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This chapter examines conceptual frameworks that guide the estimation of treatment 
effects as well as important assumptions that are embedded in observational studies. 
Section 2.1 defines causality and describes threats to internal validity. In addition, it 
reviews concepts that are generally discussed in the evaluation literature, emphasizing 
their links to statistical analysis. Section 2.2 summarizes the key features of the Neyman-
Rubin counterfactual framework. Section 2.3 discusses the ignorable treatment 
assignment assumption. Section 2.4 describes the stable unit treatment value assumption 
(SUTVA). Section 2.5 provides an overview of statistical approaches developed to handle 
selection bias. With the aim of showing the larger context in which new evaluation 
methods are developed, this focuses on a variety of models, including the seven models 
covered in this book, and two popular approaches widely employed in economics—the 
instrumental variables estimator and regression discontinuity designs. Section 2.6 
reviews the underlying logic of statistical inference for both randomized experiments and 
observational studies. Section 2.7 summarizes a range of treatment effects and extends 
the discussion of the SUTVA. We examine treatment effects by underscoring the maxim 
that different research questions imply different treatment effects and different analytic 
models must be matched to the kinds of effects expected. Section 2.8 discusses treatment 
effect heterogeneity and two recently developed tests of effect heterogeneity. With 
illustrations, this section shows how to use the tests to evaluate effect heterogeneity and 
the plausibility of the strongly ignorable treatment assignment assumption. Section 2.9 
reviews Heckman’s scientific model of causality, which is a comprehensive, causal 
inference framework developed by econometricians. Section 2.10 concludes the chapter 
with a summary of key points.

C H A P T E R  2

Counterfactual Framework  
and Assumptions
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PROPENSITY SCORE ANALYSIS22

2.1 CAUSALITY, INTERNAL VALIDITY, AND THREATS

Program evaluation is essentially the study of cause-and-effect relationships. It aims to 
answer this key question: To what extent can the net difference observed in outcomes 
between treated and nontreated groups be attributed to the intervention, given that all 
other things are held constant (or ceteris paribus)? Causality in this context simply refers 
to the net gain or loss observed in the outcome of the treatment group that can be attrib-
uted to malleable variables in the intervention. Treatment in this setting ranges from 
receipt of a well-specified program to falling into a general state such as “being a service 
recipient,” as long as such a state can be defined as a result of manipulations of the inter-
vention (e.g., a mother of young children who receives cash assistance under the Tempo-
rary Assistance to Needy Families program [TANF]). Rubin (1986) argued that there can be 
no causation without manipulation. According to Rubin, thinking about actual manipula-
tions forces an initial definition of units and treatments, which is essential in determining 
whether a program truly produces an observed outcome.

Students from any social or health sciences discipline may have learned from their 
earliest research course that association should not be interpreted as the equivalent of 
causation. The fact that two variables, such as A and B, are highly correlated does not nec-
essarily mean that one is a cause and the other is an effect. The existence of a high correla-
tion between A and B may be the result of the following conditions: (1) Both A and B are 
determined by a third variable, C, and by controlling for C, the high correlation between A 
and B disappears. If that’s the case, we say that the correlation is spurious. (2) A causes B. 
In this case, even though we control for another set of variables, we still observe a high 
association between A and B. (3) In addition, it is possible that B causes A, in which case 
the correlation itself does not inform us about the direction of causality.

A widely accepted definition of causation was given by Lazarsfeld (1959), who described 
three criteria for a causal relationship. (1) A causal relationship between two variables must 
have temporal order, in which the cause must precede the effect in time (i.e., if A is a cause 
and B an effect, then A must occur before B). (2) The two variables should be empirically 
correlated with one another. And (3), most important, the observed empirical correlation 
between two variables cannot be explained away as the result of a third variable that causes 
both A and B. In other words, the relationship is not spurious and occurs with regularity.

According to Pearl (2000), the notion that regularity of succession or correlation is not 
sufficient for causation dates back to the 18th century, when Hume (1748/1959) argued,

We may define a cause to be an object followed by another, and where all the objects, 
similar to the first, are followed by an object similar to the second. Or, in other words, 
where, if the first object had not been, the second never had existed. (sec. VII)

On the basis of the three criteria for causation, Campbell (1957) and his colleagues 
developed the concept of internal validity, which serves a paramount role in program 
evaluation. Conceptually, internal validity shares common features with causation.

We use the term internal validity to refer to inferences about whether observed 
covariation between A and B reflects a causal relationship from A to B in the form 
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CHAPTER 2    Counterfactual Framework  and Assumptions 23

in which the variables were manipulated or measured. To support such an 
inference, the researcher must show that A preceded B in time, that A covaries 
with B . . . and that no other explanations for the relationship are plausible. 
(Shadish et al., 2002, p. 53)

In program evaluation and observational studies in general, researchers are concerned 
about threats to internal validity. These threats are factors affecting outcomes other than 
intervention or the focal stimuli. In other words, threats to internal validity are other 
possible reasons to think that the relationship between A and B is not causal, that the 
relationship could have occurred in the absence of the treatment, and that the relationship 
between A and B could have led to the same outcomes that were observed for the treatment. 
Nine well-known threats to internal validity are ambiguous temporal precedence, selection, 
history, maturation, regression, attrition, testing, instrumentation, and additive and 
interactive effects of threats to internal validity (Shadish et al., 2002, pp. 54–55).

It is noteworthy that many of these threats have been carefully examined in the statisti-
cal literature, although statisticians and econometricians have used different terms to 
describe them. For instance, Heckman, LaLonde, and Smith (1999) referred to the testing 
threat as the Hawthorne effect, meaning that an agent’s behavior is affected by the act of 
participating in an experiment. Rosenbaum (2002b) distinguished between two types of 
bias that are frequently found in observational studies: overt bias and hidden bias. Overt 
bias can be seen in the data at hand, whereas the hidden bias cannot be seen because the 
required information was not observed or recorded. Although different in their potential 
for detection, both types of bias are induced by the fact that “the treated and control groups 
differ prior to treatment in ways that matter for the outcomes under study” (Rosenbaum, 
2002b, p. 71). Suffice it to say that Rosenbaum’s “ways that matter for the outcomes under 
study” encompass one or more of the nine threats to internal validity.

This book adopts a convention of the field that defines selection threat broadly. That is, 
when we refer to selection bias, we mean a process that involves one or more of the nine 
threats listed earlier and not necessarily the more limited definition of selection threat 
alone. In this sense, then, selection bias may take one or more of the following forms: self-
selection, bureaucratic selection, geographic selection, attrition selection, instrument 
selection, or measurement selection.

2.2 COUNTERFACTUALS AND THE  
NEYMAN-RUBIN COUNTERFACTUAL FRAMEWORK

Having defined causality, we now present a key conceptual framework developed to inves-
tigate causality: the counterfactual framework. Counterfactuals are at the heart of any sci-
entific inquiry. Galileo was perhaps the first scientist who used the thought experiment and 
the idealized method of controlled variation to define causal effects (Heckman, 1996). In 
philosophy, the practice of inquiring about causality through counterfactuals stems from 
early Greek philosophers such as Aristotle (384–322 BCE; Holland, 1986) and Chinese  
philosophers such as Zhou Zhuang (369–286 BCE; see Guo, 2012). Hume (1748/1959) also 
was discontent with the regularity of the factual account and thought that the counterfactual 
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PROPENSITY SCORE ANALYSIS24

criterion was less problematic and more illuminating. According to Pearl (2000), Hume’s 
idea of basing causality on counterfactuals was adopted by John Stuart Mill (1843), and it 
was embellished in the works of David Lewis (1973, 1986). Lewis (1986) called for abandon-
ing the regularity account altogether and for interpreting “A has caused B” as “B would not 
have occurred if it were not for A.”

In statistics, researchers generally credit the development of the counterfactual frame-
work to Neyman (1923) and Rubin (1974, 1978, 1980b, 1986) and call it the Neyman-Rubin 
counterfactual framework of causality. The terms Rubin causal model and potential outcomes 
model are also used interchangeably to refer to the same model. Other scholars who made 
independent contributions to the development of this framework come from a variety of 
disciplines, including Fisher (1935/1971) and Cox (1958) from statistics, Thurstone (1930) 
from psychometrics, and Haavelmo (1943), Roy (1951), and Quandt (1958, 1972) from 
economics. Holland (1986), Sobel (1996), Winship and Morgan (1999), and Morgan and 
Winship (2007) have provided detailed reviews of the history and development of the 
counterfactual framework.

So what is a counterfactual? A counterfactual is a potential outcome, or the state of 
affairs that would have happened in the absence of the cause (Shadish et al., 2002). Thus, 
for a participant in the treatment condition, a counterfactual is the potential outcome 
under the condition of control; for a participant in the control condition, a counterfactual 
is the potential outcome under the condition of treatment. Note that the definition uses the 
subjunctive mood (i.e., contingent on what “would have happened . . .”), which means that 
the counterfactual is not observed in real data. Indeed, it is a missing value. Therefore, the 
fundamental task of any evaluation is to use known information to impute a missing value 
for a hypothetical and unobserved outcome.

Neyman-Rubin’s framework emphasizes that individuals selected into either treat-
ment or nontreatment groups have potential outcomes in both states: that is, the one in 
which they are observed and the one in which they are not observed. More formally, 
assume that each person i under evaluation would have two potential outcomes (Y0i, Y1i) 
that correspond, respectively, to the potential outcomes in the untreated and treated 
states. Let Wi = 1 denote the receipt of treatment, Wi = 0 denote nonreceipt, and Yi indi-
cate the measured outcome variable. The Neyman-Rubin counterfactual framework can 
then be expressed as the following model1:

	 Yi = WiY1i + (1 − Wi)Y0i.	 (2.1)

In the preceding equation, Wi is a dichotomous variable; therefore, both the terms Wi 
and (1 − Wi) serve as a switcher. Basically, the equation indicates which of the two 
outcomes would be observed in the real data, depending on the treatment condition or 
the “on/off” status of the switch. The key message conveyed in this equation is that to infer 
a causal relationship between Wi (the cause) and Yi (the outcome), the analyst cannot 
directly link Y1i to Wi under the condition Wi = 1; instead, the analyst must check the 
outcome of Y0i under the condition of Wi = 0 and compare Y0i with Y1i. For example, we 
might hypothesize that a child i who comes from a low-income family has low academic 
achievement. Here, the treatment variable is Wi = 1 if the child lives in poverty; the 
academic achievement Y1i < p if the child has a low academic achievement, where p is a 
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CHAPTER 2    Counterfactual Framework  and Assumptions 25

cutoff value defining a low test score and Y1i > p otherwise. To make a causal statement 
that being poor (Wi = 1) causes low academic achievement Y1i < p, the researcher must 
examine the outcome under the status of not being poor. That is, the task is to determine 
the child’s academic outcome Y0i under the condition of Wi = 0, and ask, “What would 
have happened had the child not lived in a poor family?” If the answer to the question is 
Y0i > p, then the researcher can have confidence that Wi = 1 causes Y1i < p.

The above argument gives rise to many issues that we will examine in detail. The most 
critical issue is that Y0i is not observed. Holland (1986, p. 947) called this issue the funda-
mental problem of causal inference. How could a researcher possibly know Y0i > p? The 
Neyman-Rubin counterfactual framework holds that a researcher can estimate the coun-
terfactual by examining the average outcome of the treatment participants and the average 
outcome of the nontreatment participants in the population. That is, the researcher can 
assess the counterfactual by evaluating the difference in mean outcomes between the two 
groups or “averaging out” the outcome values of all individuals in the same condition. 
Specifically, let E(Y0|W = 0) denote the mean outcome of the individuals who compose the 
nontreatment group, and E(Y1|W = 1) denote the mean outcome of the individuals who 
comprise the treatment group. Because both outcomes in the above formulation (i.e., 
E(Y0|W = 0) and E(Y1|W = 1)) are observable, we can then define the treatment effect as a 
mean difference:

	 t = E(Y1|W = 1) − E(Y0|W = 0),	 (2.2)

where t denotes treatment effect. This formula is called the standard estimator for the 
average treatment effect. It is worth noting that under this framework, the evaluation of 
E(Y1|W = 1) − E(Y0|W = 0) can be understood as an effort that uses E(Y0|W = 0) to estimate 
the counterfactual E(Y0|W = 1). The central interest of the evaluation is not in E(Y0|W = 0) 
but in E(Y0|W = 1).

Returning to our example with the hypothetical child, the solution to the dilemma of 
not observing the academic achievement for child i in the condition of not being poor is 
resolved by examining the average academic achievement for all poor children in addition 
to the average academic achievement of all nonpoor children in a well-defined population. 
If the comparison of two mean outcomes leads to t = E(Y1|W = 1) −E(Y0|W = 0) < 0, or the 
mean outcome of all poor children is a low academic achievement, then the researcher can 
infer that poverty causes low academic achievement and also can provide support for 
hypotheses advanced under resources theories (e.g., Wolock & Horowitz, 1981).

In summary, the Neyman-Rubin framework offers a practical way to evaluate the coun-
terfactuals. Working with data from a sample that represents the population of interest (i.e., 
using y1 and y0 as sample variables denoting, respectively, the population variables Y1 and 
Y0, and w as a sample variable denoting W), we can further define the standard estimator 
for the average treatment effect as the difference between two estimated means from 
sample data:

	 t̂  = E(yŷ1|w = 1) − E(yŷ0|w = 0).	 (2.3)
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PROPENSITY SCORE ANALYSIS26

The Neyman-Rubin counterfactual framework provides a useful tool not only for the 
development of various approaches to estimating potential outcomes but also for a 
discussion of whether assumptions embedded in randomized experiments are plausible 
when applied to social and health sciences studies. In this regard, at least eight issues 
emerge.

1.	In the preceding exposition, we expressed the evaluation of causal effects in an 
overly simplified fashion that did not take into consideration any covariates or threats to 
internal validity. In our hypothetical example where poor economic condition causes low 
academic achievement, many confounding factors might influence achievement. For 
instance, parental education could covary with income status, and it could affect 
academic achievement. When covariates are entered into an equation, evaluators must 
impose additional assumptions. These include the ignorable treatment assignment 
assumption and the SUTVA, which we clarify in the next two sections. Without 
assumptions, the counterfactual framework leads us nowhere. Indeed, it is violations of 
these assumptions that have motivated statisticians and econometricians to develop new 
approaches.

