynamics
of a real system (as opposed to a mathematically
defined system) directly from an inspection
of the phase portraits themselves (Kiel, 1994;
Priesmeyer, 1992). The technique was quietly

abandoned when it became clear that many of
the time series were far too short, as in the case
of Priesmeyer’s (1992) examples, to determine
whether chaos or anything else was taking
place. In the case of sufficiently longer time
series (e.g., those in Kiel, 1994), some examples
showed visual differences that could be traced to
real events, but most did not. The pretty attrac-
tors such as the one shown in Figure 14.1 were
seldom obtained; the phase portraits tended
to look like junk. Again, noise and embedding
dimension were the top two reasons for this
repeated outcome. Currently, the thinking is
that analytic techniques should be applied first,
and phase portraits should be drawn and com-
pared afterward, if desired. This is similar to
the thinking in conventional statistical analysis,
where graphs do not substitute for statistical
analysis; they just amplify the findings.

PoincarJ Sections

A PoincarJ section is a transverse slice of an
attractor. It allows the viewer to inspect the
interior of an attractor that is projected in three
dimensions. A PoincarJ section of the Henon-
Heiles attractor appears in Figure 14.1. Once
again, the interpretive meaning of a PoincarJ
section has not evolved for the same reasons
associated with phase portraits.

Recurrence Plots

A recurrence plot is a graphic that shows the
amount of patterning in a numeric time series
for one variable. An example appears in Figure
14.2. The matrix of points is square, with t, the
number of observations over time, occupying
the two axes of the graph. The variate X is shown
on the diagonal. Then, for each possible value of
X, a point is plotted showing first and second
time that particular value of X appears. If the
same value appears again, another point is plot-
ted showing the second and third time a partic-
ular value of X appears, and so on.
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The amount of patterning in a finished
recurrence plot reflects the correlation dimen-
sion inherent in the time series. A correlation
dimension is the degree of patterning in the
data and is not directly related to the Pearson
product-moment correlation or related statis-
tics. The calculation and use of the correlation
dimension are discussed in the next section of
this chapter. For present purposes, we continue
by saying that the “same” value of X is actually
an arbitrarily small difference in value. Visual
differences in plots can be obtained by simply
increasing or decreasing the arbitrary definition
of sameness.

Researchers who find value in recurrence
plots or correlation dimensions in other ways
compare the results of their analysis of a real
time series with the results obtained from surro-
gate data. Surrogate data are usually produced
by randomly shuffling the observations. This
procedure will disrupt patterns that are
detectable as a correlation dimension but pre-
serve the autocorrelation among observations
(Heath, 2000). A shuffled data set will produce
a gray mass, as shown in Figure 14.2 in the case
of extreme randomness, and a gray mass that
is dense with diagonals in the case of autocorre-
lation, plus a great deal of noise.

The test of a hypothesis is again visual, but
there are at least two targets to compare. Better
grounding for any conclusions would require a

more deliberate analysis of dynamical properties
and a statistical analysis thereof.

Dimensions and
Dynamical Footprints

It is now known that the basins of chaotic
attractors are fractal in shape (Farmer, Ott,
& Yorke, 1983; Mandelbrot, 1977, 1983). The
dimensionality of an attractor is now regarded
as a measure of the attractor’s complexity and
the complexity of the process that generated it.
The exact relationship between dimensionality
and the number of real variables that affect a
process is not exact.

Fractal Dimensions

The calculation of fractal dimension is thus
important for assessing the complexity of an
attractor or other phenomena that are expressed
in a spatial series or a time series. The concept
of fractal dimension dates back to Hausdorff
(1919) and was later modified by Mandelbrot
(1983):

Df = lim log [1/M(1)]. (1)
1 → 0 log1
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Imagine that a fractal image is covered with
cubes with sides of length 1. M(1) is a function
of the embedding dimension, ε. A true line will
require ε = 1, a surface ε = 2, and volume ε = 3
and so forth. The number of squares required to
cover a point is proportional to M(1), where

M(1) = 1/1– ε. (2)

The correlation dimension has led to an often
used algorithm developed by Grassberger and
Procaccia (1983) for calculating attractor
dimension. They defined dimension as:

Dc = lim log ||ui||y (3)
1 → 0 log 1

where 1 represents the diameter of a circle rather
than the side of a square, and ||ui||y denotes the
average value of 1/M(1) over all points in a time
or spatial series of points. Although Dc was
meant to approximate Df, it is now known that
Dc < Df (Girault, 1991; Kugiumtzis, Lillekjendlie,
& Christophersen, 1994).

When applied to a time series, however,
Equation 3 produces unreliable results depending

on the amount of noise present in the data and
whether the data are oversampled or undersam-
pled (Theiler & Eubank, 1993). Because smooth
mapping exists in the near neighborhood of an
attractor (Wiggins, 1988), overly short time
intervals would lead to a bias toward the conclu-
sion that favored a linear interpretation of the
data. Choice of time interval can seriously affect
the definitions of attractors that one might
extract from an analysis (Yee, Sweby, & Griffiths,
1991). When studying real systems (as we are in
this chapter), Theiler and Eubank (1993) recom-
mended that the rate of sampling be set relative
to the physical properties of the system that is
generating the data. For instance, if the system
produces values every 2 seconds, a 2-second
interval is appropriate. Similarly, if a particular
type of economic data is generated every quarter
of the year, then four observations per year
would be appropriate.

Inverse Power Law

Another way to reach the correlation dimen-
sion is to rely on the principle of scale: If we take
a frequency distribution of events and order the
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Figure 14.2 Recursion Plot for Heartbeat Data: (Left) Actual Data, (Right) Shuffled Data

SOURCE: Reprinted with permission from Sabelli, 2001, p. 95.
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events by size, we would notice that the large
examples of the event are relatively infrequent.
The small examples would be more frequent.
Next, let the size of the event be X in Equation 4,
which is the inverse power law:

Freq(X) = a X – b (4)

The parameters a and b can be estimated by
nonlinear regression. The value of b that we
obtain from that procedure is the fractal dimen-
sion. The examples of the inverse power law are
widespread and varied according to Bak (1996)
and West and Deering (1995).

