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3
CONCEPTUAL FOUNDATIONS 
OF STATISTICS

In this chapter, we examine the conceptual foundations of statistics. The goal is to 
give you an appreciation and conceptual understanding of some basic statistical tests 
used in educational research. As we suggested in the first chapter, statistics are tools 
that empirical researchers use for analysis of quantitative research. Statistical tools 
are useful means and not ends in themselves. We focus on conceptual understanding 
and not on the technical details of computing the statistics, which is most often done 
in statistical courses or by using statistical packages, such as SPSS (Statistical Package 
for the Social Sciences) or SAS (Statistical Analysis System). We begin with a review 
of some basic descriptive statistics and then move to the conceptual underpinnings of 
inferential statistics, which are used to test research hypotheses. Read the text with a 
pencil in hand; check the simple calculations.

MEASURES OF CENTRAL TENDENCIES

There are three common measures of central tendency: mean, mode, and median. The 
mean is the most widely known statistic; it is the average of a set of numbers or scores. 
Most students compute their average test scores in a course without difficulty, and they 
understand what it means or represents—it is their typical test score. The arithmetic 
average of some set of numbers in statistics is called the mean. Summing all the scores in the 
set and then dividing the sum by the number of scores is the calculation of the mean. 
Consider the set of numbers (1, 2, 2, 3, 4, 6). The mean is calculated as follows:

Mean = Sum of the scores (Σ (scores)) divided by N (number of scores)

or

Mean
(scores)

= ∑
N

Mean = (1 + 2 + 2 + 3 + 4 + 6)/6 = 18/6 = 3.
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QUANTITATIVE RESEARCH IN EDUCATION46

The mean or average of the set is 3, which represents a typical score for this set of data 
points. If the scores are reasonably consistent—that is, they don’t vary wildly—then 
the mean is a good indication of the central tendency. If there are a few extreme scores, 
however, the mean can be distorted. Consider the set of numbers (1, 1, 1, 7, 1, 7). In 
this case, the mean is still 3, but it is not really typical. A few large and extreme numbers 
can distort the mean, and therein lies the possible rub of using the mean to describe a 
set of scores as typical. For example, in the previous set of numbers (1, 1, 1, 7, 1, 7), 1 is 
clearly more typical than 3.

The mode is the most frequent number in a set of scores. In the above set (1, 1, 1, 7, 1, 7), 
the mode is 1, the most frequent number in the distribution, and in this case, it is a good 
standard to describe the typical score of this set of numbers. But again, just as with the 
mean, the mode can be misleading. For example, suppose you give a test to 30 students 
and most students score close to 88; in fact, when you compute the mean you get 88. Yet 
there were five people who got 100 and only three who actually scored 88. Which is the 
better measure of central tendency, the mean (88) or the mode (100)? Clearly, the mean 
is more typical of the distribution of scores.

The median is the middle score of a distribution of numbers. To compute the median, 
do the following:

1.	 Rank the numbers or scores from low to high.

2.	 Find the middle number or score:

•• If there is an odd number of scores, for example, 11 numbers 
in the set, simply add 1 to the total number and divide by 2; the 
resulting number represents how far to go to find the median. 
Consider the numbers in the set (1, 2, 2, 2, 3, 5, 6, 7, 7, 8, 12). 
Since the set has 11 numbers (an odd number), add 1 to 11 and 
divide by 2: 12/2 = 6. The sixth number in the set is 5, and it is 
the median or middle score.

•• But, if there is an even number of scores, simply average the two 
middle scores. For example, consider the set (1, 2, 2, 2, 4, 5, 6, 7, 
7, 8), which has 10 scores in the distribution. You simply add the 
fifth and sixth scores and divide by 2; hence, in this example the 
median is (4 + 5)/2 = 4.5. The median is the middle score, which 
is 4.5 in this case.

The median is the middle score in the distribution of ranked numbers; it is the point 
at which half the numbers are larger and half are smaller. When there are a few very 
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47CHAPTER 3  •  Conceptual Foundations of Statistics

high or very low scores, however, the median or mode may represent better the central 
tendency than does the mean.

In sum, the mean, mode, and median are the three most common measures of 
central tendency; they are indicators of how typical a given score is in a distribution 
of numbers, but none of these indicators gives you a sense of how the scores are 
distributed, that is, how much variability there is in the set of numbers.

MEASURES OF VARIABILITY

Let’s now turn our attention to how much variability there is in a set of numbers. How 
are the scores distributed? How much do they vary? We consider three measures of 
variability: the range, the average deviation, and the standard deviation (SD).

The range is the difference between the highest and lowest scores in a set of numbers, 
but it is also given as the span of scores beginning with the lowest score and ending 
with the highest score, as in the range of 89 to 144 (or, alternately, the range is 55). The 
range is direct and simple, but a little crude because it only describes in broad strokes 
the limits of the scores; it does not tell us what is happening in between the extremes.

The average deviation from the mean is just what the phrase suggests: We find the 
mean, then find the deviation from the mean for each number (subtract the mean from 
the number), and then average all the deviations to get a typical departure of the scores 
from the mean. Conceptually, that makes sense, but unfortunately, we always get the 
same average deviation because half the scores will deviate above the mean and the 
other half below the mean; consequently, when you add the deviations you always get 0. 
Thus, the average deviation is always 0 and not useful. Take an example. Consider the 
set of numbers (1, 2, 3, 4, 5, 3, 3). The mean is 21/7 = 3. The deviations from the mean 
are -2, -1, 0, 1, 2, 0, and 0, respectively, and the sum is therefore 0. Zero divided by 7 is 
0. Zero is always the average deviation from the mean because half the scores are above 
the mean and the other half are the same amount below the mean, and 0 divided by any 
number is 0. Try it yourself with a small set of numbers. Why bother with the average 
deviation from the mean? Only to help you understand the concept of a standard 
deviation from the mean.