2.	 In the standard estimator E(Y1|W = 1) − E(Y0|W = 0), the primary interest of research-
ers is focused on the average outcome of treatment participants if they had not participated 
(i.e., E(Y0|W = 1)). Because this term is unobservable, evaluators use E(Y0|W = 0) as a proxy. 
It is important to understand when the standard estimator consistently estimates the true 
average treatment effect for the population. Winship and Morgan (1999) decomposed the 
average treatment effect in the population into a weighted average of the average treatment 
effect for those in the treatment group and the average treatment effect for those in the 
control group as2
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where p is equal to the proportion of the population that would be assigned to the 
treatment group, and by the definition of the counterfactual model, let E(Y1|W = 0) and 
E(Y0|W = 1) be defined analogously to E(Y1|W = 1) and E(Y0|W = 0). The quantities 
E(Y1|W = 0) and E(Y0|W = 1) that appear in the second and third lines of Equation 2.4 
cannot be directly calculated because they are unobservable values of Y. Furthermore, 
and again on the basis of the definition of the counterfactual model, if we assume that 
E(Y1|W = 1) = E(Y1|W = 0) and E(Y0|W = 0) = E(Y0|W = 1), then through substitution 
starting in the fourth line of Equation 2.4, we have3
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Thus, a sufficient condition for the standard estimator to consistently estimate the true 
average treatment effect in the population is that E(Y1|W = 1) = E(Y1|W = 0) and E(Y0|W = 0) = 
E(Y0|W = 1). This condition, as shown by numerous statisticians such as Fisher (1925), 
Kempthorne (1952), and Cox (1958), is met in the classical randomized experiment.4 
Randomization works in a way that makes the assumption about E(Y1|W = 1) = E(Y1|W = 0) 
and E(Y0|W = 0) = E(Y0|W = 1) plausible. When study participants are randomly assigned 
either to the treatment condition or to the nontreatment condition, certain physical 
randomization processes are carried out so that the determination of the condition to 
which participant i is exposed is regarded as statistically independent of all other variables, 
including the outcomes Y1 and Y0.

3.	 The real debate regarding observational studies in statistics centers on the validity of 
extending the randomization assumption (i.e., that a process yields results independent of all 
other variables) to analyses in social and health sciences evaluations. Or, to put it differently, 
whether the researcher engaged in evaluations can continue to assume that E(Y0|W = 0) = 
E(Y0|W = 1) and E(Y1|W = 1) = E(Y1|W = 0). Not surprisingly, supporters of randomization as 
the central method for evaluating social and health programs answer “yes,” whereas propo-
nents of the nonexperimental approach answer “no” to this question. The classical experi-
mental approach assumes no selection bias, and therefore, E(Y0|W = 1) = E(Y0|W = 0). The 
assumption of no selection bias is indeed true because of the mechanism and logic behind 
randomization. However, many authors challenge the plausibility of this assumption in 
evaluations. Heckman and Smith (1995) showed that the average outcome for the treated 
group under the condition of nontreatment is not the same as the average outcome of the 
nontreated group, precisely E(Y0|W = 1) ≠ E(Y0|W = 0), because of selection bias.

4.	 Rubin extended the counterfactual framework to a more general case—that is, allowing 
the framework to be applicable to observational studies. Unlike a randomized experiment, an 
observational study involves complicated situations that require a more rigorous approach to 
data analysis. Less rigorous approaches are open to criticism; for instance, Sobel (1996) criti-
cized the common practice in sociology that uses a dummy variable (i.e., treatment vs. non-
treatment) to evaluate the treatment effect in a regression model (or a regression-type model 
such as a path analysis or structural equation model) using survey data. As shown in the next 
section, the primary problem of such an approach is that the dummy treatment variable is 
specified by these models as exogenous, but in fact it is not. According to Sobel (2005),

The incorporation of Neyman’s notation into the modern literature on causal 
inference is due to Rubin (1974, 1977, 1978, 1980b), who, using this notation, 
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PROPENSITY SCORE ANALYSIS28

saw the applicability of the work from the statistical literature on experimental 
design to observational studies and gave explicit consideration to the key role of 
the treatment assignment mechanism in causal inference, thereby extending this 
work to observational studies. To be sure, previous workers in statistics and 
economics (and elsewhere) understood well in a less formal way the problems of 
making causal inferences in observational studies where respondents selected 
themselves into treatment groups, as evidenced, for example, by Cochran’s work 
on matching and Heckman’s work on sample selection bias. But Rubin’s work 
was a critical breakthrough. (p. 100)

5.	 In the above exposition, we used the most common and convenient statistic (i.e., the 
mean) to express various counterfactuals and the ways in which counterfactuals are approx-
imated. The average causal effect t is an average, and as such, according to Holland (1986, 
p. 949), “enjoys all of the advantages and disadvantages of averages.” One such disadvantage 
is the insensitivity of an average to the variability of the causal effect. If the variability in 
individual causal effects (Yi|Wi = 1) − (Yi|Wi = 0) is large over all units, then t = E(Y1|W = 1) 
− E(Y0|W = 0) may not well represent the causal effect of a specific unit (say, u0). “If u0 is the 
unit of interest, then t may be irrelevant, no matter how carefully we estimate it!” (Holland, 
1986, p. 949). This important point is expanded in Sections 2.7 and 2.8, but we want to 
emphasize that the variability of the treatment effect at the individual level, or violation of 
an assumption about a constant treatment effect across individuals, can make the estima-
tion of average treatment effects biased; therefore, it is important to distinguish among 
various types of treatment effects. In short, different statistical approaches employ counter-
factuals of different groups to estimate different types of treatment effects.

6.	 Another limitation of using an average lies in the statistical properties of means. Although 
means are conventional, distributions of treatment parameters are also of considerable inter-
est (Heckman, 2005, p. 20). In several articles, Heckman and his colleagues (Heckman, 2005; 
Heckman, Ichimura, & Todd, 1997; Heckman et al., 1999; Heckman, Smith, & Clements, 1997) 
have discussed the limitation of reliance on means (e.g., disruption bias leading to changed 
outcomes or the Hawthorne effect) and have suggested using other summary measures of the 
distribution of counterfactuals such as (a) the proportion of participants in Program A who 
benefit from the program relative to some alternative B, (b) the proportion of the total popula-
tion that benefits from Program B compared with Program A, (c) selected quantiles of the 
impact distribution, and (d) the distribution of gains at selected base state values.

7.	 The Neyman-Rubin framework expressed in Equation 2.1 is the basic model. 
However, there are variants that can accommodate more complicated situations. For 
instance, Rosenbaum (2002b) developed a counterfactual model in which stratification is 
present and where s stands for the sth stratum:

	 Ysi = WsiYs1i + (1 − Wsi)Ys0i.	 (2.6)

Under this formulation, Equation 2.1 is the simplest case where s equals 1, or 
stratification is absent.5
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8.	 The Neyman-Rubin counterfactual framework is mainly a useful tool for the statisti-
cal exploration of causal effects. However, by no means does this framework exclude the 
importance of using substantive theories to guide causal inferences. Identifying an appro-
priate set of covariates and choosing an appropriate model for data analysis are primarily 
tasks of developing theories based on prior studies in the substantive area. As Cochran 
(1965) argued,

When summarizing the results of a study that shows an association consistent 
with a causal hypothesis, the investigator should always list and discuss all 
alternative explanations of his results (including different hypotheses and biases in 
the results) that occur to him. (sec. 5)

Dating from Fisher’s work, statisticians have long acknowledged the importance of 
having a good theory of the treatment assignment mechanism (Sobel, 2005). Rosenbaum 
(2005) emphasized the importance of using theory in observational studies and encouraged 
evaluators to “be specific” on which variables to match and which variables to control using 
substantive theories. Thus, similar to all scientific inquiries, the counterfactual framework 
is reliable only under the guidance of appropriate theories and substantive knowledge.

2.3 THE IGNORABLE TREATMENT ASSIGNMENT ASSUMPTION

By thinking of the central challenge of all evaluations as estimating the missing outcomes 
for participants—each of whom is missing an observed outcome for either the treatment 
or nontreatment condition—the evaluation problem becomes a missing data issue. Con-
sider the standard estimator of the average treatment effect: t = E (Y1|W = 1) – E(Y0|W = 0). 
Many sources of error contribute to the bias of t. It is for this reason that the researcher has 
to make a few fundamental assumptions to apply the Neyman-Rubin counterfactual model 
to actual evaluations. One such assumption is the ignorable treatment assignment assump-
tion (Rosenbaum & Rubin, 1983). In the literature, this assumption is sometimes presented 
as part of the SUTVA (e.g., Rubin, 1986); however, we treat it as a separate assumption 
because of its importance. The ignorable treatment assignment is fundamental to the 
evaluation of treatment effects, particularly in the econometric literature. Our discussion 
follows this tradition.

The assumption can be expressed as

	 (Y0, Y1)⊥W |X.	 (2.7)

The assumption says that conditional on covariates X, the assignment of study 
participants to binary treatment conditions (i.e., treatment vs. nontreatment) is independent 
of the outcome of nontreatment (Y0) and the outcome of treatment (Y1).

A variety of terms have emerged to describe this assumption: unconfoundedness (Rosen-
baum & Rubin, 1983), selection on observables (Barnow, Cain, & Goldberger, 1980), condi-
tional independence (Lechner, 1999), and exogeneity (Imbens, 2004). These terms can be 
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used interchangeably to denote the key idea that assignment to one condition or another 
is independent of the potential outcomes if observable covariates are held constant.

The researcher conducting a randomized experiment can be reasonably confident that the 
ignorable treatment assignment assumption holds because randomization typically balances 
the data between the treated and control groups and makes the treatment assignment inde-
pendent of the outcomes under the two conditions (Rosenbaum, 2002b; Rosenbaum & Rubin, 
1983). However, the ignorable treatment assignment assumption is often violated in quasi-
experimental designs and in observational studies because the creation of a comparison group 
follows a natural process that confounds group assignment with outcomes. Thus, the research-
er’s first task in any evaluation is to check the tenability of the independence between the 
treatment assignment and outcomes under different conditions. A widely employed approach 
to this problem is to conduct bivariate analysis using the dichotomous treatment variable (W) 
as one and each independent variable available to the analyst (i.e., each variable in the matrix 
X, one at a time) as another. Chi-square tests may be applied to the case where X is a categor-
ical variable, and an independent samples t test or Wilcoxon rank sum (Mann-Whitney) test 
may be applied to the case where X is a continuous variable. Whenever the null hypothesis is 
rejected as showing the existence of a significant difference between the treated and non-
treated groups on the variable under examination, the researcher may conclude that there is 
a correlation between treatment assignment and outcome that is conditional on an observed 
covariate; therefore, the treatment assignment is not ignorable, and taking remedial measures 
to correct the violation is warranted. Although this method is popular, it is worth noting that 
Rosenbaum (2002b) cautioned that no statistical evidence exists that supports the validity of 
this convention, because this assumption is basically untestable.

To demonstrate that the ignorable treatment assignment is nothing more than the same 
assumption of ordinary least squares (OLS) regression about the independence of the error 
term from an independent variable, we present evidence of the associative relation between 
the two assumptions. In the OLS context, the assumption is also known as contemporaneous 
independence of the error term from the independent variable or, more generally, exogeneity.

To analyze observational data, an OLS regression model using a dichotomous indicator 
may not be the best choice. To understand this problem, consider the following OLS regres-
sion model: Yi = a + tWi + ′Xi

b + ei, where Wi is a dichotomous variable indicating treat-
ment, and Xi is the vector of independent variables for case i. In observational data, 
because researchers have no control over the assignment of treatment conditions, W is 
often highly correlated with Y. The use of statistical controls—a common technique in the 
social and health sciences—involves a modeling process that attempts to extract the inde-
pendent contribution of explanatory variables (i.e., the vector X) to the outcome Y to deter-
mine the net effect of t. When the ignorable treatment assignment assumption is violated 
and the correlation between W and e is not equal to 0, the OLS estimator of treatment effect 
t is biased and inconsistent. More formally, under this condition, there are three problems 
associated with the OLS estimator.

First, when the treatment assignment is not ignorable, the use of the dummy variable W 
leads to endogeneity bias. In the above regression equation, the dummy variable W is con-
ceptualized as an exogenous variable. In fact, it is a dummy endogenous variable. The 
nonignorable treatment assignment implies a mechanism of selection; that is, there are 
other factors determining W. W is merely an observed variable that is determined by a 
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CHAPTER 2    Counterfactual Framework  and Assumptions 31

latent variable W∗ in such a way that W = 1, if W∗ > C, and W = 0, otherwise, where C is a 
constant reflecting a cutoff value of utility function. Factors determining W∗ should be 
explicitly taken into consideration in the modeling process. Conceptualizing W as a dummy 
endogenous variable motivated Heckman (1978, 1979) to develop the sample selection 
model and Maddala (1983) to develop the treatment effect model. Both models attempt to 
correct for the endogeneity bias. See Chapter 4 for a discussion of these models.

Second, the presence of the endogeneity problem (i.e., the independent variable is not 
exogenous and is correlated with the error term of the regression) leads to a biased and 
inconsistent estimation of the regression coefficient. Our demonstration of the adverse 
consequence follows Berk (2004). For ease of exposition, assume all variables are mean 
centered, and there is one predictor in the model:

	 y|x = b1x + e.	 (2.8)

The least squares estimate of b1
ˆ  is

	 β1
1

1

2

ˆ = =

=

Σ

Σ
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i i

i
i

n

x y

x
. 	 (2.9)

Substituting Equation 2.8 into Equation 2.9 and simplifying, the result is

	 β β1 1
1
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ˆ = + =

=
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i i

i
i

n

x e

x
	 (2.10)

If x and e are correlated, the expected value for the far right-hand term will be nonzero, 
and the numerator will not go to zero as the sample size increases without limit. The least 
squares estimate then will be biased and inconsistent. The presence of a nonzero correlation 
between x and e may be due to one or more of the following reasons: (a) the result of 
random measurement error in x, (b) one or more omitted variables correlated with x and 
y, (c) the incorrect functional form, and (d) a number of other problems (Berk, 2004, used 
with permission).

This problem is also known as asymptotical bias, which is a term that is analogous to 
inconsistency. Kennedy (2003) explained that when contemporaneous correlation is pres-
ent, “the OLS procedure, in assigning ‘credit’ to regressors for explaining variation in the 
dependent variable, assigns, in error, some of the regressors with which that disturbance is 
contemporaneously correlated” (p. 158). Suppose that the correlation between the inde-
pendent variable and the error term is positive. When the error is higher, the dependent 
variable is also higher, and owing to the correlation between the error and the independent 
variable, the independent variable is likely to be higher, which implies that too much credit 
for making the dependent variable higher is likely to be assigned to the independent vari-
able. Figure 2.1 illustrates this scenario. If the error term and the independent variable are 
positively correlated, negative values of the error will tend to correspond to low values of 
the independent variable, and positive values of the error will tend to correspond to high 
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PROPENSITY SCORE ANALYSIS32

values of the independent variable, which will create data patterns similar to that shown in 
the figure. The OLS estimating line clearly overestimates the slope of the true relationship. 
Obviously, the estimating line in this hypothetical example provides a much better fit to 
the sample data than does the true relationship, which causes the variance of the error 
term to be underestimated.

Finally, in observational studies, because researchers have no control over the assignment 
of treatment conditions, W is often correlated with Y. A statistical control is a modeling process 
that attempts to extract the independent contribution of explanatory variables to the outcome 
to determine the net effect of t. Although the researcher aims to control for all important 
variables by using a well-specified matrix X, the omission of important controls often occurs 
and results in a specification error. The consequence of omitting relevant variables is a biased 
estimation of the regression coefficient. We follow Greene (2003, pp. 148–149) to show why 
this is the case. Suppose that a correctly specified regression model would be

	 y = X1b1 + X2b2 + ee ,	 (2.11)

where the two parts of X have K1 and K2 columns, respectively. If we regress y on X1 without 
including X2, then the estimator is

	 b y1 1 1
1

1 1 1 1
1

1 2 2 1 1
1

1= = + +− − −( ) ( ) ( )X X X X X X X X X X′ ′ ′ ′ ′ ′β β ε. 	 (2.12)
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OLS estimating line

True relationship

Figure 2.1 Positive Contemporaneous Correlation

Source: Kennedy (2003), p.158. Copyright  2003 Massachusetts Institute of Technology. Reprinted by permission of The MIT 
Press.
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Taking the expectation, we see that unless ′X1 X2 = 0 or bb2  = 0, b1 is biased. The well-
known result is the omitted variable formula

	 E[b1|X] = bb1  + P1.2
bb2 ,	 (2.13)

where

	 P1.2 = ( ′X1 X1)
−1 ′X1 X2.	 (2.14)

Each column of the K1 × K2 matrix P1.2 is the column of slopes in the least squares 
regression of the corresponding column of X2 on the column of X1.