The inverse power law function can also be
obtained by transforming Equation 4 into
Equation 5:

log (Freq [X]) = – b log[X] + a (5)

Although the two forms are mathematically
equivalent, they are only statistically equivalent
in the asymptotic case where there is no noise.

Lyapunov Exponents
and Dimensions

Although chaotic attractors may exhibit frac-
tional dimensionality, the presence of a fractional
Df is not a sufficient test of chaos. The property
of sensitivity to initial conditions is still missing.
The Lyapunov exponent is based on a concept of
entropy; the exponent reflects the rate at which
information that allows a forecast of a variable y
is lost. It is calculated (Kaplan & Glass, 1995,
p. 334–335; Puu, 2000, p. 157) by taking pairs of
initial conditions y1 and y2 and their iterates one
step ahead in time, which would be y2 and y3. If
the ratio of absolute values of differences

L . |y3 – y2| / |y2 – y1| (6)

is less than 1.0, then the series is contracting.
If the value of the function is greater than 1.0,
then the function is expanding and sensitive

dependence is present. The Lyapunov exponent,
λ, is thus

λ = ln [L] (7)

For an ensemble of trajectories in a dynami-
cal field, Lyapunov exponents, λi, are computed
for all values of y. If the largest value of λ is
positive, and the sum of λi is negative, then the
series is chaotic.

The calculation of Equation 7 is made on the
entire time series and averaged by taking the
geometric mean of N values where N is the last
entry in the time series. It is also possible to
rearrange the terms:

N

λ = (1/N) 
∑

ln (L) | (8)
N = 1

The foregoing calculations generalize as:

y = eλt, (9)

which is actually insensitive to initial conditions.
A positive value of λ indicates an expanding
function, which is to say, chaos. A negative λ
indicates a contracting process, which could be a
fixed point or limit cycle attractor. Dimension,
DL becomes a function of the largest value of
λ in the series (Frederickson, Kaplan, Yorke, &
Yorke, 1983; Kugiumtzis et al., 1994; Wiggins,
1988):

DL = eλ (10)

The statistical approach for determining 1 is
presented subsequently in this chapter. The sta-
tistical approach is a variant of Equation 9, and
restores sensitivity to initial conditions.

The Lyapunov exponent is an indicator of
turbulence (Ruelle, 1991), such as the turbu-
lence that occurs in air and fluid flows. The
relationships among entropy and information as
defined by Shannon (1948), topological entropy,
and the Lyapunov exponent are considered later
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in this chapter in the context of nominally coded
system states.

Self-Organizing Dynamics

The mathematical elements of self-organizing
dynamics fall into a few different categories
depending on whether one is working from the
vantage point of sandpile dynamics (Bak, 1996),
rugged landscapes (Kauffman, 1993, 1995), syn-
ergetics (Haken, 1984, 2002), agent-based
models (Epstein & Axtell, 1996; Holland, 1995),
or cellular automata (Wolfram, 2002). All forms
of self-organization depict the origins of order
in a system as arising from the local interaction
of system elements. All local interactions, fur-
thermore, can be characterized by the flow of
information between system elements.

Sandpiles

The sandpile dynamic (Bak, 1996) character-
izes a system as one that changes from a small
and formless entity to more complex distribu-
tion of entities as interacting elements are added.
At a critical point in time, the single sandpile
incurs an avalanche that results in a 1/f b distrib-
ution of large and small piles. The analysis of a
1/f b distribution and the relationship between
the fractal dimension and chaos were elaborated
above. It is noteworthy to add at this point that a
1/f b distribution is, in essence, an exponential
distribution. Exponential distributions are fun-
damental to several forms of nonlinear dynami-
cal statistical analysis, as elaborated below.

Rugged Landscapes

The rugged landscape model of self-organi-
zation (Kauffman, 1993, 1995) originated with
the spin-glass simulation. In essence, if we take
a sample of molecules that are heterogeneous
for their electron configurations, put them in a
suitable container, and introduce energy to spin

the container around, we eventually obtain a
separation of molecular variations such that
similar forms cluster together. In the evolution-
ary counterpart to this metaphor, a heteroge-
neous species or organism on a mountaintop
encounters an environmental force that requires
the colony of organisms to separate and find
new ecological niches on the new landscape.
The erstwhile heterogeneous species now clusters
into smaller and more homogeneous groups.

The distribution of new homogeneous
groups is characterized by the NK distribution,
where a large number of new groups (N) share
a small number of common characteristics (K),
whereas a smaller number of new groups share
larger numbers of common characteristics. The
NK distribution is a member of the exponential
family, but unlike a simple exponential distribu-
tion, it is actually multimodal (Guastello, 1998a).
Fortunately, catastrophe theory (Guastello, 1995;
Thom, 1975; Zeeman, 1977) has produced not
only a series of interesting mathematical models
that are applicable to self-organizing dynamics,
but also a series of statistical models for multi-
modal distributions within the exponential
family. Catastrophe models might express the
differentiation of a heterogeneous system state
into multiple homogeneous states. They can also
model the discontinuous movement of an entity
from one ecological niche to another.

Phase Shifts

The synergetic approach to self-organization
describes phase shifts and coupled dynamics
(Haken, 1984, 2002). A phase shift, such as the
transition of a liquid to a gas, generalizes as a
qualitative change in the nature of the interaction
among molecules or interaction among people in
a social system (Galam, 1996). The relationship
between phase shifts and catastrophes was known
long ago (Gilmore, 1981). The master equation
for a phase shift is generally written as:

f (y) = y4/4 – ky2/2 – ay, (11)
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where y is the behavior and a is a control
parameter that governs how close a person or
object is to the critical point of behavioral tran-
sition. In many applications to self-organizing
systems, k is a constant that depicts the size
or suddenness of the behavioral transition. If k
were a variable denoting that some people make
bigger changes than others, then we obtain a
full-fledged cusp catastrophe model instead of
just a single slice of it. Note that no one really
cares about the constants 4 and 2 in Equation 11
for reasons that should be clear before the
conclusion of this chapter.

A cusp catastrophe model is shown in
Figure 14.3, where a is the asymmetry parame-
ter and k is the bifurcation parameter (which
is, henceforward denoted as the variable b). The
model for the changes of behavior in the system
forms the response surface that is shown in
Figure 14.3. The response surface depicts two
stable states of behavior that are separated by
a bifurcation manifold that has critical points
of instability lined up on its outer edges. The
equation of the response surface is the deriva-
tive of Equation 11:

df(y)/dy = y3 – by – a. (12)

However, the implicit derivative as a function
of time is perhaps more intuitively appealing
(Guastello, 1995):

dy/dt = y3 – by – a. (13)

Coupled Dynamics

Coupled dynamics are situations where y
is a nonlinear function of itself and x, and x
also displays nonlinear dynamical properties. In
Haken’s (1984) terminology, x would be a driver
variable, and y would be a slave. A driver is a
dynamical subsystem that produces output that
greatly affects the dynamics of another sub-
system. The latter subsystem is the slave, which,
although it contributes dynamics of its own,

produces dynamics that are greatly influenced
by the driver. Driver-slave dynamics form the
basis of the hierarchical dynamical system. I
will return to coupled dynamics after simpler
dynamical systems are explained.

Edge of Chaos

The basic concept (Waldrop, 1992) is that
systems poised on the edge of chaos could self-
organize at any moment in response to a critical
stimulus of some sort. A critical stimulus would
be one that could not be assimilated by the
existing structure of the system, and thus a new
structure would be necessary for an effective
response. The effective response may involve
unraveling the existing subsystems. Repeated
unraveling and reorganization of a system
would be expected occasionally from a func-
tional complex adaptive system.

It is noteworthy that the earliest studies of
chaotic behavior in physiological systems relied
on computations of the fractal dimension,
which is a relative of the Lyapunov exponent; a
comparison of the relative assets and limitations
of the two indicators is beyond the scope of this
chapter. Some qualitative trends in those studies
are relevant nonetheless: Studies of cell tissue,
electroencephalograms (EEGs), and electrocar-
diograms (EKGs) indicate that greater irregular-
ity (turbulence, complexity) appears in the
output (or cell morphology) from healthy
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systems. Unhealthy systems gravitate toward
periodic and simplistic output (Goldberger,
Peng, Mietus, Havlin, & Stanley, 1996; Hornero,
Alonso, Jimeno, Jimeno, & Lopez, 1999; Meyer
et al., 1998; Sabelli & Kauffman, 1999). This trend
has been extended to organizational behavior
(Dooley, 1997) and communication dynamics
within families (Pincus, 2001).

For analytic purposes, the point here is that a
system that is in the process of self-organizing can
exhibit a chaotic dynamic and a self-organizing
dynamic at the same time. The case of a dual
function in a group learning situation will be
considered later in this chapter. Therein, we see
the dynamics of both chaos and learning.

The Structural
Equations Technique

The structural equations technique begins by
defining a model in the form of an equation,
then testing it statistically with real (as opposed
to simulated) data. The analysis separates the
deterministic portion of the data from noise.
Noise here denotes that portion of the data vari-
ance that is not explained by the deterministic
equation. Social scientists will recognize this
model-versus-noise approach as “business as
usual.” This technique contrasts with a prevailing
habit in the physical sciences, which works in the
opposite fashion: Separate the noise first, then
make calculations on what remains (e.g., Kanz &
Schreiber, 1997). Although social scientists have
adopted a filter-first approach to data analysis
(e.g., Heath, 2000), filtering is clearly not recom-
mended for the techniques described below.

Two series of hierarchical models are consid-
ered here. The first is the catastrophe models
for discontinuous change (Guastello, 1992a,
1995, 2002). The second set involves exponential
models for continuous change and includes a
test for the Lyapunov exponent, which distin-
guishes between chaos and nonchaotic dynam-
ics. The latter set was introduced by Guastello
(1995) and built on previous work by May and

Oster (1976), Wiggins (1988), and numerous
other contributors to the field of nonlinear
dynamical systems.

Each model in a hierarchy subsumes proper-
ties of the simpler models. Each progressively
complex model adds a new dynamical feature.
This chapter covers models involving only one
order parameter (dependent measure). Two-
parameter models can be tested as well, but the
reader is directed to Guastello (1995) to see how
those extrapolations can be accomplished.

The following sections of this chapter address
the type of data and amounts that are required;
probability functions, location, and scale; the
structure of behavioral measurements; the
catastrophe model group, which can be tested
through power polynomial regression; the expo-
nential series of models, which can be tested
through nonlinear regression; and catastrophe
models that are testable as static probability
functions through nonlinear regression.

Types and Amount of Data

The procedures that follow require dependent
measures (order parameters) that are taken at a
minimum of two points in time. One may have
many entities that are measured at two points
in time, or one long time series of observations
from one entity. Alternatively, one may have
an ensemble of shorter time series taken from
several entities.

In general, it is better to have a smaller num-
ber of observations that cover the full dynamical
character of a phenomenon than to have a large
number of observations that cover the underly-
ing topology poorly. Because these are statistical
procedures, all the usual rules and caveats per-
taining to statistical power apply. The simplest
models can be tested with 50 data points and
sometimes fewer, if there are (a) good models of
the phenomenon in question, (b) reliable mea-
surements, and (c) only one or two regression
parameters to estimate. In all cases, more data
is better than less data so long as the data are
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actually covering all the nonlinear dynamics that
are thought to exist in the system.