When the ignorable treatment assignment assumption is violated, remedial action is 
needed. The popular use of statistical controls with OLS regression is a choice that 
involves many risks. In Section 2.5, we review alternative approaches that have been 
developed to correct for biases under the condition of nonignorable assignment (e.g., the 
Heckman sample selection model directly modeling the endogenous dummy treatment 
condition) and approaches that relax the fundamental assumption to focus on a special 
type of treatment effect (e.g., average treatment effect for the treated rather than sample 
average treatment effect).

2.4 THE STABLE UNIT TREATMENT VALUE ASSUMPTION

The stable unit treatment value assumption (SUTVA) was labeled and formally presented by 
Rubin in 1980. Rubin (1986) later extended this assumption, arguing that it plays a key role 
in deciding which questions are adequately formulated to have causal answers. Only under 
SUTVA is the representation of outcomes by the Neyman-Rubin counterfactual model 
adequate.

Formally, consider the situation with N units indexed by i = 1, . . . , N; T treatments 
indexed by w = 1, . . . , T; and outcome variable Y, whose possible values are represented 
by Yiw(w = 1, . . . , T; i = 1, . . . , N).6 SUTVA is simply the a priori assumption that the value 
of Y for unit i when exposed to treatment w will be the same no matter what mechanism 
is used to assign treatment w to unit i and no matter what treatments the other units 
receive, and this holds for all i = 1, . . . , N and all w = 1, . . . , T.

As it turns out, SUTVA basically imposes exclusive restrictions. Heckman (2005, p. 11) 
interprets these exclusive restrictions as the following two circumstances: (1) SUTVA rules 
out social interactions and general equilibrium effects, and (2) SUTVA rules out any effect 
of the assignment mechanism on potential outcomes.

We previously examined the importance of the second restriction (ignorable treatment 
assignment) in Section 2.3. The following section explains the importance of the first 
restriction and describes the conditions under which the assumption is violated.

According to Rubin (1986), SUTVA is violated when unrepresented versions of treatment 
exist (i.e., Yiw depends on which version of treatment w is received) or when there is inter-
ference between units (i.e., Yiw depends on whether i′ received treatment w or w′, where  
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i ≠ i′ and w ≠ w′). The classic example of violation of SUTVA is the analysis of treatment 
effects in agricultural research, such as rainfall that surreptitiously carries fertilizer from a 
treated plot to an adjacent untreated plot. In social behavioral evaluations, SUTVA is vio-
lated when a treatment alters social or environmental conditions that, in turn, alter poten-
tial outcomes. Winship and Morgan (1999) illustrated this idea by describing the impact of 
a large job training program on local labor markets:

Consider the case where a large job training program is offered in a metropolitan 
area with a competitive labor market. As the supply of graduates from the 
program increases, the wage that employers will be willing to pay graduates of the 
program will decrease. When such complex effects are present, the powerful 
simplicity of the counterfactual framework vanishes. (p. 663)

SUTVA is both an assumption that facilitates investigation or estimation of counterfactuals 
and a conceptual perspective that underscores the importance of analyzing differential 
treatment effects with appropriate estimators. We return to SUTVA as a conceptual 
perspective in Section 2.7.

It is noteworthy that Heckman and his colleagues (Heckman et al., 1999) treated SUTVA 
as a strong assumption and presented evidence against the assumption. The limitations 
imposed by the strong assumption may be overcome by relaxed assumptions (Heckman & 
Vytlacil, 2005).

2.5 METHODS FOR ESTIMATING TREATMENT EFFECTS

As previously discussed in Section 2.3, violating the ignorable treatment assignment 
assumption has adverse consequences. Indeed, when treatment assignment is not ignor-
able, the OLS regression estimate of treatment effect is likely to be biased and inefficient. 
Furthermore, the consequences are worse when important predictors are omitted and in 
an observational study when hidden selection bias is present (Rosenbaum, 2002b). What 
can be done? This question served as the original motivation for statisticians and econo-
metricians to develop new methods for program evaluation. As a part of this work, new 
analytic models have been designed for observational studies and, more generally, for 
nonexperimental approaches that may be used when treatment assignment is ignorable. 
The growing consensus among statisticians and econometricians is that OLS regression or 
simple covariance control is no longer the method of choice, although this statement runs 
the risk of oversimplification.

2.5.1 Design of Observational Study
Under the counterfactual framework, violations of the ignorable treatment assignment and 
SUTVA assumptions may be viewed as failures in conducting a randomized experiment, 
although the failures may cover a range of situations, such as failure to conduct an experiment 
in the first place, broken randomization due to treatment noncompliance or randomized stud-
ies that suffer from attrition, or the use of an inadequate number of units in randomization such 
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CHAPTER 2    Counterfactual Framework  and Assumptions 35

that randomization cannot fully balance data. To correct for these violations, researchers need 
to have a sound design. Choosing an appropriate method for data analysis should be guided by 
the research design. Numerous scholars underscore the importance of having a good design 
for observational studies. Indeed, Rosenbaum (2010) labeled his book as the Design of 
Observational Studies to emphasize the relevance and importance of design in the entire busi-
ness of conducting observational research and evaluation. And, one of Rubin's best-known 
articles, published in 2008, is titled “For Objective Causal Inference, Design Trumps Analysis.”

From the perspective of statistical tradition, observational studies aim to accomplish the 
same goal of causal inference as randomized experiments; therefore, the first design issue 
is to view observational studies as approximations of randomized experiments. Rubin 
(2008) argued, “A crucial idea when trying to estimate causal effects from an observational 
dataset is to conceptualize the observational dataset as having arisen from a complex ran-
domized experiment, where the results used to assign the treatment conditions have been 
lost and must be reconstructed” (p. 815). In this context, addressing the violation of the 
unconfoundedness assumption is analogous to an effort to reconstruct and balance the 
data. Specifically, there are six important tasks involved in the design of observational stud-
ies: (1) conceptualize the observational study as having arisen from a complex randomized 
experiment, (2) understand what was the hypothetical randomized experiment that led to 
the observed data set, (3) evaluate whether the sample sizes in the data set are adequate, 
(4) understand who are the decision makers for treatment assignment and what measure-
ments were available to them, (5) examine whether key covariates are measured well, and 
(6) evaluate whether balance can be achieved on key covariates (Rubin, 2008).

2.5.2 The Seven Models
The seven models presented in this book relax the nonignorable treatment assignment 
assumption: (a) by considering analytic approaches that do not rely on strong assumptions 
requiring distributional and functional forms, (b) by rebalancing assigned conditions so 
that they become more akin to data generated by randomization, and (c) by estimating 
counterfactuals that represent different treatment effects of interest by using a variety of 
statistics (i.e., means, proportions).

In estimating counterfactuals, the seven models have the following core features:

1.	 Heckman’s sample selection model (1978, 1979) and its revision on estimating treat-
ment effects (Maddala, 1983). The crucial features of these models are (a) an explicit mod-
eling of the structure of selection, (b) a switching regression that seeks exogenous factors 
determining the switch of study participants between two regimes (i.e., the treated and 
nontreated regimes), and (c) the use of the conditional probability of receiving treatment 
in the estimation of treatment effects.

2.	 Propensity score matching model (Rosenbaum, 2002b; Rosenbaum & Rubin, 1983). 
The fundamental feature of the propensity score matching model is that it balances data 
through resampling or matching nontreated participants to treated ones on probabilities 
of receiving treatment (i.e., the propensity scores) and permits follow-up bivariate or mul-
tivariate analysis (e.g., stratified analysis of outcomes within quintiles of propensity scores, 
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OLS regression, survival modeling, structural equation modeling, hierarchical linear mod-
eling) as would be performed on a sample generated by a randomized experiment. 
Reducing the dimensionality of covariates to a one-dimensional score—the propensity—is 
a substantial contribution that leverages matching. From this perspective, the estimation 
of propensity scores and use of propensity score matching is the “most basic ingredient of 
an unconfounded assignment mechanism” (Rubin, 2008, p. 813). Addressing the reduction 
of sample sizes from greedy (e.g., 1:1) matching, an optimal matching procedure using 
network flow theory can retain the original sample size where the counterfactuals are 
based on an optimally full matched sample or optimally matched sample using variable 
ratios of treated to untreated participants. Estimation of counterfactuals may employ mul-
tilevel modeling procedures to account for clustering effects that exist in both the model 
estimating the propensity scores and the model for outcome analysis.

3.	 Propensity score subclassification model (Rosenbaum & Rubin, 1983, 1984). Extending 
the classic work of Cochran (1968), Rosenbaum and Rubin proved that balancing on pro-
pensity scores represents all available covariates and yields a one-dimensional score 
through which one can successfully perform subclassification. The procedure involves 
estimating the counterfactual for each subclass obtained through propensity score subclas-
sification, aggregating counterfactuals from all subclasses to estimate the average treatment 
effect for the entire sample and the variance associated with it, and finally testing whether 
the treatment effect for the sample is statistically significant. Structural equation modeling 
(SEM) may be performed in conjunction with subclassification, and a test of subclass differ-
ences of key SEM parameters is often a built-in procedure in this type of analyses.

4.	 Propensity score weighting model (Hirano & Imbens, 2001; Hirano et al., 2003; 
McCaffrey et al. 2004). The key feature of this method is the treatment of estimated pro-
pensity scores as sampling weights to perform a weighted outcome analysis. Counterfactuals 
are estimated through a regression or regression-type model, and the control of selection 
biases is achieved through weighting, rather than a direct inclusion of covariates as inde-
pendent variables in a regression model.

5.	 Matching estimators model (Abadie & Imbens, 2002, 2006). The key feature of this 
method is the direct imputation of counterfactuals for both treated and nontreated par-
ticipants by using a vector norm with a positive definite matrix (i.e., the Mahalanobis met-
ric or the inverse of sample variance matrix). Various types of treatment effects may be 
estimated: (a) the sample average treatment effect (SATE), (b) the sample average treatment 
effect for the treated (SATT), (c) the sample average treatment effect for the controls (SATC), 
and (d) the equivalent effects for the population (i.e., population average treatment effect 
[PATE], population average treatment effect for the treated [PATT], and population average 
treatment effect for the controls [PATC]). Standard errors corresponding to these sample 
average treatment effects are developed and used in significance tests.

6.	 Propensity score analysis with nonparametric regression model (Heckman, Ichimura, 
& Todd, 1997, 1998). The critical feature of this method is the comparison of each treated 
participant to all nontreated participants based on distances between propensity scores. A 
nonparametric regression such as local linear matching is used to produce an estimate of 
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the average treatment effect for the treatment group. By applying the method to data at two 
time points, this approach estimates the average treatment effect for the treated in a 
dynamic fashion, known as difference-in-differences.

7.	 Propensity score analysis of categorical or continuous treatments model (Hirano & 
Imbens, 2004; Imbens, 2000; Joffe & Rosenbaum, 1999). This class of methods is an exten-
sion of propensity score analysis of binary treatment conditions to multiple treatment 
levels, where the researchers are primarily interested in the effects of treatment dosage. 
Counterfactuals are estimated either through a single scalar of propensity scores (Joffe & 
Rosenbaum, 1999) or through estimating generalized propensity scores (GPS). The GPS 
(Hirano & Imbens, 2004) approach involves the following steps: estimating GPS using a 
maximum likelihood regression, estimating the conditional expectation of the outcome 
given the treatment and GPS, and estimating the dose-response function to discern treat-
ment effects as well as their 95% confidence bands.

It is worth noting that all the models or methods were not originally developed to correct 
for nonignorable treatment assignment. Quite the contrary, some of these models still 
assume that treatment assignment is strongly ignorable. According to Rosenbaum and 
Rubin (1983), showing “strong ignorability” allows analysts to evaluate a nonrandomized 
experiment as if it had come from a randomized experiment. However, in many evaluations, 
this assumption cannot be justified. Notwithstanding, in most studies, we wish to conduct 
analyses under the assumption of ignorability (Abadie, Drukker, Herr, & Imbens, p. 292).

Instead of correcting for the violation of the assumption about strongly ignorable treatment 
assignment, the corrective approaches (i.e., the methods covered in this book) take various 
measures to control selection bias. These include, for example, (a) relaxation of the assump-
tion (e.g., instead of assuming conditional independence or full independence [Heckman, 
Ichimura, & Todd, 1997, 1998] or assuming mean independence by only requiring that condi-
tional on covariates, the mean outcome under control condition for the treated cases be equal 
to the mean outcome under the treated condition for the controls), (b) modeling the treatment 
assignment process directly by treating the dummy treatment condition as an endogenous 
variable and using a two-step estimating procedure (i.e., the Heckman sample selection 
model), (c) developing a one-dimensional propensity score so that biases due to observed 
covariates can be removed by conditioning solely on the propensity score (i.e., Rosenbaum 
and Rubin’s propensity score matching model and Heckman and colleagues’ propensity score 
analysis with nonparametric regression), and (d) employing bias-corrected matching with a 
robust variance estimator to balance covariates between treatment conditions (i.e., the match-
ing estimators). Because of these features, the methods we describe offer advantages over OLS 
regression, regression-type models, and other simple corrective methods. Rapidly being devel-
oped and refined, propensity score methods are showing usefulness when compared with 
traditional approaches. Parenthetically, most of these methods correct for overt selection bias 
only. The sample selection and treatment effect models are exceptions that may partially cor-
rect for hidden selections. But, on balance, the models do nothing to directly correct for hidden 
selection bias. It is for this reason that the randomized experiment remains a gold standard. 
When properly implemented, it corrects for both overt and hidden selection bias.
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2.5.3 Other Balancing Methods
We chose to include seven models in this text because they are robust, efficient, and effec-
tive in addressing questions that arise commonly in social behavioral and health evalua-
tions. Although the choice of models is based on our own experience, many applications 
can be found in biostatistics, business, economics, education, epidemiology, medicine, 
nursing, psychology, public health, social work, and sociology.

There are certainly other models that accomplish the same goal of balancing data. To 
offer a larger perspective, we provide a brief review of additional models.

Imbens (2004) summarized five groups of models that serve the common goal of estimating 
average treatment effects: (1) regression estimators that rely on consistent estimation of key 
regression functions; (2) matching estimators that compare outcomes across pairs of matched 
treated and control units, with each unit matched to a fixed number of observations in the 
opposite treatment; (3) estimators characterized by a central role of the propensity score (i.e., 
there are four leading approaches in this category: weighting by the reciprocal of the propensity 
score, blocking on the propensity score, regression on the propensity score, and matching on 
the propensity score); (4) estimators that rely on a combination of these methods, typically 
combining regression with one of its alternatives; and (5) Bayesian approaches to inference for 
average treatment effects. In addition, Winship and Morgan (1999) and Morgan and Winship 
(2007) reviewed five methods, including research designs that are intended to improve causal 
interpretation in the context of nonignorable treatment assignment. These include (1) regres-
sion discontinuity designs, (2) instrumental variables (IV) approaches, (3) interrupted time-
series designs, (4) differential rate of growth models, and (5) analysis of covariance models.

Separate from mainstream propensity score models and advances in design, other 
approaches to causal inference warrant attention. James Robins, for example, developed 
analytic methods known as marginal structural models that are appropriate for drawing 
causal inferences from complex observational and randomized studies with time-varying 
exposure of treatment (Robins, 1999a, 1999b; Robins, Hernn, & Brumback, 2000). Judea 
Pearl (2000) and others (Glymour & Cooper, 1999; Spirtes, Glymour, & Scheines, 1993) 
developed a formal framework to determine which of many conditional distributions 
could be estimated from data using an approach known as directed acyclic graphs.

Of these models, the IV approach shares common features with some models discussed 
in this book, particularly, the switching regression model described in Chapter 4. The IV 
approach is among the earliest attempts in econometrics to address the endogeneity bias 
problem, and it has been shown to be useful in estimating treatment effects. Because of its 
similarities with approaches discussed in this book as well as its popularity in correcting 
the endogeneity problem when randomized experimentation is not feasible, we give it a 
detailed review. We also briefly describe the basic ideas of regression discontinuity designs 
so that readers are aware of how the same analytic issues can be addressed by methods 
other than propensity score analysis. We do not intend to provide a lengthy treatment of 
either of these two methods because they are not based on propensity scores.

2.5.4 Instrumental Variables Estimator
After OLS regression, the instrumental variable (IV) approach is perhaps the second most 
widely practiced method in economic research (Wooldridge, 2002). As mentioned earlier, 
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selection bias is a problem of endogeneity in regression analysis. That is, the lack of a ran-
domization mechanism causes the residual term in regression to be correlated with one or 
more independent variables. To solve the problem, researchers may find an observed vari-
able z1 that satisfies the following two conditions: z1 is not correlated with the residual 
term, but z1 is highly correlated with the independent variable that causes endogeneity. If 
z1 meets these two conditions, then z1 is called an instrumental variable. The instrument z1 
may not necessarily be a single variable and can be a vector that involves two or more 
variables. Under this condition, researchers can use a two-stage least squares estimator to 
estimate the regression coefficients and treatment effects. Together, the method using 
either a single or a vector of instrumental variables is called the instrumental variables 
estimator. Following Wooldridge (2002), we describe the basic setup of IV next.

Formally, consider a linear population model:

	 y = b0 + b1x1 + b2x2 +  . . .  + bKxK + e.	 (2.15)

E(ε) = 0, Cov(xj, e) = 0, Cov(xk, e) ≠ 0, j=1, . . . , K − 1.

Note that in this model, xK is correlated with e (i.e., Cov(xK, e) ≠ 0), and xK is potentially 
endogenous. To facilitate the discussion, we think of e as containing one omitted variable 
that is uncorrelated with all explanatory variables except xK. In the practice of IV, researchers 
could consider a set of omitted variables. Under such a condition, the model would use 
multiple instruments. All omitted variables meeting the required conditions are called 
multiple instruments. 

To solve the problem of endogeneity bias, the analyst needs to find an observed variable, 
z1, that satisfies the following two conditions: (1) z1 is uncorrelated with e, or Cov(z1, e) = 0, 
and (2) z1 is correlated with xk, meaning that the linear projection of xk onto all exogenous 
variables exists. This is otherwise stated as

x x x x z rK K K K= + + + + + +− −δ δ δ δ θ0 1 1 2 2 1 1 1 1. . . ,  

where, by definition, E(rK) = 0 and rK is uncorrelated with x1, x2, . . . and xK − 1, z1; the key 
assumption is that the coefficient on z1 is nonzero, or θ1 0≠ .

Next, consider the model (i.e., Equation 2.15)

	 y = xbb  + ee,	 (2.16)

where the constant is absorbed into x so that x = (1, x2,  . . .  , xk). Write the 1 × K vector of 
all exogenous variables as z = (1, x2,  . . .  , xK − 1, z1). The preceding two conditions about z1 
imply the K population orthogonality conditions, or

	 E(z′ee ) = 0.	 (2.17)

Multiplying Equation 2.16 through by z′, taking expectations, and using Equation 2.17, 
we have

	 [E(z′x)]bb  = E(z′y),	 (2.18)
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where E(z′x) is K × K and E(z′y) is K × 1. Equation 2.18 represents a system of K linear 
equations in the K unknowns b1, . . . , bK. This system has a unique solution if and only if 
the K × K matrix E(z′x) has full rank, or the rank of E(z′x) is K. Under this condition, the 
solution to bb  is

bb  = [E(z′x)]–1 = E(z′y).

Thus, given a random sample {(xi, yi, zi): i = 1, 2, . . . , N} from the population, the 
analyst can obtain the instrumental variables estimator of bb  as

	 ˆ ( )ββ = ∑( ) ∑( ) =−

=

−
−

=

−N N
N N

1

1

1
1

1

1z x z y Z X Z Y′ ′ ′ ′i
i

i i
i

i 	 (2.19)

The above model (2.19) specifies one instrumental variable, z1. In practice, the analyst 
may have more than one instrumental variable for xk, such as M instruments of xk (i.e., 
z1,  . . .  , zM). Define the vector of exogenous variables as z = (1, x1, x2, . . . , xK − 1, z1, . . .  , 
zM). Estimated regression coefficients for x1, x2, . . . , xK – 1, xK can be obtained through the 
following two stages: (1) obtain the fitted values of x̂K  from the regression xK on x1, x2, . . . , 
xK – 1, z1, . . . , zM, which is called the first-stage regression, and (2) run the regression y on 
x1, x2, . . . , xK – 1, x̂K

 to obtain estimated regression coefficients, which is called the second-
stage regression. For each observation i, define the vector ˆ ( , , ˆx 1,x . . . x ,x ),i i1 i,K 1 iK= − i = 1, 
2,  . . .  N. Using x̂i

 from the second-stage regression gives the IV estimator

	 ˆ ˆ ˆ ˆ ˆ ,ββ = ∑( ) ∑( ) = ( )
=

−

=

−
x x x y X X X Y′ ′ ′ ′i i

i

N

i i
i

N

1

1

1

1
	 (2.20)

where unity is also the first element of xi. For details of the IV model with multiple 
instruments, readers are referred to Wooldridge (2002, pp. 90-92).

The two-stage least squares estimator under certain assumptions is the most efficient IV 
estimator. Wooldridge (2002, pp. 92–97) gives a formal treatment to this estimator and 
provides proofs for important properties, including consistency, asymptotic normality, and 
asymptotic efficiency, of the two-stage least squares estimator.

In practice, finding instrumental variables can be challenging. It is often difficult to find 
an instrumental variable z1 (or M instrumental variables z1, . . . , zM) that meets the two 
conditions required by the procedure; namely, the instrument is not correlated with the 
residual of the regression model that suffers from endogeneity but it is highly correlated 
with the independent variable that causes endogeneity. The application of the IV approach 
requires a thorough understanding of the study phenomenon; processes generating all 
study variables, including  exogenous variables that produce  endogeneity problems; inde-
pendent variables used in the regression model; variables that are not used in the regression; 
and the outcome variable and its relationships with the independent variables used and not 
used in the regression. In essence, the IV model requires that researchers have an excellent 
understanding of the substantive theories as well as the processes generating the data.

Although finding good instruments is challenging, innovative studies have employed 
interesting IVs and applied the approach to address challenging research questions. For 
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instance, in a study on the effects of education on wages, the residual of the regression 
equation is correlated with education because it contains omitted ability. Angrist and 
Krueger (1991) used a dichotomous variable indicating whether a study subject was born 
in the first quarter of the birth year (= 1 if the subject was born in the first quarter and 0 
otherwise). They argued that compulsory school attendance laws induce a relationship 
between education and the quarter of birth: At least some people are forced, by law, to 
attend school longer than they otherwise would. The birth quarter in this context is obvi-
ously random and not correlated with other omitted variables of the regression model. 
Another well-known example of an IV is the study of the effect of serving in the Vietnam 
War on the earnings of men (Angrist, 1990). Prior research showed that participation in the 
military is not necessarily exogenous to unobserved factors that affect earnings even after 
controlling for education, nonmilitary experience, and so on. Angrist (1990) found that 
men with a lower draft lottery number were more likely to serve in the military during the 
Vietnam War, and hence, he used the draft lottery number, initiated in 1969, as an instru-
ment of the binary Vietnam War participation indicator. A similar idea (i.e., of using lottery 
number as an instrument for serving in the army during the Vietnam War) was employed 
in a well-known study estimating the effect of veteran status on mortality (Angrist et al., 
1996). The study employed an IV to estimate local average treatment effect. Angrist et al. 
(1996) showed

how the IV estimand can be given a precise and straightforward causal 
interpretation in the potential outcomes framework, despite nonignorability of 
treatment received. This interpretation avoids drawbacks of the standard structural 
equation framework, such as constant effects for all units, and delineates critical 
assumptions needed for a causal interpretation. The IV approach provides an 
alternative to a more conventional intention-to-treat analysis, which focuses solely 
on the average causal effect of assignment on the outcome. (p. 444)

Other studies that have chosen instrumental variables cleverly and innovatively include 
the Hoxby (1994) study that used topographic features—natural boundaries created by 
rivers—as the IV for the concentration of public schools within a school district, where the 
author was interested in estimating the effects of competition among public schools on 
student performance; the Evans and Schwab (1995) study examining the effects of attend-
ing a Catholic high school on various outcomes, in which the authors used whether a 
student was Catholic as the IV for attending a Catholic high school; and the Card (1995a) 
study on the effects of schooling on wages, where the author used a dummy variable that 
indicated whether a man grew up in the vicinity of a 4-year college as an instrumental 
variable for years of schooling. Wooldridge (2002, pp. 87–89) provides an excellent review 
and summary of these studies. It’s worth noting that just like the propensity score approach, 
these IV studies are also controversial and have triggered debates and criticisms. Opponents 
primarily challenge the problem of a weak correlation between the instruments and the 
endogenous explanatory variable in these studies (e.g., Bound, Jaeger, & Baker, 1995; 
Rothstein, 2007).

The debate regarding the advantages and disadvantages of the IV approach is ongoing. 
In addition to empirical challenges in finding good instruments, Wooldridge (2002) finds 
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two potential pitfalls with the two-stage least squares estimator: (1) Unlike OLS under a 
zero conditional mean assumption, IV methods are never unbiased when at least one 
explanatory variable is endogenous in the model, and (2) the standard errors estimated by 
the two-stage least squares or other IV estimators have a tendency to be “large,” which 
may lead to insignificant coefficients or standard errors that are much larger than those 
estimated by OLS. Heckman (1997) examined the use of the IV approach to estimate the 
mean effect of treatment on the treated, the mean effect of treatment on randomly 
selected persons, and the local average treatment effect. He paid special attention to which 
economic questions were addressed by these parameters and concluded that when 
responses to treatment vary, the standard argument justifying the use of instrumental 
variables fails unless person-specific responses to treatment do not influence the decision 
to participate in the program being evaluated. This condition requires that participant 
gains from a program—which cannot be predicted from variables in outcome equations—
have no influence on the participation decisions of program participants.

2.5.5 Regression Discontinuity Designs
Regression discontinuity designs (RDDs) have also drawn the attention of a growing num-
ber of researchers. These designs have been increasingly employed in evaluation studies. 
RDD is a quasi-experimental approach that evaluates the treatment effect by assigning a 
cutoff or threshold value above or below which a treatment is assigned. By comparing 
observations lying closely on either side of the threshold, it is possible to estimate the local 
treatment effect. The method is similar to an interrupted time-series design that compares 
outcomes before and after an intervention, except that the treatment in RDD is a function 
of a variable other than time. The RDD method was first proposed by Thistlewaite and 
Campbell (1960) when they analyzed the effect of student scholarships on career aspira-
tions. In practice, researchers using RDD may distinguish between two general settings: the 
sharp and the fuzzy regression discontinuity designs. The estimation of treatment effects 
with both designs can be obtained using a standard nonparametric regression approach 
such as lowess with an appropriately specified kernel function and bandwidth (Imbens & 
Lemieux, 2008).

Discontinuity designs have two assumptions: (1) Treatment assignment is equally as 
good as random selection at the threshold for treatment, and (2) individuals are sampled 
independently. Violations of these assumptions lead to biased estimation of treatment 
effects. The most severe problem with RDD is misspecification of the functional form of 
the relation between treatment and outcome. Specifically, users run the risk of misinter-
preting a nonlinear relationship between treatment and outcome as a discontinuity. Coun-
terfactual values must be extrapolated from observed data below and above the application 
of the treatment. If the assumptions built into the RDD of extrapolation are unreasonable, 
then causal estimates are incorrect (Morgan & Winship, 2007).

Propensity score methods fall within the broad class of procedures being developed for 
use when random assignment is not possible or is compromised. These procedures include 
IV analysis and regression discontinuity designs. They include also directed acyclic graphs 
and marginal structural models. In the remaining chapters of the book, we describe seven 
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propensity score models that have immediate applications in the social and health sciences 
and for which software is generally available. We focus on in vivo application more than 
on theory and proofs. We turn now to basic ideas underlying all seven models.

2.6 THE UNDERLYING LOGIC OF STATISTICAL INFERENCE

When a treatment is found to be effective (or not effective), evaluators often want to gen-
eralize the finding to the population represented by the sample. They ask whether or not 
the treatment effect is zero (i.e., perform a nondirectional test) or is greater (less) than some 
cutoff value (i.e., perform a directional test) in the population. This is commonly known as 
statistical inference, a process of estimating unknown population parameters from known 
sample statistics. Typically, such an inference involves the calculation of a standard error 
to conduct a hypothesis test or to estimate a confidence interval.

The statistical inference of treatment effects stems from the tradition of randomized 
experimentation developed by Sir Ronald Fisher (1935/1971). The procedure is called a 
permutation test (also known as a randomization test, a re-randomization test, or an exact 
test) in that it makes a series of assumptions about the sample. When generalizing, 
researchers often find that one or more of these assumptions are violated, and thus, they 
have to develop strategies for statistical inference that deal with estimation when assump-
tions are differentially tenable. In this section, we review the underlying logic of statistical 
inference for both randomized experiments and observational studies. We argue that much 
of the statistical inference in observational studies follows the logic of statistical inference 
for randomized experiments and that checking the tenability of assumptions embedded in 
permutation tests is crucial in drawing statistical inferences for observational studies.

Statistical inference always involves a comparison of sample statistics to statistics from a 
reference distribution. Although in testing treatment effects from a randomized experiment, 
researchers often employ a parametric distribution (such as the normal distribution, the t 
distribution, and the F distribution) to perform a so-called parametric test, such a paramet-
ric distribution is not the reference distribution per se; rather, it is an approximation of a 
randomization distribution. Researchers use parametric distributions in significance testing 
because these distributions “are approximations to randomization distributions—they are 
good approximations to the extent that they reproduce randomization inferences with 
reduced computational effort” (Rosenbaum, 2002a, p. 289). Strictly speaking, all statistical 
tests performed in randomized experiments are nonparametric tests using randomization 
distributions as a reference. Permutation tests are based on reference distributions devel-
oped by calculating all possible values of a test statistic under rearrangements of the “labels” 
on the observed data points. In other words, the method by which treatments are allocated 
to participants in an experimental design is mirrored in the analysis of that design. If the 
labels are exchangeable under the null hypothesis, then the resulting tests yield exact  
significance levels. Confidence intervals can then be derived from the tests.