Statistical Power

The calculation of statistical power for
ordinary multiple regression depends on the
intended effect size, overall sample R2, popula-
tion R2, the number of independent variables,
the degree of correlation among the inde-
pendent variables, and occasionally the assump-
tion that all independent variables are equally
weighted. Not surprisingly there are different
rubrics for determining proper sample size.

According to Cohen (1988), to detect a
medium effect size of .15 for one of the inde-
pendent variables with a power of .80, the
appropriate sample size is 52 plus the number
of estimated parameters (Maxwell, 2000). Thus,
the required sample size would be 58 observa-
tions for a six-parameter model. According to a
similar rubric by Green (1991), a sample size of
110 should detect an effect size of .075 for one
independent variable with a power of .80. The
current sample sizes would thus detect effect
sizes of .07 and .04, respectively, with a power of
.80. However, neither rubric takes into account
that the odds of finding a smaller partial corre-
lation increase to the extent that the overall R2 is
large. According to Maxwell (2000), the odds of
detecting one of the effects within a multiple
regression model drops sharply as the correla-
tions among independent variables increase.

One should bear in mind that the calculation
of statistical power for nonlinear regression is
still generally uncharted territory. It is thus nec-
essary to rely on the rubrics for linear models. If
there is sufficient statistical power for the linear
comparison models, which in the past have been
generally weaker in overall effect size than non-
linear models when the nonlinear model was
held true, there should not be much concern
with the statistical power of the nonlinear mod-
els. On the other hand, the power for specific
effects within a nonlinear model probably

depends on whether the regression parameter is
associated with an additive, exponential, multi-
plicative, or other type of mathematical operator.

Optimal Time Lag

Put simply, the time lag between observations
is optimal if it reflects the real time frame in
which data points are generated. For instance,
catastrophe models are usually lagged “before”
and “after” a discrete event. Macroeconomic
variables such as inflation and unemployment
rates are studied best at lags equal to an eco-
nomic quarter of the year (e.g. Guastello,
1999b). Economic policies are usually imple-
mented on a quarterly basis, even if some of the
important indicators are posted monthly.

Probability Density Functions

It is convenient that any differential function
can be transformed into a probability density
function (pdf) using the Wright-Ito transfor-
mation. The variable y in Equation 14. is a
dependent measure that exhibits the dynamical
character under study; y is then transformed
into z with respect to location (λ) and scale (σs,
Equation 15).

pdf(z) = ξ exp[ – I f(z)]; (14)

z = (y – λ) / σs . (15)

Location. In most discussions of probability
functions, location refers to the mean of the
function. In dynamics, the pdf is a member of
an exponential family of distributions and is
asymmetrical, unlike the so-called normal dis-
tribution. Thus, the location parameter for
Equation 14 is the lower limit of the distribu-
tion, which is the lowest observed value in the
series. The transformation in Equation 15 has
the added advantage of fixing a zero point and
thus transforming measurements with interval
scales (common in the social sciences) to ratio
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scales. A fixed location point defines where the
nonlinear function is going to start.

Scale. The scale parameter in common discus-
sions of pdfs is the standard deviation of the
distribution. The standard deviation is also used
here. The use of the scale parameter later on
while testing structural equations serves the
purpose of eliminating bias between two or more
variables that are multiplied together. Although
the results of linear regression are not affected
by values of location and scale, nonlinear models
are clearly affected by the transformation.

Occasionally, one may obtain a better fit using
the alternative definition of scale in Equation 16,
which measures variability around statistical
modes rather than around a mean:

σs = [q  
∑ ∑

(ym−
m+ – mi)2] / N – M (16)

y = 1 m = 1

To use it, the distribution must be broken
into sections, each section containing a mode or
an antimode. The values of the variable around
a mode will range from m– to m+ as depicted in
Equation 16.

Corrections for location and scale should be
made on control variables as well as dependent
measures. The ordinary standard deviation is a
suitable measure of scale for control variables.

Structure of Behavioral
Measurements

In the classic definition, a measurement consists
of true scores (T) plus error (e). The variance
structure for a population of scores is thus:

σ2(X) = σ2(T) + σ2(e). (17)

The classical assumption is that all errors are
independent of true scores and all other errors.

In nonlinear dynamics, our true score is the
result of a linear (L) and nonlinear deterministic

process (NL), dependent error (DE), and
independent error (IIDE):

σ2(X) = σ2(L) + σ2(NL – L) +
σ2(DE) + σ2(IIDE) (18)

“Independent error” in conventional psycho-
metrics is known as independently and identically
distributed (IID) error in the nonlinear dynamical
systems literature. Dependent error is commonly
observed in time series applications where the
amount of error is dependent on the value of X.
In dynamical systems, a modicum of error that
occurs at one point in time becomes part of X on
the next iteration and is thus amplified or com-
puted by the system along with the true score
component of X. It is significant that the non-IID
(DE) error is a result of the nonlinear determinis-
tic process (Brock, Hseih, & LeBaron, 1991).

Catastrophe Models

The analysis that follows requires the polyno-
mial form of multiple linear regression. The
analysis can be performed with most any stan-
dard statistical software package. Several con-
cepts for hypothesis testing carry through to
subsequent analyses of other dynamics.

The set of catastrophe models was the result
of the classification theorem by Thom (1975):
Given certain constraints, all discontinuous
changes in events can be described by one of
seven elementary models. Four of the models
contain one order parameter; this is the cuspoid
series: fold model (one control parameter),
cusp model (two control parameters), swallow-
tail model (three control parameters), and but-
terfly model (four control parameters). The
remaining three models, known as the umbilic
group, contain two order parameters. The
descriptions that follow pertain to the cusp but
generalize readily to the cuspoid group.