Recall the permutation test of a British woman’s tea-tasting ability (see Section 1.3.1). 
To reject the null hypothesis that the taster has no ability in discriminating two kinds  
of tea (or, equivalently, testing the hypothesis that she makes a correct judgment by 
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accidentally guessing it right), the evaluator lists all 70 possible ways—that is, 

n rC C
n

r n r
= =

−( )
= =8 4

8
4 4

70
!

! !
!

! !
—of presenting eight cups of tea with four cups adding 

the milk first and four cups adding the tea infusion first. That is, the evaluator builds a 
reference distribution of “11110000, 10101010, 00001111, . . .” that contains 70 elements 
in the series. The inference is drawn on a basis of the following logic: The taster could 
guess (choose) any one outcome out of the 70 possible ones; the probability of guessing 
the right outcome is 1/70 = .0124, which is a low probability; thus, the null hypothesis 
of “no ability” can be rejected at a statistical significance level of p < .05. If the definition 
of “true ability” is relaxed to allow for six exact agreements rather than eight exact 
agreements (i.e., six cups are selected in an order that matches the order of actual pre-
sentation), then there are a total of 17 possible ways to have six agreements, and the 
probability of falsely rejecting the null hypothesis increases to 17/70 = .243. The null 
hypothesis cannot be rejected at a .05 level. Under this relaxed definition, we should be 
more conservative, or ought to be more reluctant, in declaring that the tea taster has true 
ability.

All randomization tests listed in Section 1.3.2 (i.e., Fisher’s exact test, the Mantel-
Haenszel test, McNemar’s test, Mantel’s extension of the Mantel-Haenszel test, Wilcoxon’s 
rank sum test, and the Hodges and Lehmann signed rank test) are permutation tests that 
use randomization distributions as references and calculate all possible values of the test 
statistic to draw an inference. For this reason, this type of test is called nonparametric—it 
relies on distributions of all possible outcomes. In contrast, parametric tests employ para-
metric distributions as references. To illustrate, we now follow Lehmann to show the under-
lying logic of statistical inference employed in Wilcoxon’s rank sum test (Lehmann, 2006).

Wilcoxon’s rank sum test may be used to evaluate an outcome variable that takes many 
numerical values (i.e., an interval or ratio variable). To evaluate treatment effects, N par-
ticipants (patients, students, etc.) are divided at random into a group of size n that receives 
a treatment and a control group of size m that does not receive treatment. At the termina-
tion of the study, the participants are ranked according to some response that measures 
treatment effectiveness. The null hypothesis of no treatment effect is rejected, and the 
superiority of the treatment is acknowledged, if in this ranking the n treated participants 
rank sufficiently high. The significance test calculates the statistical significance or prob-
ability of falsely rejecting the null hypothesis based on the following equation: 

P k c
w
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w
N n N nH

N n
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!/ !

= = =
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, where k is the sum of treated participants’ ranks under 

the null hypothesis of no treatment effect, c is a prespecified value at which one wants to 
evaluate its probability, and w is the frequency (i.e., number of times) of having value k 
under the null hypothesis. Precisely, if there were no treatment effect, then we could think 
of each participant’s rank as attached before assignments to treatment and control are 
made. Suppose we have a total of N = 5 participants; n = 3 are assigned to treatment, and 
m = 2 are assigned to control. Under the null hypothesis of no treatment effect, the five 
participants may be ranked as 1, 2, 3, 4, and 5. With five participants taken three at a time 
to form the treatment group, there are a total of 10 possible groupings 
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10  of outcome ranks under the null hypothesis:
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Treated (3, 4, 5) (2, 4, 5) (1, 4, 5) (2, 3, 5) (1, 3, 5)

Control (1, 2) (1, 3) (2, 3) (1, 4) (2, 4)

Treated (2, 3, 4) (1, 3, 4) (1, 2, 4) (1, 2, 3) (1, 2, 5)

Control (1, 5) (2, 5) (3, 5) (4, 5) (3, 4)

The rank sum of treated participants corresponding to each of the previous groups may 
look like the following:

Treatment 
ranks 

3, 4, 5 2, 4, 5 1, 4, 5 2, 3, 5 1, 3, 5 2, 3, 4 1, 3, 4 1, 2, 4 1, 2, 3 1, 2, 5 

Rank sum 
k

12 11 10 10 9 9 8 7 6 8 

The probabilities of taking various rank sum values under the null hypothesis of no 

treatment effect i.e.,PH
N n

k c
w
C

w
N n N n

( )
!/ ! !

= = =
−( )











 are displayed below:

k 6 7 8 9 10 11 12

PH(k = c) .1 .1 .2 .2 .2 .1 .1

For instance, under the null hypothesis of no treatment effect, there are two possible 
ways to have a rank sum k = 10 (i.e., w = 2, when the treatment group is composed of 
treated participants whose ranks are [1, 4, 5] or is composed of treated participants whose 
ranks are [2, 3, 5]). Because there are a total of 10 possible ways to form the treatment and 
control groups, the probability of having a rank sum k = 10 is 2/10 = .2. The above 
probabilities constitute the randomization distribution (i.e., the reference distribution) for 
this permutation test. From any real sample, one will observe a realized outcome that takes 
any one of the seven k values (i.e., 6, 7, . . . , 12). Thus, a significance test of no treatment 
effect is to compare the observed rank sum from the sample data with the preceding 
distribution and check the probability of having such a rank sum from the reference. If the 
probability is small, then one can reject the null hypothesis and conclude that in the 
population, the treatment effect is not equal to zero.

Suppose that the intervention being evaluated is an educational program that aims to 
promote academic achievement. After implementing the intervention, the program officer 
observes that the three treated participants have academic test scores of 90, 95, 99, and the 
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two control participants have test scores of 87, 89, respectively. Converting these outcome 
values to ranks, the three treated participants have ranks of 3, 4, 5, and the two control 
participants have ranks of 1, 2, respectively. Thus, the rank sum of the treated group 
observed from the sample is 3 + 4 + 5 = 12. This observed statistic is then compared with 
the reference distribution, and the probability of having a rank sum of 12 under the null 
hypothesis of no treatment effect is PH(k = 12) = .1. Because this probability is small, we can 
reject the null hypothesis of no treatment effect at a significance level of .1 and conclude 
that the intervention may be effective in the population. Note that in the preceding illustra-
tion, we used very small numbers of N, n, and m, and thus, the statistical significance for 
this example cannot reach the conventional level of .05—the smallest probability in the 
distribution of this illustrating example is .1. In typical evaluations, N, n, and m tend to be 
larger, and a significance level of .05 can be attained.

Wilcoxon’s rank sum test, as described earlier, employs a randomization distribution 
based on the null hypothesis of no treatment effect. The exact probability of having a rank 
sum equal to a specific value is calculated, and such a calculation is based on all possible 
arrangements of N participants into n and m. The probabilities of having all possible values 
of rank sum based on all possible arrangements of N participants into n and m are then 
calculated, and it is these probabilities that constitute the reference for significance testing. 
Comparing the observed rank sum of treated participants from a real sample with the ref-
erence, evaluators draw a conclusion about whether they can reject the null hypothesis of 
no treatment effect at a statistically significant level.

The earlier illustrations show a primary feature of statistical inference involving permu-
tation tests: These tests build up a distribution that exhausts all possible arrangements of 
study participants under a given N, n, and m and calculate all possible probabilities of having 
a particular outcome (e.g., the specific rank sum of treated participants) under the null 
hypothesis of no treatment effect. This provides a significance test for treatment in a realized 
sample. To make the statistical inference valid, we must ensure that the sample being evalu-
ated meets certain assumptions. At the minimum, these assumptions include the following: 
(a) The sample is a real random sample from a well-defined population, (b) each participant 
has a known probability of receiving treatment, (c) treatment assignment is strongly ignor-
able, (d) the individual-level treatment effect (i.e., the difference between observed and 
potential outcomes ti = Y1i − Y0i) is constant, (e) there is a stable unit treatment value, and  
(f) probabilities of receiving treatment overlap between treated and control groups.

When a randomized experiment in the strict form of Fisher’s definition is implemented, 
all the previous assumptions are met, and therefore, statistical inference using permutation 
tests is valid. Challenges arise when evaluators move from randomized experiments to 
observational studies, because in the latter case, one or more of the preceding assumptions 
are not tenable.

So what is the underlying logic of statistical inference for observational studies? To 
answer this question, we draw on perspectives from Rosenbaum (2002a, 2002b) and 
Imbens (2004). Rosenbaum’s framework follows the logic used in the randomized experi-
ments and is an extension of permutation tests to observational studies. To begin with, 
Rosenbaum examines covariance adjustment in completely randomized experiments. In 
the earlier examples, for simplicity of exposition, we did not use any covariates. In real 

Copyright ©2015 by SAGE Publications, Inc. 
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute



CHAPTER 2    Counterfactual Framework  and Assumptions 47

evaluations of randomized experiments, evaluators typically would have covariates and 
want to control them in the analysis. Rosenbaum shows that testing the null hypothesis of 
no treatment effect in studies with covariates follows the permutation approach, with the 
added task of fitting a linear or generalized linear model. After fitting a linear model that 
controls for covariates, the residuals for both conditions (treatment and control groups) are 
fixed and known; therefore, one can apply Wilcoxon’s rank sum test or similar permutation 
tests (e.g., the Hodges-Lehmann aligned rank test) to model-fitted residuals.

A propensity score adjustment can be combined with the permutation approach in obser-
vational studies with overt bias. “Overt bias . . . can be seen in the data at hand—for instance, 
prior to treatment, treated participants are observed to have lower incomes than controls” 
(Rosenbaum, 2002b, p. 71). In this context, one can balance groups by estimating a propensity 
score, which is a conditional probability of receiving treatment given observed covariates, and 
then perform conditional permutation tests using a matched sample. Once again, the statisti-
cal inference employs the same logic applied to randomized experiments. We describe in 
detail three such permutation tests after an optimal matching on propensity scores (see Chap-
ter 5): regression adjustment of difference scores based on a sample created by optimal pair 
matching, outcome analysis using the Hodges-Lehmann aligned rank test based on a sample 
created by optimal full or variable matching, and regression adjustment using the Hodges-
Lehmann aligned rank test based on a sample created by optimal full or variable matching.

Finally, Rosenbaum considers statistical inference in observational studies with hidden 
bias. Hidden bias is similar to overt bias, but it cannot be seen in the data at hand, because 
measures that might have revealed a selection effect were omitted from data collection. 
When bias exists but is not observable, one can still perform propensity score matching 
and conduct statistical tests by comparing treatment and control participants matched on 
propensity scores. But caution is warranted, and sensitivity analyses should be undertaken 
before generalizing findings to a population. Surprisingly and importantly, the core com-
ponent of Rosenbaum’s sensitivity analysis involves permutation tests, which include 
McNemar’s test, Wilcoxon’s signed rank test, and the Hodges-Lehmann point and interval 
estimates for matched pairs, sign-score methods for matching with multiple controls, 
sensitivity analysis for matching with multiple controls when responses are continuous 
variables, and sensitivity analysis for comparing two unmatched groups. We review and 
illustrate some of these methods in Chapter 11.

In 2004, Imbens reviewed inference approaches using nonparametric methods to esti-
mate average treatment effects under the unconfoundedness assumption (i.e., the ignor-
able treatment assignment assumption). He discusses advances in generating sampling 
distributions by bootstrapping (a method for estimating the sampling distribution of an 
estimator by sampling with replacement from the original sample) and observes,

There is little formal evidence specific for these estimators, but, given that the 
estimators are asymptotically linear, it is likely that bootstrapping will lead to valid 
standard errors and confidence intervals at least for the regression propensity 
score methods. Bootstrapping may be more complicated for matching estimators, 
as the process introduces discreteness in the distribution that will lead to ties in 
the matching algorithm. (p. 21)
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Furthermore, Imbens, Abadie, and others show that the variance estimation employed 
in the matching estimators (Abadie & Imbens, 2002, 2006) requires no additional 
nonparametric estimation and may be a good alternative to estimators using bootstrapping. 
Finally, in the absence of consensus on the best estimation methods, Imbens challenges 
the field to provide implementable versions of the various estimators that do not require 
choosing bandwidths (i.e., a user-specified parameter in implementing kernel-based 
matching; see Chapter 9) or other smoothing parameters and to improve estimation 
methods so that they can be applied with a large number of covariates and varying 
degrees of smoothness in the conditional means of the potential outcomes and the 
propensity scores.

In summary, understanding the logic of statistical inference underscores in turn the 
importance of checking the tenability of statistical assumptions. In general, current estima-
tion methods rely on permutation tests, which have roots in randomized experimentation. 
We know too little about estimation when a reference distribution is generated by boot-
strapping, but this seems promising. Inference becomes especially challenging when non-
parametric estimation requires making subjective decisions, such as specifications of 
bandwidth size, when data contain a large number of covariates, and when sample sizes 
are small. Caution seems particularly warranted in observational studies. Omission of 
important variables and measurement error in the covariates—both of which are difficult 
to detect—justify use of sensitivity analysis.

2.7 TYPES OF TREATMENT EFFECTS

Unlike many texts that address treatment effects as the net difference between the mean scores 
of participants in treatment and control conditions, we introduce and discuss a variety of treat-
ment effects. This may seem pedantic, but there are at least four reasons why distinguishing, 
both conceptually and methodologically, among types of treatment effects is important. First, 
distinguishing among types of treatment effects is important because of the limitation in solv-
ing the fundamental problem of causal inference (see Section 2.2). Recall that at the individual 
level, the researcher cannot observe both potential outcomes (i.e., outcomes under the condi-
tion of treatment and outcomes under the condition of nontreatment) and thus has to rely on 
group averages to evaluate counterfactuals. The estimation of treatment effects so derived at 
the population level uses averages or t = E(Y1|W = 1) − E(Y0|W = 0). As such, the variability in 
individuals’ causal effects (Yi|Wi = 1) − (Yi|Wi = 0) would affect the accuracy of an estimated 
treatment effect. If the variability is large over all units, then t = E(Y1|W = 1) − E(Y0|W = 0) may 
not represent the causal effect of a specific unit very well, and under many evaluation circum-
stances, treatment effects of certain units (groups) serve a central interest. Therefore, it is critical 
to ask which effect is represented by the standard estimator. It is clear that the effect repre-
sented by the standard estimator may not be the same as those arising from the researcher’s 
interest. Second, there are inevitably different ways to define groups and to use different aver-
ages to represent counterfactuals. Treatment effects and their surrogate counterfactuals are 
then multifaceted. Third, SUTVA is both an assumption and a perspective for the evaluation of 
treatment effects. As such, when social interaction is absent, SUTVA implies that different ver-
sions of treatment (or different dosages of the same treatment) should result in different  
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outcomes. This is the rationale that leads evaluators to distinguish two different effects: program 
efficacy versus program effectiveness. Last, the same issue of types of treatment effects may be 
approached from a different perspective—modeling treatment effect heterogeneity, a topic that 
warrants a separate and more detailed discussion (see Section 2.8).

Based on our review of the literature, the following seven treatment effects are most 
frequently discussed by researchers in the field. Although some are related, the key notion 
is that researchers should distinguish between different effects. That is, we should recog-
nize that different effects require different estimation methods, and by the same token, 
different estimation methods estimate different effects.

1.	 Average treatment effect (ATE) or average causal effect: This is the core effect estimated 
by the standard estimator

ATE = t = E(Y1|W = 1) − E(Y0|W = 0).

Under certain assumptions, one can also write it as

ATE = E[(Y1|W = 1) − (Y0|W = 0)|X].

2.	 In most fields, evaluators are interested in evaluating program effectiveness, which 
indicates how well an intervention works when implemented under conditions of actual 
application (Shadish et al., 2002, p. 507). Program effectiveness can be measured by the 
intent-to-treat (ITT) effect. ITT is generally analogous to ATE: “Statisticians have long known 
that when data are collected using randomized experiments, the difference between the 
treatment group mean and the control group mean on the outcome is an unbiased estimate 
of the ITT” (Sobel, 2005, p. 114). In other words, the standard estimator employs counter-
factuals (either estimation of the missing-value outcome at the individual level or mean 
difference between the treated and nontreated groups) to evaluate the overall effectiveness 
of an intervention as implemented.

3.	 Over the past 30 years, evaluators have also become sensitive to the differences 
between effectiveness and efficacy. The treatment assigned to a study participant may not 
be implemented in the way it was intended. The term efficacy is used to indicate how well 
an intervention works when it is implemented under conditions of ideal application 
(Shadish et al., 2002, p. 507). Measuring the efficacy effect (EE) requires a careful monitoring 
of program implementation and taking measures to warrant intervention fidelity. EE plays 
a central role in the so-called efficacy subset analysis (ESA) that deliberately measures 
impact on the basis of treatment exposure or dose.

4.	 Average treatment effect for the treated (TT) can be expressed as

E[(Y1 − Y0) |X, W = 1].

Heckman (1992, 1996, 1997, 2005) argued that in a variety of policy contexts, it is the 
TT that is of substantive interest. The essence of this argument is that in deciding whether 
a policy is beneficial, our interest is not whether on average the program is beneficial for 
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all individuals but whether it is beneficial for those individuals who are assigned or who 
would assign themselves to the treatment (Winship & Morgan, 1999, p. 666). The key 
notion here is TT ≠ ATE.

5.	 Average treatment effect for the untreated (TUT) is an effect parallel to TT for the 
untreated:

E[(Y1 − Y0)|X, W = 0].

Although estimating TUT is not as important as TT, noting the existence of such an effect 
is a direct application of the Neyman-Rubin model. In policy research, the estimation of 
TUT addresses (conditionally and unconditionally) the question of how extension of a 
program to nonparticipants as a group might affect their outcomes (Heckman, 2005, p. 19). 
The matching estimators described in Chapter 8 offer a direct estimate of TUT, although 
the effect is labeled as the sample (or population) average treatment effect for the controls 
(SATC or PATC).

6.	 Marginal treatment effect (MTE) or its special case of the treatment effect for people at 
the margin of indifference: In some policy and practice situations, it is important to distin-
guish between marginal and average returns (Heckman, 2005). For instance, the average 
student going to college may do better (i.e., have higher grades) than the marginal student 
who is indifferent about going to school or not. In some circumstances, we wish to evalu-
ate the impact of a program at the margins. Heckman and Vytlacil (1999, 2005) have 
shown that MTE plays a central role in organizing and interpreting a wide variety of 
evaluation estimators.

7.	 Local average treatment effect (LATE): Angrist et al. (1996) outlined a framework for 
causal inference where assignment to binary treatment is ignorable, but compliance with 
the assignment is not perfect so that the receipt of treatment is nonignorable. LATE is 
defined as the average causal effect for compliers. It is not the average treatment effect either 
for the entire population or for a subpopulation identifiable from observed values. Using 
the instrumental variables approach, Angrist et al. demonstrated how to estimate LATE.

To illustrate the importance of distinguishing different treatment effects, we invoke an 
example originally developed by Rosenbaum (2002b, pp. 181–183). Using hypothetical 
data in which responses under the treatment and control conditions are known, it 
demonstrates the inequality of four effects:

EE ≠ ITT (ATE) ≠ TT ≠ Naive ATE.

Consider a randomized trial in which patients with chronic obstructive pulmonary 
disease are encouraged to exercise. Table 2.1 presents an artificial data set of 10 patients 
(i.e., N = 10 and i = 1, . . . , 10). The treatment, Wi, is encouragement to exercise: Wi = 1, 
signifying encouragement, and Wi = 0, signifying no encouragement. The assignment of 
treatment conditions to patients is randomized. The pair (d1i, d0i) indicates whether patient 
i would exercise, with or without encouragement, where 1 signifies exercise and 0 indicates 
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no exercise. For example, i = 1 would exercise whether encouraged or not, (d1i, d0i) = (1, 1), 
whereas i = 10 would not exercise in either case, (d1i, d0i) = (0, 0), but i = 3 exercises only if 
encouraged, (d1i, d0i) = (1, 0).

The response, (Y1i, Y0i), is a measure of lung function, or forced expiratory volume on a 
conventional scale, with higher numbers signifying better lung function. By design, the 
efficacy effect is known in advance (EE = 5); that is, switching from no exercise to exercise 
raises lung function by 5. Note that counterfactuals in this example are hypothesized to be 
known. For i = 3, Wi = 1 or exercise is encouraged, Y1i = 64 is the outcome under the condi-
tion of exercise, and Y0i = 59 is the counterfactual (i.e., if the patient did not exercise, the 
outcome would have been 59), and for this case, the observed outcome Ri = 64. In contrast, 
for i = 4, Wi = 0 or exercise is not encouraged, Y1i = 62 is the counterfactual, and Y0i = 57 is 
the outcome under the condition of no exercise, and for this case, the observed outcome 
Ri = 57. Di is a measure of compliance with the treatment; Di = 0, signifying exercise actually 
was not performed; and Di = 1, signifying exercise was performed. So for i = 2, even though 
Wi = 0 (no treatment, or exercise is not encouraged), the patient exercised anyway. Like-
wise, for i = 10, even though exercise is encouraged and Wi = 1, the patient did not exercise, 
Di = 0. Comparing the difference between Wi and Di for each i gives a sense of intervention 
fidelity. In addition, on the basis of the existence of discrepancies in fidelity, program 
evaluators claim that treatment effectiveness is not equal to treatment efficacy.

Rosenbaum goes further to examine which patients responded to encouragement. 
Patients i = 1 and i = 2 would have the best lung function without encouragement, and 

Table 2.1 An Artificial Example of Noncompliance With Encouragement (Wi) to Exercise (Di)

i d1i d0i Y1i Y0i Wi Di Ri

  1 1 1 71 71 1 1 71

  2 1 1 68 68 0 1 68

  3 1 0 64 59 1 1 64

  4 1 0 62 57 0 0 57

  5 1 0 59 54 0 0 54

  6 1 0 58 53 1 1 58

  7 1 0 56 51 1 1 56

  8 1 0 56 51 0 0 51

  9 0 0 42 42 0 0 42

10 0 0 39 39 1 0 39

Source: Rosenbaum (2002b, p. 182). Reprinted with kind permission of Springer Science + Business Media.
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they will exercise with or without encouragement. Patients i = 9 and i = 10 would have the 
poorest lung function without encouragement, and they will not exercise even when 
encouraged. Patients i = 3, 4, . . . , 8 have intermediate lung function without exercise, and 
they exercise only when encouraged. The key point noted by Rosenbaum is that although 
treatment assignment or encouragement, Wi, is randomized, compliance with assigned treat-
ment, (d1i, d0i), is strongly confounded by the health of the patient. Therefore, in this context, 
how can we estimate the efficacy?

To estimate a naive ATE, we might ignore the treatment state (i.e., ignoring Wi) and 
(naively) take the difference between the mean response of patients who exercised and 
those who did not exercise (i.e., using Di as a grouping variable). In this context and using 
the standard estimator, we would estimate the naive ATE as

71 68 64 58 56
5

57 54 51 42 39
5

317 243
5

74
5

14 8
+ + + +

−
+ + + +

=
−

= = . ,

which is nearly three times the true effect of 5. The problem with this estimate is that the 
people who exercised were in better health than the people who did not exercise.

Alternatively, a researcher might ignore the level of compliance with the treatment and 
use the treatment state Wi to obtain ATE (i.e., taking the mean difference between those 
who were encouraged and those who were not). In this context and using the standard 
estimator, we find that the estimated ATE is nothing more than the intent-to-treat (ITT) 
effect:

71 64 58 56 39
5

68 57 54 51 42
5

288 272
5

16
5

3 2
+ + + +

−
+ + + +

=
−

= = . ,

which is much less than the true effect of 5. This calculation demonstrates that ITT is an 
estimate of program effectiveness but not of program efficacy.

Finally, a researcher might ignore the level of compliance and estimate the average treat-
ment effect for the treated (TT) by taking the average differences between Y1i and Y0i for the 
five treated patients:

( ) ( ) ( ) ( ) ( )

.

71 71 64 59 58 53 56 51 39 39
5

0 5 5 5 0
5

15
5

3

− + − + − + − + −

=
+ + + +

= =

Although TT is substantially lower than efficacy, this is an effect that serves a central 
substantive interest in many policy and practice evaluations.

In sum, this example illustrates the fundamental differences among four treatment 
effects, EE ≠ ITT (ATE) ≠ TT ≠ Naive ATE, and one similarity, ITT = ATE. Our purpose for 
showing this example is not to argue which estimate is the best but to show the importance 
of estimating appropriate treatment effects using appropriate methods suitable for research 
questions.
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2.8 TREATMENT EFFECT HETEROGENEITY

In the social and health sciences, researchers often need to test heterogeneous treatment 
effects. This stems from substantive theories and the designs of observational studies in 
which study participants are hypothesized to respond to treatments, interventions, exper-
iments, or other types of stimuli differentially. The coefficient of an indicator variable 
measuring treatment condition often does not reflect the whole range of complexity 
within treatment effects. Treatment effect heterogeneity serves important functions in 
addressing substantive research and evaluation questions. For this reason, we give the 
topic separate treatment here. In this section, we discuss the need to model treatment 
effect heterogeneity and we describe two tests developed by Crump, Hotz, Imbens, and 
Mitnik (2008). With these tests, not only can researchers test whether a conditional aver-
age treatment effect is zero or whether a conditional average treatment effect is constant 
among subpopulations, but also they can use these tests to gauge whether the strongly 
ignorable treatment assignment assumption is plausible in a real setting, an assumption 
that is in general untestable.

2.8.1 The Importance of Studying Treatment Effect Heterogeneity
Treatment effects are by no means uniform across subpopulations. Consider the three treat-
ment effects depicted in the previous section: the average treatment effect (ATE), the average 
treatment effect for the treated (TT), and the average treatment effect for the untreated (TUT). 
Xie, Brand, and Jann (2012) show that these three quantities should not always be identical, 
and differences in these quantities reveal treatment effect heterogeneity. Xie et al. show, in 
addition, that the standard estimator for ATE is valid if and only if treatment effect hetero-
geneity is absent. By definition and using the counterfactual framework, ATE is the expected 
difference between two outcomes, or ATE = E(Y1 – Y0). Using the iterative expectation rule, 
Xie et al. show that the quantity of ATE can be further decomposed as

ATE E W E= = − = − = − = − −[ ( | ) ( | )] [ ( | ) ( | ) ( ) ,Y E Y W Y W E Y W TT TUT q1 0 0 01 0 1 0 ]

where q is the proportion of untreated participants. Note that the first term in the above 
equation, [ | ( |E( ) )]Y W E Y W1 01 0= − = , is the ATE estimated by the standard estimator. The 
estimator is valid and unbiased, if and only if the last two terms are equal to zero. Xie et al. 
underscore that in reality, these two terms often are not equal to zero; therefore, the 
standard estimator of ATE assumes no treatment effect heterogeneity. When these two 
terms are not equal to zero or, equivalently, when treatment effect heterogeneity is present, 
using the standard estimator for ATE is biased. Specifically, these two terms indicate two 
types of selection biases that are produced by ignorance of the treatment effect 
heterogeneity.

First, the term [ )]E Y W E Y W( | ) ( |0 01 0= − =  is the average difference between the two 
groups in outcomes if neither group receives the treatment. Xie et al. (2012) call this “pretreat-
ment heterogeneity bias.” This source of selection bias exists, for instance, when preschool 
children who attended Head Start programs, which are designed typically for low-income 
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children and their families, are compared unfavorably with other children who did not attend 
Head Start programs. Comparisons would be affected by the absence of a control for family 
socioeconomic resources.

Second, the term (TT – TUT)q indicates the difference in the average treatment effect 
between the two groups, TT and TUT, weighted by the proportion untreated, q. Xie et al. 
(2012) call this “treatment-effect heterogeneity bias.” This source of selection bias exists, 
for instance, when researchers ignore the fact that attending college and earning a degree 
is selective. An evaluation of the effect of higher education should account for the tendency 
of colleges to attract people who are likely to gain more from college experiences.

Crump et al. (2008) developed two nonparametric tests of treatment effect heterogene-
ity. The first test is for the null hypothesis that the treatment has a zero average effect for 
all subpopulations defined by covariates. The second test is for the null hypothesis that the 
average effect conditional on the covariates is identical for all subpopulations. Section 2.8.4 
describes these two tests, and Section 2.8.5 illustrates their applications with an empirical 
example.

The motivation for developing these two tests, according to the authors, was threefold. 
The first was to address substantive questions. In many projects, researchers are primarily 
interested in establishing whether the average treatment effect differs from zero; when this 
is true (i.e., when there is evidence supporting a nonzero ATE), researchers may be further 
interested in whether there are subpopulations for which the effect is substantively and 
statistically significant. A concrete example is a test of the effectiveness of a new drug. The 
evaluators in such a context are interested not only in whether a new drug has a nonzero 
average effect but whether it has a nonzero (positive or negative) effect for identifiable sub-
groups in the population. The presence of an effect might permit better targeting who 
should or should not use the drug: “If one finds that there is compelling evidence that the 
program has nonzero effect for some subpopulations, one may then further investigate 
which subpopulations these are, and whether the effects for these subpopulations are sub-
stantively important” (Crump et al., 2008, p. 392). In practice, each observed covariate avail-
able to the evaluator defines a subpopulation, and therefore, one faces a challenge to test 
many null hypotheses about a zero treatment effect for these subpopulations. The test 
Crump et al. (2008) developed offers a single test for zero conditional average treatment 
effects so that the multiple-testing problem is avoided.

The second part of the motivation for developing these tests was concern related to 
whether there is heterogeneity in the average effect conditional on observed covariates, 
such as race/ethnicity, education, and age. According to Crump et al. (2008), “If there is 
strong evidence in favor of heterogeneous effects, one may be more reluctant to recommend 
extending the program to populations with different distributions of the covariates” (p. 392).

The third motivation for developing tests of treatment effect heterogeneity was related 
to developing an indirect assessment of the plausibility of the strongly ignorable treatment 
assignment assumption. As described earlier, this crucial assumption is usually not test-
able. However, there exist indirect approaches, primarily those developed by Heckman and 
Hotz (1989) and Rosenbaum (1997), from which users can check whether the assumption 
is plausible or whether additional efforts should be made if ignorability is obviously not 
the case. Comparing to these two approaches, the tests developed by Crump et al. (2008) 
are easier to implement. Because of the importance of checking the unconfoundedness 
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assumption in observational studies and the unique advantages offered by the tests from 
Crump et al., we give this issue a closer examination in the next subsection.