The process of hypothesis testing begins with
choosing a model that appears to be closest to
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the phenomenon under investigation. Because
the cusp is the most often used model, the
following remarks are framed in terms of the
cusp model, which is described in Figure 14.3.
Note that two or more experimental variables
may be hypothesized for each control parameter
without changing the basic model or analytic
procedure. Examples of analyses using the poly-
nomial regression method for catastrophes date
back to Guastello (1982). Recent examples, how-
ever, can be found in Guastello (1995, 2002),
Guastello, Gershon, and Murphy (1999), Clair,
(1998); Lange (1999), and Byrne, Mazanov, and
Gregson (2001).

Nonlinear statistical model. The deterministic
equation for the cusp is shown in Equation 19
and followed by its pdf using the Wright-Ito
transformation in Equation 20:

δf(y)/δy = y3 – by – a, (19)

pdf(z) = ξ e [–z
4
/4 + bz

2
/2 + az] (20)

Figure 14.4 depicts a cusp pdf that was
produced from real data (Guastello, 2002, p. 136).

Next, we take the deterministic equation for
the cusp response surface and insert regression
weights and a quadratic term:

∆z = β0 + β1z1
3 + β2z1

2 + β3bz1 + β4a, (21)

The quadratic term is an additional correc-
tion for location. The dependent measure ∆z
denotes a change in behavior over two sub-
sequent points in time.

Several hypotheses are being tested in the
power polynomial equation (Equation 21). The
F test is used for the model overall; the R2 coef-
ficient can be retained and saved for later use.
There are t tests on the beta weights; they denote
which parts of the model account for unique
portions of variance.

Some model elements are more important
than other elements. The cubic term expresses
whether the model is consistent with cusp struc-
ture; the correct level of complexity for a cata-
strophe model is captured by the leading power
term. If there is a cusp structure, then one must
identify a bifurcation variable as represented by
the βbz1 term. A cusp hypothesis is not complete
without a bifurcation term; shabby results may

Nonlinear Methods for the Social Sciences——261

1
2

3
4

5
6

7
8

9 0
1

2
3

4
5
0

10000

20000

30000 freq

Perf
time

40000

50000

60000

Figure 14.4 Cusp pdf From a Multistage Personnel Selection Application

SOURCE: Reprinted with permission from Guastello, 2002, p.136.

Wheelan6-14.qxd  3/9/2005  8:52 PM  Page 261



be expected otherwise. The asymmetry term βa
is important in the model, but failing to find one
does not negate the cusp structure if the cubic
and bifurcation elements are present. The lack of
an asymmetry term only means that the model
is not complete.

The quadratic term is the most expendable.
It is not part of the formal deterministic cusp
structure. Rather, it is an additional correction
for location (Cobb, 1981a). In the event that
unique weights are not obtained for all model
components, the quadratic term can be deleted
and the remaining elements tested again.

Note the procedural contrast with linear
regression analysis: In common linear regres-
sion, when a variable does not attain a signifi-
cant weight, we simply delete that variable. In
nonlinear dynamical systems, we delete vari-
ables based on their relative importance to the
structural model. In linear analyses, only a linear
structure is under consideration, so particular
variables are then kept or discarded. In nonlin-
ear analyses, different variables may be playing
different structural roles.

Linear comparison models. In Equations 22 and
23, we compare the R2 coefficients against the
R2 that was obtained for the cusp:

y2 = B0 + B1y1 + B2a + B3b, (22)

∆y = B0 + B1a + B2b. (23)

Next, the elements of the cusp model are
evaluated. If all the necessary parts of the cusp
are significant, and the R2 coefficients compare
favorably, then a clear case of the cusp has been
obtained.

Exponential Model Series

This section describes a series of models that
exhibit continuous but nevertheless interesting
change. The model structures are functions of
the Naperian constant e. They produce, among

other things, the Lyapunov exponent, which is
a test for chaos and a value comparable to the
fractal dimension.

Nonlinear regression is required to test this
series of models. Nonlinear regression may be
familiar to biologists, but it is probably much
less familiar to social scientists at the present
time. This schism in uptake of nonlinear regres-
sion is probably related to the dearth of explicit
nonlinear models in the social sciences prior to
the advent of nonlinear dynamical systems. The
hierarchical series of models ranges from simple
to complex as follows: (a) simple Lyapunov
exponent, (b) Lyapunov with additional fitting
constants, (c) May-Oster model with the bifur-
cation parameter unknown, (d) model with an
explicitly hypothesized bifurcation model, and
(e) models with two or more order parameters.

Examples of analyses using the nonlinear
regression method for chaos and related expo-
nential models date back to Guastello (1992b).
More recent examples can be found in Guastello
(1995, 1998b, 1999a, 1999b, 2001, 2002),
Guastello and Philippe (1997), Guastello and
Guastello (1998). Guastello and Johnson (1999),
Guastello, Johnson, and Rieke (1999), Guastello
and Bock (2001), Rosser, Rosser, Guastello, and
Bond (2001), and Guastello and Bond (in press).
For examples that compare dimensionality esti-
mates made through nonlinear regression with
values obtained by other means, see Johnson
and Dooley (1996) and Guastello and Philippe
(1997).

Lyapunov models. The simplest model predicts
behavior z2 from a function of z1. Note that the
corrections for location and scale apply here
as well:

z2 = e (θ1z1) (24)

The nonlinear regression weight θ1 located in
the exponent is also the Lyapunov exponent. It is
a measure of turbulence in the time series. If θ1

is positive, then chaos is occurring. If θ1 is nega-
tive, then a fixed point or periodic dynamic is
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occurring. DL is an approximation of the fractal
dimension (Ott, Sauer, & Yorke, 1994):

DL = eθ1. (25)

The second model in the series (Equation 26)
is the same as the first except that two constants
have been introduced to absorb unaccounted
variance. The Lyapunov exponent is now desig-
nated as θ2:

z2 = θ1e
(θ2z1) + θ3 . (26)

In nonlinear regression, it is necessary to spec-
ify the placement of constants in a model. Unlike
the case in the general linear model, constants
in nonlinear models can appear anywhere at all.
Hence θ1 and θ3 are introduced in Equation 26.