Much of the discussion on testing and modeling treatment effect heterogeneity may be 
illustrated by the inclusion of interactions in an outcome analysis. By definition, the exis-
tence of a significant interaction indicates that the impact of an independent variable on the 
dependent variable varies by the level of another independent variable. Heterogeneous 
treatment effects, on one hand, are analogous to the existence of significant interactions in 
the regression model and reflect slope differences of the treatment among subpopulations. 
When we say that the treatment effect is heterogeneous, we mean that the treatment effect 
is not uniform and varies by subpopulations defined by covariates. It may be measured by 
interactions, such as age group by treatment, race group by treatment, income by treatment, 
and gender by treatment group indicators.

The issue of testing and modeling treatment effect heterogeneity, on the other hand, is 
more complicated than checking and testing significant interactions. Indeed, treatment effect 
heterogeneity may not be discovered by testing for interactions. Elwert and Winship (2010) 
argue that the meaning of “main” effects in interaction models is not always clear. Crump  
et al. (2008) found that treatment effect heterogeneity exists even when the main treatment 
effect is not statistically significant (see, e.g., reevaluation of the MDRC study of California’s 
Greater Avenues to INdependence [GAIN] programs; Crump et al., 2008, pp. 396–398). As 
discussed regarding the counterfactual framework, the potential outcome can be estimated 
only at the group level, so the meaning of interactions in an outcome regression using indi-
viduals as units is not clearly defined and, therefore, does not truly show treatment hetero-
geneity. Xie et al. (2012) recommend focusing on the interaction of the treatment effect and 
the propensity score as one useful way to study effect heterogeneity. Although testing the 
interaction of treatment by a propensity score is not the only means for assessing effect het-
erogeneity and the method is controversial, it is often more interpretable because the pro-
pensity score summarizes the relevance of the full range of covariates. According to Xie et al., 
this is the only interaction that warrants attention if selection bias in models of treatment 
effect heterogeneity is a concern. On the basis of this rationale, Xie and his colleagues devel-
oped three methods to model effect heterogeneity: the stratification-multilevel (SM) method, 
the matching-smoothing (MS) method, and the smoothing-differencing (SD) method. We 
discuss and illustrate the SM method in Chapter 6.

2.8.2 Checking the Plausibility of the Unconfoundedness Assumption
Following Crump et al. (2008), in this subsection, we describe two types of tests that are 
useful in assessing the plausibility of the unconfoundedness assumption. The first set of 
tests was developed by Heckman and Hotz (1989). Partitioning the vector of covariates X 
into two parts, a variable V and the remainder Z, so that X = (V, Z′)′, Heckman and Hotz 
propose that one can analyze the data (V, W, Z) as if V is the outcome, W is the treatment 
indicator, and as if unconfoundedness holds conditional on Z. The researcher is certain 
that the effect of the treatment on V is zero for all units, because V is a pretreatment vari-
able or covariate. Under this context, if the researcher finds statistical evidence suggesting 
a treatment effect on V, it must be the case that the unconfoundedness conditional on Z 
is incorrect, or it is suggestive that unconfoundedness is a delicate assumption. The test 
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cannot be viewed as direct evidence against uncondoundedness, because it is not condi-
tional on the full set of covariates X = (V, Z′)′. The tests are effective if the researcher has 
data on multiple lagged values of the outcome, that is, one may choose V to be the one-
period lagged value of the outcome.

Instead of using multiple lagged values of the outcome, Rosenbaum (1997) considers 
using two or more control groups. If potential biases would likely be different for both 
groups, then evidence that all control groups led to similar estimates is suggestive that 
unconfoundedness may be appropriate. Denote Ti as an indicator for the two control 
groups, Ti = 0 for the first control group and Ti = 1 for the second group. The researcher can 
test whether Yi(0) ^ Ti | Xi in the two control groups. If one finds evidence that this pseudo 
treatment has a systematic effect on the outcome, then it must be the case that uncon-
foundedness is violated for at least one of the two control groups.

The test of a zero conditional average treatment effect developed by Crump et al. (2008) 
is equivalent to the tests Heckman and Hotz (1989) and Rosenbaum (1997) developed. 
However, it is much easier to implement. The test does not require the use of lagged values 
of an outcome variable or multiple control groups, and it can be applied directly to all 
covariates readily available to the researcher. 

2.8.3 A Methodological Note About the Hausman Test of Endogeneity
Earlier in the description of the strongly ignorable treatment assignment assumption, we 
showed that this assumption is equivalent to the OLS assumption regarding the indepen-
dence of error term from an independent variable. In fact, violation of the unconfounded-
ness assumption is the same problem of endogeneity one may encounter in a regression 
analysis. In Subsection 2.8.2, we showed two indirect tests of unconfoundedness, and we 
mentioned that this assumption in empirical research is virtually not directly testable. To 
understand the utility of the nonparametric tests that Crump et al. (2008) developed, par-
ticularly their usefulness in checking the unconfoundedness assumption, we need to offer 
a methodological note about a test commonly employed in econometric studies for the 
endogeneity problem. The test is the Hausman (1978) test of endogeneity, sometimes 
known as the misspecification test in a regression model. We intend to show that the 
Hausman test has limitations for accomplishing the goal of checking unconfoundedness.

Denoting the dependent variable by y1 and the potentially endogenous explanatory vari-
able by y2, we can express our population regression model as

y z y u1 1 1 1 2 1= + +δδ αα ,

where z1 is 1 × L1 (including a constant), d1 is L1 × 1, and u1 is the unobserved disturbance. 
The set of all exogenous variables is denoted by the 1 × L vector z, where z1 is a strict 
subset of z. The maintained exogeneity assumption is E(z′u1) = 0. Hausman suggested 
comparing the OLS and two-stage least squares estimators of β δ′ α ′1 1 1≡ ( , )  as a formal test 
of endogeneity: If y2 is uncorrelated with u1, the OLS and two-stage least squares estimators 
should differ only by sampling error. For more details about the test, we refer to Wooldridge 
(2002, pp. 118–122). It is important to note that to implement the Hausman test, the 
analyst should have knowledge about the source of endogeneity, that is, the source of 
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omitted variables in the regression that causes the correlation of the error term with the 
endogenous explanatory variable. In reality, particularly in the observational studies, this 
information is often absent, and the analyst does not have a clear sense about unobserved 
variables that may cause selection biases. Therefore, just like running an IV model where 
the analyst has difficulty finding an appropriate instrumental variable that is not correlated 
with the regression error term but is highly correlated with the endogenous explanatory 
variable, the analyst has the same difficulty in specifying source variables for endogeneity 
to run the Hausman test. It is for this reason that researchers find appeal in the indirect 
methods, such as the Heckman and Hotz (1989) test and the Rosenbaum (1997) test, to 
gauge the level of violation of ignorability. And it is for this reason that the tests developed 
by Crump et al. (2008) appear to be very useful.

2.8.4 Tests of Treatment Effect Heterogeneity
We now return to the tests developed by Crump and colleagues (2008) for treatment effect 
heterogeneity. With empirical data for treatment indicator Wi (Wi = 1, treated; and Wi = 0, 
control), a covariate vector Xi, and outcome variable Yi for the ith observation, the researcher 
can test two pairs of hypotheses concerning the conditional average treatment effect τ(x) 
when X = x. The first pair of hypotheses, called “a test of zero conditional average treatment 
effect,” is

H0: τ(x) = 0,

Ha: τ(x) ≠ 0.

Under the null hypothesis H0, the average treatment effect is zero for all values of the 
covariates, whereas under the alternative Ha, there are some values of the covariates for 
which the treatment effect differs from 0.

The second pair of hypotheses, called “a test of constant conditional average treatment 
effect,” is

′H0
: τ(x) = τ,

′Ha
: τ(x) ≠ τ.

Under the null hypothesis ′H0
, all subgroups defined by covariate vector x have a 

constant treatment effect τ, whereas under the alternative ′Ha
, treatment effects of 

subgroups defined by x do not equal a constant value τ, and therefore, there exists effects 
heterogeneity.

Crump et al. (2008) developed procedures to test the above two pairs of hypotheses. 
There are two versions of the tests: parametric and nonparametric tests. The Stata pro-
grams to implement these tests are available at the following website: http://moya.bus 
.miami.edu/~omitnik/software.html. Users need to download the program and help files 
by clicking the ado file and help file from the section of “Nonparametric Tests for Treatment 
Effect Heterogeneity.” The Stata ado file is named “test_condate.ado,” and the help file is 
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named “test_condate.hlp.” Users need to save both files in the folder storing user-supplied 
ado programs, typically “C:\ado\plus\t,” in a Windows operating system.

Each version of the tests is based on additional assumptions about the data. For the 
parametric version of the tests, the assumptions are similar to those for most analyses 
described by this book, such as an independent and identically distributed random sample 
of (Yi, Wi, and Xi), unconfoundedness, and overlap of the two groups (treated and non-
treated) in the covariate distribution. For the nonparametric version of the tests, Crump et al. 
(2008) make the following assumptions: the Cartesian product of intervals about the covari-
ate distributions, conditional outcome distributions, and rates for series estimators.

The parametric version of the tests is standard. The test statistic T for the first pair of 
hypotheses H0 and Ha has a chi-square distribution with K degrees of freedom, where K is 
the number of covariates being tested, including the treatment indicator variable:

T K→ χ 2( ).

To implement the test, the analyst specifies the outcome variable, the set of covariates 
being tested for effects heterogeneity, and the treatment indicator variable. After running 
the test_condate program, the analyst obtains the test statistic T labeled “Chi-Sq Test,” the 
degree-of-freedom K labeled “dof Chi-sq,” and the observed p value of the chi-square 
labeled “p-val Chi-sq” from the output. All three quantities are shown under the column 
heading of “Zero_Cond_ATE”—that is, they are the results for testing the first pair of 
hypotheses H0 and Ha. A p value such as p < .05 suggests that the null hypothesis H0 can be 
rejected at a statistically significant level. That is, a significant chi-square value indicates 
that the treatment effect is nonzero for subgroups in the sample, and the unconfoundedness 
assumption is probably violated.

For the parametric model, the test statistic T ′ for the second pair of hypotheses, ′H0
 and 

′Ha
, also has a chi-square distribution with K − 1 degrees of freedom, where K is the num-

ber of covariates being tested, including the treatment indicator variable:

T K′ → −χ 2 1( ).

After running the test_condate program, the analyst obtains three statistics: T ′ labeled 
“Chi-Sq Test,” degree-of-freedom or K – 1 labeled “dof Chi-sq,” and the observed p value of 
the chi-square labeled “p-val Chi-sq” under the column heading of “Const_Cond_ATE.” 
These are test results for the second pair of hypotheses ′H0

 and ′Ha
. A p value such as p < .05 

suggests that the null hypothesis ′H0  can be rejected at a statistically significant level. When 
a significant chi-square is observed, the analyst can reject the hypothesis of a constant 
treatment effect across subgroups defined by covariates and conclude that the treatment 
effect varies across subgroups. This suggests that treatment effect heterogeneity exists.

Perhaps the most important contribution made by Crump et al. (2008) is the extension 
of the tests from a parametric to nonparametric setting. Crump et al. developed equivalent 
tests by applying the series estimator of regression function and provided theorems with 
proofs. The development of this procedure employs sieve methods (Chen, Hong, & Tarozzi, 
2008; Imbens, Newey, & Ridder, 2006). It is for this reason that Crump et al. refer to their 
tests as “nonparametric tests for treatment effect heterogeneity,” although the two tests 
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using chi-square are really parametric rather than nonparametric. Crump et al. show that 
in large samples, the test statistic of the nonparametric version has a standard normal dis-
tribution. Both T for the first pair of hypotheses, H0 and Ha, and T ′ for the second pair of 
hypotheses, ′H0  and ′Ha , are distributed as

T N N→ →( , ), ( , ).0 1 0 1and T′

The output of test_condate shows two types of quantities: the test statistic T (or T ′) 
labeled “Norm Test” and the observed p value of T (or T ′) labeled “p-val Norm.” Like the 
output for the parametric tests, both quantities are shown in two columns: One is under 
the column heading of “Zero_Cond_ATE,” which shows the results for testing the first pair 
of hypotheses, H0 and Ha, and the second is under the column heading of “Const_Cond_
ATE,” which shows the results for testing the second pair of hypotheses, ′H0  and ′Ha . If the 
p value of T or T ′ is less than .05 (p < .05), the analyst can reject the null hypothesis at a 
statistically significant level; otherwise, the analyst fails to reject the null hypothesis. With 
the nonparametric tests, the analyst may conclude that the treatment effect is nonzero for 
subgroups in the sample and that the unconfoundedness assumption is not plausible, if 
the “p-val Norm” under “Zero_Cond_ATE” is less than .05 (p < .05); the analyst may 
conclude that the treatment effect varies by subgroup and treatment effect heterogeneity 
exists if the “p-val Norm” under “Const_Cond_ATE” is less than .05 (p < .05).

The output of the test_condate program also presents results of a test of the zero aver-
age treatment effect under the column heading of “Zero_ATE” for comparison purposes. 
This is the test commonly used to estimate the average treatment effect and its standard 
error. This is typically the main effect used in analysis, and it does not explicitly test or 
model treatment effect heterogeneity. The crucial message conveyed by the comparison is 
that the test of the zero ATE may show a nonsignificant p value, but the tests of treatment 
effect heterogeneity could still be statistically significant. If this is observed, effect hetero-
geneity exists even when the main treatment effect is not statistically significant.

2.8.5 Example
We now present a study investigating intergenerational dependence on welfare and its 
relation to child academic achievement. The data for this study are used in several exam-
ples throughout this book.

Conceptual issues and substantive interests. As described in Chapter 1, prior research has 
shown that both childhood poverty and childhood welfare dependency have an impact on 
child development. In general, growing up in poverty adversely affects life course outcomes, 
and the consequences become more severe by length of poverty exposure (P. K. Smith & 
Yeung, 1998). Duncan et al. (1998) found that family economic conditions in early 
childhood had the greatest impact on achievement, especially among children in families 
with low incomes. Foster and Furstenberg (1998, 1999) found that the most disadvantaged 
children tended to live in female-headed households with low incomes, receive public 
assistance, and/or have unemployed heads of household. In their study relating patterns of 
childhood poverty to children’s IQs and behavioral problems, Duncan, Brooks-Gunn, and 
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Klebanov (1994) found that the duration of economic deprivation was a significant 
predictor of both outcomes. Focusing on the effects of the timing, depth, and length of 
poverty on children, Brooks-Gunn and Duncan’s study (1997) reported that family income 
has selective but significant effects on the well-being of children and adolescents, with 
greater impacts on ability and achievement than on emotional development. In addition, 
Brooks-Gunn and Duncan found that poverty had a far greater influence on child 
development if children experienced poverty during early childhood.

The literature clearly indicates a link between intergenerational welfare dependence 
and child developmental outcomes. From the perspective of a resources model (see, e.g., 
Wolock & Horowitz, 1981), this link is repetitive and leads to a maladaptive cycle that traps 
generations in poverty. Children born to families with intergenerational dependence on 
welfare may lack sufficient resources to achieve academic goals, which will ultimately 
affects employability and the risk for using public assistance in adulthood.

Corcoran and Adams (1997) developed four models to explain poverty persistence 
across generations: (1) The lack of economic resources hinders human capital develop-
ment; (2) parents’ noneconomic resources, which are correlated with their level of poverty, 
determine children’s poverty as adults; (3) the welfare system itself produces a culture of 
poverty shared by parents and children; and (4) structural-environmental factors associated 
with labor market conditions, demographic changes, and racial discrimination shape inter-
generational poverty. Corcoran and Adams’s findings support all these models to some 
extent, with the strongest supports established for the economic resources argument.

Prior research on poverty and its impact on child development has shed light on the risk 
mechanisms linking resources and child well-being. Some of these findings have shaped 
the formation of welfare reform policies, some have fueled the ongoing debate about the 
impacts of welfare reform, and still other findings remain controversial. There are two 
major methodological limitations in this literature. First, prior research did not analyze a 
broad range of child outcomes (i.e., physical health, cognitive and emotional development, 
and academic achievement). Second, and more central to this example, prior research 
implicitly assumed a causal effect of poverty on children’s academic achievement. How-
ever, most such studies used covariance control methods such as regression or regression-
type models without explicit control for sample selection and confounding covariates. As 
we have shown earlier, studies using covariance control may fail to draw valid causal infer-
ences. Throughout the book, we use different propensity score models to analyze the 
causal inference of poverty on child academic achievement.

Data. This study uses the 1997 Child Development Supplement (CDS) to the Panel Study of 
Income Dynamics (PSID) and the core PSID annual data from 1968 to 1997 (Hofferth et al., 
2001). The core PSID comprises a nationally representative sample of families. In 1997, the 
Survey Research Center at the University of Michigan collected information on 3,586 
children between the ages of birth and 12 years who resided in 2,394 PSID families. 
Information was collected from parents, teachers, and the children themselves. The 
objective was to provide researchers with comprehensive and nationally representative 
data about the effects of maternal employment patterns, changes in family structure, and 
poverty on child health and development. The CDS sample contained data on academic 
achievement for 2,228 children associated with 1,602 primary caregivers. To address the 
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research question about intergenerational dependence on welfare, we analyze a subset of 
this sample. Children included in the study were those who had valid data on receipt of 
welfare programs in childhood (e.g., AFDC [Aid to Families With Dependent Children]) and 
whose caregivers were 36 years or younger in 1997. The study involved a careful 
examination of 30 years of data using the 1968 PSID ID number of primary caregivers as a 
key. Due to limited information, the study could not distinguish between the types of 
assistance programs. The study criteria defined a child as a recipient of public assistance 
(e.g., AFDC) in a particular year if his or her caregiver ever received the AFDC program in 
that year and defined a caregiver as a recipient of AFDC in a particular year if the caregiver’s 
primary caregiver (or the study child’s grandparent) ever received the program in that year. 
The definition of receipt of AFDC in a year cannot disentangle short-term use (e.g., receipt 
of AFDC for only a single month) from long-term use (e.g., all 12 months). One limitation 
of the study is posed by the discrete nature of AFDC data and the fact that the AFDC study 
variable (i.e., “caregiver’s number of years using AFDC in childhood”) was treated as a 
continuous variable in the analysis, which may not accurately measure the true influence 
of AFDC. After screening the data, applying the inclusion criteria, and deleting missing data 
listwise, the study sample comprised 1,003 children associated with 708 caregivers.

Tests for treatment effect heterogeneity. Table 2.2 shows descriptive statistics of the study 
sample. For this illustration, we report findings that examine one domain of academic 
achievement: the age-normed “letter-word identification” score of the Woodcock-Johnson 
Revised Tests of Achievement (Hofferth et al., 2001). A high score on this measure indicates 
high achievement. The score is defined as the outcome variable for this study. The 

Variable Mean Standard Deviation

Outcome—letter-word identification score in 1997 101.30 16.85

Treatment—child AFDC use status: used (reference: never) 0.27 0.45

Covariate

Child’s gender: male (reference: female) 0.53 0.50

Child’s race: African American (reference: other) 0.48 0.50

Child’s age in 1997 6.67 2.80

Caregiver’s education in 1997 (years of schooling) 12.73 1.93

Ratio of family income to poverty line in 1996 2.59 2.59

Caregiver’s number of years using AFDC in childhood 0.85 1.88

Number of study children 1,003  

Table 2.2 Descriptive Statistics of the Study Sample
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“treatment” in this study is child AFDC use from birth to current age in 1997. Of 1,003 
study children, 729 never used AFDC or “untreated,” and 274 used AFDC or “treated.” The 
six covariates are major control variables observed from the PSID and CDS surveys.

Table 2.3 shows findings for the tests of treatment effect heterogeneity. Results suggest 
that we can reject the null hypothesis of a zero conditional average treatment effect using 
the parametric test (χ2[df = 7] = 24.55, p < .001) and the nonparametric test (test statistic 
following a normal distribution = 4.69, p < .000). The results confirm that the unconfound-
edness assumption in this data set is not plausible, and corrective approaches to control for 
selection bias are needed if we want to draw a causal inference that is more rigorous and 
valid. The results also suggest that there are some values of the covariates for which the 
treatment effect differs from zero.

With regard to the tests regarding a constant conditional average treatment effect, we find 
that both tests show a nonsignificant p value (i.e., p = .0844 from the parametric test and p 
= .0692 from the nonparametric test). With these findings, we fail to reject the null hypoth-
esis, and hence, we cannot confirm that treatment effect heterogeneity exists in this sample.

The test of a zero average treatment effect shows that the main treatment variable is 
statistically significant (p < .000), meaning that AFDC has a nonzero impact on child aca-
demic achievement. This commonly used test shows the main effect of treatment. It does 
not tell us whether AFDC use affects child academic achievement differentially or 
whether treatment effect heterogeneity exists. As such, it does not reflect the whole 
range of complexity of treatment effects.

2.9 HECKMAN’S ECONOMETRIC MODEL OF CAUSALITY

In Chapter 1, we described two traditions in drawing causal inferences: the econometric 
tradition that relies on structural equation modeling and the statistical tradition that relies on 
randomized experiment. The economist James Heckman (2005) developed a conceptual 
framework for causal inference that he called the scientific model of causality. In this work, 
Heckman sharply contrasted his model with the statistical approach—primarily the Neyman-
Rubin counterfactual model—and advocated for an econometric approach that directly 

Null Hypothesis Chi-Square Test df p Value Normal Test p Value

Zero conditional average 
treatment effect

24.55 7 .0009 4.69 .0000

Constant conditional average 
treatment effect

11.13 6 .0844 1.48 .0692

Zero average treatment effect 81.0526 1 .0000 −9.0029 .0000

Table 2.3 Tests for Treatment Effect Heterogeneity

Source: Data from Hofferth et al., 2001.
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models the selection process. Heckman argued that the statistical literature on causal infer-
ences was incomplete because it had not attempted to model the structure or process by 
which participants are selected into treatments. Heckman further argued that the statistical 
literature confused the task of identifying causal models from population distributions 
(where the sampling variability of empirical distributions is irrelevant) with the task of iden-
tifying causal models from actual data (where sampling variability is an issue). Because this 
model has stimulated a rich debate, we highlight its main features in this section. The brevity 
of our presentation is necessitated by the fact that the model is a comprehensive framework 
and includes forecasting the impact of interventions in new environments, a topic that 
exceeds the scope of this book. We concentrate on Heckman’s critique of the Neyman-Rubin 
model, which is a focal point of this chapter.

First, Heckman (2005, pp. 9–21) developed a notation system for his scientific model 
that explicitly encompassed variables and functions that were not defined or treated com-
prehensively in prior literature. In this system, Heckman defined outcomes for persons in 
a universe of individuals and corresponding to possible treatments within a set of treat-
ments where assignment is subject to certain rules; the valuation associated with each 
possible treatment outcome, including both private evaluations based on personal utility 
and evaluations by others (e.g., the “social planner”); and the selection mechanism appro-
priate under alternative policy conditions. Using this notation system and assumptions, 
Heckman further defined both individual-level treatment (causal) effects and population-
level treatment effects.

Second, Heckman (2005, p. 3) specified three distinct tasks in the analysis of causal 
models: (1) defining the set of hypotheticals or counterfactuals, which requires a scientific 
theory; (2) identifying parameters (causal or otherwise) from hypothetical population data, 
which requires mathematical analysis of point or set identification; and (3) identifying 
parameters from real data, which requires estimation and testing theory.

Third, Heckman (2005, pp. 7–9) distinguished three broad classes of policy evaluation 
questions: (1) evaluating the impact of previous interventions on outcomes, including their 
impact in terms of general welfare (i.e., a problem of internal validity); (2) forecasting the 
impacts (constructing counterfactual states) of interventions implemented in one environ-
ment on other environments, including their impacts in terms of general welfare (i.e., a 
problem of external validity); and (3) forecasting the impacts of interventions (constructing 
counterfactual states associated with interventions) never historically experienced for 
other environments, including impacts in terms of general welfare (i.e., using history to 
forecast the consequences of new policies).

Fourth, Heckman (2005, pp. 35–38) contrasted his scientific model (hereafter denoted 
as H) with the Neyman-Rubin model (hereafter denoted as NR) in terms of six basic 
assumptions. Specifically, NR assumes (1) a set of counterfactuals defined for ex post out-
comes (no evaluations of outcomes or specification of treatment selection rules); (2) no 
social interactions; (3) invariance of counterfactual to assignment of treatment; (4) evaluat-
ing the impact of historical interventions on outcomes, including their impact in terms of 
welfare is the only problem of interest; (5) mean causal effects are the only objects of inter-
est; and (6) there is no simultaneity in causal effects, that is, outcomes cannot cause each 
other reciprocally. In contrast, H (1) decomposes outcomes under competing states (poli-
cies or treatments) into their determinants; (2) considers valuation of outcomes as an 
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essential ingredient of any study of causal inference; (3) models the choice of treatment 
and uses choice data to infer subjective valuations of treatment; (4) uses the relationship 
between outcomes and treatment choice equations to motivate, justify, and interpret alter-
native identifying strategies; (5) explicitly accounts for the arrival of information through 
ex ante and ex post analyses; (6) considers distributional causal parameters as well as mean 
effects; (7) addresses all three policy evaluation problems; and (8) allows for nonrecursive 
(simultaneous) causal models. The comparison of the NR and H models is summarized and 
extended in Table 2.4.

Finally, Heckman (2005, pp. 50–85) discussed the identification problem and various 
estimators to evaluate different types of treatment effects. In Section 2.7, we have high-
lighted the main effects of interest that are commonly found in the literature (i.e., ATE, TT, 
TUT, MTE, and LATE). Heckman carefully weighed the implicit assumptions underlying 
four widely used methods of causal inference applied to data in the evaluation of these 
effects: matching, control functions, the instrumental variable method, and the method of 
directed acyclic graphs (i.e., Pearl, 2000).

The scientific model of causality has clearly influenced the field of program evaluation. 
Perhaps the most important contribution of the model is its comprehensive investigation 
of the estimation problem, effects of interest, and estimation methods under a general 

Statistical Causal Model Econometric Models

Sources of randomness Implicit Explicit

Models of conditional 
counterfactuals

Implicit Explicit

Mechanism of intervention 
for determining 
counterfactuals

Hypothetical randomization Many mechanisms of hypothetical 
interventions, including a randomization 
mechanism that is explicitly modeled

Treatment of interdependence Recursive Recursive or simultaneous systems

Social/market interactions Ignored Modeled in general equilibrium 
frameworks

Projections to different 
populations?

Does not project Projects

Parametric? Nonparametric Becoming nonparametric

Range of questions answered One focused treatment effect In principle, answers many possible 
questions

Table 2.4 Econometric Versus Statistical Causal Models

Source: Heckman, J. J. (2005). The scientific model of causality. Sociological Methodology, 35, p. 87.
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framework. This is pioneering. Although it is too early to make judgments about the 
model’s strengths and limitations, it is stimulating widespread discussion, debate, and 
methodological innovation. To conclude, we cite Sobel’s (2005) comment that, to a great 
extent, coincides with our opinion:

Heckman argues for the use of an approach to causal inference in which 
structural models play a central role. It is worth remembering that these 
models are often powerful in part because they make strong 
assumptions. . . . But I do not want to argue that structural modeling is not 
useful, nor do I want to suggest that methodologists should bear complete 
responsibilities for the use of the tools they have fashioned. To my mind, both 
structural modeling and approaches that feature weaker assumptions have 
their place, and in some circumstances, one will be more appropriate than the 
other. Which approach is more reasonable in a particular case will often 
depend on the feasibility of conducting a randomized study, what we can 
actually say about the reasonableness of invoking various assumptions, as well 
as the question facing the investigator (which might be dictated by a third 
party, such as a policy maker). An investigator’s tastes and preferences may 
also come into play. A cautious and risk-averse investigator may care primarily 
about being right, even if this limits the conclusions he or she draws, whereas 
another investigator who wants (or is required) to address a bigger question 
may have (or need to have) a greater tolerance for uncertainty about the 
validity of his or her conclusions. (pp. 127–128)

2.10 CONCLUSION

This chapter examined the Neyman-Rubin counterfactual framework, the ignorable 
treatment assignment assumption, the SUTVA assumption, the underlying logic of sta-
tistical inference, treatment effect heterogeneity and its tests, and the econometric 
model of causality. We began with an overview of the counterfactual perspective that 
serves as a conceptual tool for the evaluation of treatment effects, and we ended with 
a brief review of Heckman’s comprehensive and controversial scientific model of 
causal inference. It is obvious that there are disagreements among research scholars. 
In particular, debate between the econometric and statistical traditions continues to 
play a central role in the development of estimation methods. Specifically, we have 
emphasized the importance of disentangling treatment effects from treatment assign-
ment and evaluating different treatment effects suitable to evaluation objectives under 
competing assumptions. Although the unconfoundedness assumption is untestable and 
the classic test of endogeneity is not helpful in the context of observational studies, 
new nonparametric tests of treatment effect heterogeneity are useful. They offer a 
convenient test for gauging the heterogeneity of treatment effects and evaluating the 
plausibility of the unconfoundedness assumption. We will revisit these issues through-
out the book.
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NOTES

	 1.	 In the literature, there are notation differences in expressing this and other models. To avoid 
confusion, we use consistent notation in the text and present the original notation in 
footnotes. Equation 2.1 was expressed by Heckman and Vytlacil (1999, p. 4730) as

Yi = DiY1i + (1 − Di)Y0i.

	 2.	 In Winship and Morgan’s (1999, p. 665) notation, Equation 2.4 is expressed as

δ = πδ π δ
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	 3.	 In Winship and Morgan’s (1999) notation, Equation 2.5 is expressed as
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	 4.	 Holland (1986) provides a thorough review of these statisticians’ work under the context of 
randomized experiment.

	 5.	 In Rosenbaum’s (2002b, p. 41) notation, Equation 2.6 is expressed as Rsi = ZsirTsi − (1 − Zsi)rCsi.

	 6.	 We have changed notation to make the presentation of SUTVA consistent with the notation 
system adopted in this chapter. In Rubin’s original presentation, he used u in place of i and t 
in place of w.
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