The suggested strategy here is to start with the
second model (Equation 26). If statistical signif-
icance is not obtained for all three weights, delete
θ1 and try again. If that result is not good enough,
drop the additive constant θ3 and return to the
simplest model of the series (Equation 24).

Bifurcation models. The third level of model is
shown in Equation 27. Note the introduction of
z1 between θ1 and e:

z2 = θ1 z1 eθ2z1 + θ3. (27)

Equation 27 tests for the presence of a vari-
able that is possibly changing the dynamics of a
model. For instance, some learning curves may
be sharper than others. A positive test for the
model indicates that a variable is present, but its
identity is not yet known.

The computation of dimension is similar to
that of previous exponential models, except that
a value of 1 must be added to account for the
presence of a bifurcation variable:

DL = eθ2 + 1. (28)

At the fourth level of complexity, the
researcher has a specific hypothesis for the

bifurcation variable, which is designated as c in
Equation 29:

z2 = θ1c z1 eθ2z1 + θ3. (29)

Linear contrasts. As in the case of the catastro-
phes, we test the R2 for the nonlinear regression
model against that of the linear alternatives,
such as

y2 = B0 + B1y1 (30)

or

y2 = B0 + B1t, (31)

where t is time.

Tips for using nonlinear regression. On the model
parameter command line (or comparable com-
mand in statistical packages), the names of the
regression weights are specified with initial
values. Researchers either use the initial values
of 0.5 or pick their own. When in doubt, initial
weights can be given equal value. Often, it does
not matter whether the iterative computational
procedure starts off with equal weights or not. If
the model results are not affected by the initial
values, then the resulting model is more robust
than otherwise would be the case.

In cases where there is an option to choose
constrained versus unconstrained nonlinear
regression, the unconstrained option is typically
the default. Constraints indicate that the
researcher expects the values of parameters to
remain within numerical boundaries that have
been predetermined. Occasionally, there may be
a good rationale for containing parameters, but
they are generally specific to the problem.

If there is an option to choose least squares
or maximum likelihood error term specifi-
cation, be forewarned: Maximum likelihood is
more likely to capitalize on chance aspects of the
pdf and is thus more likely to return a significant
result. It may be better to use least squares for
this reason.
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If the results of a nonlinear regression analysis
are so poor that they produce a negative R2,
researchers need not be alarmed. The negative
R2 can be treated as if it were .00.

When testing for significance, the tests on the
weights are very important. Some researchers
value them more than the overall R2. Tests for
weights are made using the principle of confi-
dence intervals. An alpha level of p < .05 is
regarded as unilaterally sufficient. A nonsignifi-
cant weight with a high overall R2 could be the
result of a high correlation among the parame-
ter estimates; this condition is akin to multi-
collinearity in ordinary linear models.

Testing Catastrophes
Through Nonlinear Regression

The two strategies previously delineated can
now be combined for some special circum-
stances. Sometimes, one might obtain a pdf that
bears a strong resemblance to that of an elemen-
tary catastrophe, and it is logical to frame a
hypothesis as to whether that association is
true or false. In another situation, a catastrophe
process may be occurring, but all the time – 1
measurements are the same value of 0.00. In
both types of situations, it would be good to test
a hypothesis concerning the catastrophe distrib-
ution. Examples of analyses using the nonlinear
regression method for testing catastrophe pdfs
are sparse, although the method was proposed
by Cobb some time ago (1981a, 1981b). More
recent examples can be found in Hanges,
Braverman, and Rentch (1991), Guastello
(1998a, 2002), and Zaror and Guastello (2000).

Dual Functions

Three interesting cases are known where two
dynamical functions were operating concur-
rently in a system. One such example was iden-
tified in a creative problem-solving study that
involved a periodic driver and a chaotic slave

(Guastello, 1998b). The resulting model took
the form:

z2 = f(z1) + β1a + β2b + β3c, (32)

where g(z) was an exponential function from
the model series above; a, b, and c were control
parameters; and βi were regression weights that
held the model together. The primary function
f(z) displayed a positive Lyapunov exponent.
Control variables a and b were categorical vari-
ables that contributed additive explanatory vari-
ance. Variable c, however, was itself a different
exponential function over time with a negative
exponent.

The interpretation of driver and slave had to
be made in the context of the problem. The
important result from the study, however, was
that two dynamics were involved and that it was
possible to state the effects produced by each
variable. A procedural annoyance, however,
was that the linear comparison model contained
four additive elements, of which one was still
nonlinear. The R2 for the linear comparison
model was relatively high, but not greater than
the R2 for the nonlinear model. Thus, the linear
model “cheated” a bit.

A second interesting example was identified
in a group coordination learning experiment
(Guastello & Guastello, 1998). The group readily
learned the coordination task for two of the
experimental conditions. Exponential models
with the bifurcation effect characterized their
behavior over time. Figure 14.5 depicts the
relationship between learning curves and a
cusp bifurcation manifold. The exponential
model characterizes only a slice of the full sur-
face that pertains to the behavior of the groups
in the study.

One experimental condition in the coordina-
tion study was very difficult for the participants.
The first function to be extracted was a chaotic
function, which indicated in this context that
the adaptive self-organizing response had not
kicked in for some of the groups. When that
variance was removed from the behavioral
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variable, however, the analysis of the residual
showed a second function that contained a
negative exponent. Thus, an incomplete self-
organized response may contain two kinds of
functions, and an analysis of residuals would be
required to find them both.

The third interesting case involved a combi-
nation of a cusp catastrophe model and chaotic
attractors (Rosser et al., 2001). The stable states,
or attractors, in a catastrophe model are fixed
point attractors, although the presence of limit
cycles would not usually impair the analysis.
The theory that Rosser et al. were working with
indicated a cusp manifold for hysteresis, but the
attractors were chaotic. A graphic representation
of this combination of dynamics appears in
Figure 14.6.

They did not know what the control variables
could be, so they simply analyzed the dynamics
of their two economic indicators (annual infra-
structure investment by the Soviet government
and the annual investment in construction by
the Soviet government) using the exponential
series. One variable displayed a bifurcation
effect and a negative exponent. The other dis-
played no bifurcation and a positive exponent.
Although the dynamics that were obtained did
not show a clear illustration of what was hypo-
thesized in simpler terms, the dynamics did

display portions of the intended dynamics.
Ideally, they would have found a chaotic func-
tion, a bifurcation effect, and a dimensionality
in the neighborhood of 3.0.

Perhaps, longer data sets with control vari-
ables would have produced different results; one
variable consisted of 53 annual numbers, and the
other consisted of 27 annual numbers. The epoch
of Soviet history that they were studying ended,
however, and they were compelled to extract
meaning out of what data actually existed.

Symbolic Dynamics
and the Method of
Orbital Decomposition

Symbolic dynamics is an area of mathematics
that finds patterns in series of qualitative data.
Furthermore, the elementary patterns can be
treated like qualitative states themselves and
subjected to pattern detection for higher order
patterns. This is the basic concept behind Turing’s
Universal Computational Machine. The approach
is ideally suited to analyzing chaotic and related
complex nonlinear dynamics (Robinson, 1999),
particularly when self-organizing phenomena are
likely to emerge (Crutchfield, 1994). The process
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is usually applied to continuously valued time
series. Events such as spikes and small or large
up-trends and down-trends are coded nominally
(e.g., with letter codes A, B, C, D, etc.) and then
analyzed. Several computational procedures have
been advanced; some include computations of
Shannon’s entropy or other dynamical indicators.

Numerous biomedical applications of sym-
bolic dynamics techniques have been reported
recently (Yamada et al., 2000; Yeragani, Nadella,
Hinze, Yeragani, & Jampala, 2000). In principle,
symbolic dynamics might be applied to any
situation where nonlinear behavior or living
systems are involved (Arecchi, 2001). Within
psychology, symbolic dynamics have been recom-
mended for the study of firing patterns of indi-
vidual neurons within a network (Lewis & Glass,
1992), activation of neural circuits involved in
memory processes (Guastello, Nielson, & Ross,
2002), linguistics problems (Sulis, 1998), and the
analysis of conversations between a psychothera-
pist and a client (Rapp & Korslund, 2000). Actual
applications have been published on topics con-
cerning artificial grammars (Bollt & Jones, 2000),
creative problem-solving groups (Guastello,
2000; Guastello, Hyde, & Odak, 1998), and family
systems dynamics (Pincus, 2001).

The foregoing techniques vary in their
method for determining symbol sequences and
the length of those sequences. They also vary in
the extent to which they produce results that
interface with other dynamical concepts such
as topological entropy and the Lyapunov expo-
nent. The latter three studies involve the method
of orbital decomposition, which is assisted by a
statistical analysis, unlike the other current
offerings. The method of orbital decomposition
is decribed next.

The method of orbital decomposition
(Guastello et al., 1998) is based on the principle
that a minimum of three coupled oscillators are
required to produce chaos (Newhouse, Ruelle, &
Takens, 1978). The procedure does not require
the presence of chaos; it merely accommodates
systems of sufficient complexity to qualify as
chaos. The procedure requires three calculations

in parallel: Shannon entropy (HS), topological
entropy (HT), and a likelihood χ2 test for strings
of responses of varying length C. The cal-
culations provide measures of dimensional
complexity, the determination of an optimum
behavior string length, a set of behavior strings
with associated probabilities, and a chi-square
test that provides a measure of fitness for the
string structures.

Shannon (1948; Ott et al., 1994) entropy
(HS) is defined in Equation 33, where pi is the
probability associated with one categorical
outcome in a set of r categories

r

HS =
∑

pi ln (1/pi). (33)
i = 1

The second calculation, topological entropy
(HT), is based on strings, or hypothetical orbits,
of length C. C takes on a small range of integer
values beginning with 1. For C = 1, a transition
matrix, MC is created, which is square, and r × r
in size. Each cell entry is binary and indicates
whether a particular behavior category is fol-
lowed in time by any other behavior category. Its
diagonal entries indicate whether an outcome
is followed by itself in a consecutive period of
time. Topological entropy is a function of the
trace of MC (Lathrop & Kostelich, 1989, p. 4030):

HT = lim (1/C) log2tr(MC) (34)
c → 4

As the string length goes to infinity, HT
approaches the base – 2 logarithm of the trace of
MC, and is in turn equal to the maximum
Lyapunov exponent, which is also the largest
eigenvalue of MC. Dimensionality is, therefore,

DL = eHT (35)

The construction of MC is repeated for all C >
1, and Equations 33 to 35 are calculated for each.
For C = 2, one axis of MC represents all possible
pairs of categories, although some possible
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combinations might not actually appear in the
data if their combinatorial probability is too low.

The third calculation is the χ2 for goodness of
fit, and it is also carried out for each value of C
used. The essential question posed by the test is
whether the behavior strings observed in the
data occur at rates different from chance, where
chance is simply the combinatorial probability
of each categorical element in the string. The
likelihood χ2 is preferred over the Pearson vari-
ety because the expected (FEx) and observed
(FOb) frequencies for many elementary cate-
gories and strings are small:

χ2 = 2 Σ FOb ln(FOb/FEx). (36)

Given N strings of length C in a set, the
expected frequency of string X-Y-Z is

FEx = PXPYPZN. (37)

Finally, φ2 coefficients are calculated for all χ2

tests to provide a measure of variance accounted
for by the observed strings for all lengths C:

φ2 = χ2/N. (38)

Optimal C is determined as the length of a
string one step before the step at which HT
drops to 0.00. Having determined the optimal
string length, it is possible to describe the con-
tents and distribution of strings with that length;
these were used as a basis of comparison with
other conversations, along with the associated
values of C, HT, and HS. The array of strings
identified at this stage could be analyzed for
hierarchical dynamics using a repetition of the
process just outlined (cf. Crutchfield, 1994).

HT is in indicator of the amount of informa-
tion produced by the underlying (neuronal)
process. HT decreases as C increases; it is the pri-
mary indicator of the asymptotic limit of C. A
comparison of the asymptotic HT and C values
across experimental conditions would indicate
which neuronal processes are more complicated
than others and how.

To date, the available applications of the
orbital decomposition technique have pertained
to the analysis of creative problem-solving
conversation (Guastello, 2000; Guastello et al.,
1998) and conflict resolution conversations
among members of dysfunctional families
(Pincus, 2001). Guastello et al. (1998) analyzed a
string of more than 500 responses in one real
time problem-solving session used in the study
just described. Responses were coded in one of
nine possible types of input: requesting infor-
mation, giving information, tension reduction,
clarifying responses and ideas, gate keeping,
initiating, following, harmonizing, and unclas-
sified responses. Guastello et al. found that
sequences of four responses emerged and that
the sequences could not be reduced to the sim-
ple effects of combinatorial probabilities. In a
subsequent study (Guastello, 2000), the elemen-
tary conversational units were themselves com-
binations of conversation contribution types.
Table 14.1 (from Guastello, 2000) illustrates the
array of data that led to the conclusion that, for
a particular coding scheme that was applied to a
creative problem-solving conversation, the opti-
mal string length consisted of sequences of 3.
Thereupon, the trace of the pattern matrix
was 4, and other relevant computations appear
in the same row. The φ2 value indicated that
95% of the variance in states within the origi-
nal data set was accounted for by the strings
produced at C = 3.

Once the correct length of C has been deter-
mined, it is then possible to interpret the strings
themselves; each string, which corresponds to
an orbit, contains three qualitative states in
the example above. A frequency distribution of
string frequencies will inevitably show that some
strings occur very often whereas others occur
less frequently. We speculate that the frequency
distribution of string frequencies will corre-
spond to an 1/f a distribution, which is typically
indicative of a fractal or self-organizing process
(Bak, 1996; West & Deering, 1995). It is note-
worthy that some strings that are possible do not
actually appear. It is currently recommended
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that strings that appear at least twice should be
inspected for interpretive value.

All three applications produced sets of orbits
that had diagnostic value for interpreting the
behaviors of the groups. The complexities of
the final sets of sequences were dependent on the
particular scoring protocols that were used.
Guastello (2000) applied two different scoring
schemes to the same conversation and found
that different string lengths, entropy levels, and
so forth resulted from the two coding schemes.
Rapp and Korslund (2000) also observed that the
results of a symbolic dynamics analysis would be
predicated on the particular scoring protocols
that were used. It would appear, furthermore,
that complex results would be improbable if the
behavior coding systems were overly simplistic.

Conclusion

This chapter summarized three perspectives on
nonlinear data analysis. Graphic techniques
emanated from mathematical problems in
which it was not possible to observe all the crit-
ical features of a function by simply inspecting a
descriptive equation. They are potentially valu-
able in social science research as descriptive
tools, but at present, they have little relevance to
model building or hypothesis testing except,
perhaps, in the crudest sense.

The mathematical concepts concerning
dimensions are of primary importance for deter-
mining the nature of a dynamical process. If we
know the dynamical process, then a great deal
of variance over time can be explained. On the
other hand, specific values of dimension are of
lesser importance except in a comparative sense,
such as healthy versus unhealthy systems.

The analytic habits of the natural sciences
and social sciences vary sharply on the matter of
filtering data before analysis, and it has been
acknowledged that filtering distorts results.
Analyses for the social sciences are now rooted
in a relevant statistical theory that appears to
make the filtering issue both a nonproblem and
a nonrecommended procedure.

Nonlinear regression techniques are very
versatile, and they can accommodate virtually
any structural equation. Perhaps, the asset of
versatility has become the limitation of the
daunting number of possible models that a
researcher might select for a hypothesis. The
method of structural equations presented here
limits the possibilities to hierarchical sets and
should facilitate hypothesis formulation as it has
done already.

The nonlinear regression approach can be
expanded to encompass sinusoidal functions for
the decomposition of limit cycles. Such prob-
lems are more frequently encountered in the
biological sciences (Koyama, Yoneyama, Sawada,
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Table 14.1 Trace of Binary Mc, Topological Entropy, Dimensionality, χ2, φ2, and Shannon Entropy for
Strings of Length 1 through 4; Analysis of a Group Problem-Solving Conversation 

C Tr(Mc) HT DL χ2 df N φ2 HS

1 5 2.322 10.196 46.92 8 81 .58 2.239

2 4 1.000 2.718 34.84 36 80 .44 3.478

3 4 0.667 1.948 74.87 64 79 .95 5.031

4 0 undef undef 16.99 60 78 .22 4.439

NOTE:  C = String length; HT = Topological entropy; DL = Lyapunov dimensionality; HS = Shannon entropy.

SOURCE: Guastello (2000). permission here?
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& Ohtomo, 1994) and economics (Puu, 1993)
than they are in psychological problems.
Symbolic dynamics techniques, such as the
method of orbital decomposition, are also
highly versatile for this purpose, especially
where system states are observed rather than
continuous numerical measurements.
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