The standard deviation from the mean is the extent to which scores vary from the mean—the 
typical deviation from the mean for a set of scores. The standard deviation is conceptually 
similar to the average deviation, but it is more useful because it is not always 0, and it 
has some interesting mathematical and statistical properties, which we discuss later. 
Remember, the standard deviation is always from the mean; the mean is the point of 
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QUANTITATIVE RESEARCH IN EDUCATION48

reference. How much are the scores deviating from the mean? What is the typical or 
standard deviation of scores from the mean? Let’s consider the same set of numbers as 
before (1, 2, 3, 4, 5, 3, 3), and illustrate the computation of its standard deviation.

•• Compute the mean as we did above; it better still be 3, but check it.

•• Compute the deviations from the mean; subtract the mean from 
each score.

•• Square each deviation from the mean; check these computations 
below:

•• Sum the squared deviations:

Σ (Score – Mean)2 = (4 + 1 + 0 + 1 + 4 + 0 + 0) = 10.

•• Divide the sum of squared deviations by the number of scores:

Σ (Score – Mean)2 / 7 = 10 / 7 = 1.43.

•• Take the square root of the quotient to obtain the standard 
deviation: Square root of 1.43 = 1.196.

Deviation From the Mean  

(Score - Mean)

Deviation From the Mean Squared 

(Score - Mean)2

(1 - 3) = - 2 (1 - 3)2 = -22 = 4

(2 - 3) = - 1 (2 - 3)2 = -12 = 1

(3 - 3) = 0 (3 - 3)2 = 02 = 0

(4 - 3) = 1 (4 - 3)2 = 12 = 1

(5 - 3) = 2 (5 - 3)2 = 22 = 4

(3 - 3) = 0 (3 - 3)2 = 02 = 0

(3 - 3) = 0 (3 - 3)2 = 02 = 0

Hence, the standard deviation of this set of numbers is 1.196, and the formula is

Standard Deviation (  = SD)
Score Mean( )−∑ 2

N
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49CHAPTER 3  •  Conceptual Foundations of Statistics

One small note: Statisticians use the shorthand expression sum of squares to refer to 
the sum of the deviations from the mean squared, which often confuses students. So 
remember that you square all the deviations from the mean and then calculate the sum to 
get the sum of squares; then you divide by the number of scores and take the square 
root of this quotient to get the standard deviation. Now you have the formula for 
computing the standard deviation, but it is just as important to know what standard 
deviation means—the extent to which your set of scores vary from the mean—the 
larger the standard deviation, the more widely the scores vary from the mean (see 
Figure 3.1); when the standard deviation is small, the variability is also small.

Knowing the mean and the standard deviation of a group of scores gives you a better 
understanding of an individual score. For example, suppose you received a score of 79 
on a test. You would be pleased with the score if the mean of the test were 70 and the 
SD were 4 because your score would be a little more than 2 SDs above the mean, a 
score well above average.

Consider the difference if the mean of the test had remained at 70, but the SD had 
been 16. In this case, your score of 79 would be less than 1 SD from the mean. You 
would be much closer to the middle of the group, with a score slightly above average, 
but not high. Knowing the standard deviation tells you much more than simply 
knowing the range of scores. No matter how the majority scored on the test, one or 
two students may do very well or very poorly and thus make the range very large.

NORMAL DISTRIBUTION

Standard deviations are especially useful if the distribution of scores is normal. 
You have heard of a normal distribution before; it is the bell-shaped curve that 
describes many naturally occurring physical and social phenomena, such as height 
and intelligence. Most scores in a normal distribution fall toward the middle, with 
fewer and fewer scores toward the ends, or the tails, of the distribution. The mean 
of a normal distribution is also its midpoint. Half the scores are above the mean, 
and half are below it. Furthermore, the mean, median, and mode are identical in a 
normal distribution.

As you can see in Figure 3.1, when the distribution of scores is normal, the percentage 
of scores falling within each area of the curve is known. Scores have a tendency toward 
the middle or mean. In fact, 68% of all scores are located in the area from 1 SD below 
to 1 SD above the mean. About 16% of the scores are beyond 1 SD above the mean. 
Of this higher group, only 2% are greater than 2 SDs above the mean. Similarly, only 
about 16% of the scores are beyond 1 SD below the mean, and of that group only 
about 2% are beyond 2 SDs below the mean.
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QUANTITATIVE RESEARCH IN EDUCATION50

Standard scores are based on the standard deviation. A z score is a standard score that tells 
how many standard deviations above or below the mean a score falls. In the example described 
earlier, where you were fortunate enough to get a 79 on a test where the mean was 70 and 
the SD was 4, your z score would have been greater than 2 SDs above the mean (actually 
2.25 SDs above the mean), which means that your score is higher than 98% of those who 
took the test. To determine your place in a normal distribution, you need to convert your 
raw score to a standard score, which is a simple process—simply subtract the mean from 
the raw score and divide the difference by the standard deviation. The formula is

Z =
Raw score  Mean
Standard deviation

−

POPULATIONS AND SAMPLES

So far, all our statistics have described properties of populations. The population, or 
universe, contains all the elements of the set. If you have all the elements of the set you 
are studying, for example, all the scores for all students in your class, then you have 
the results for that universe. You can compute the exact or actual mean, mode, median, 
range, and standard deviation for the population; there is no need to estimate.

Figure 3.1   The Normal Distribution
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51CHAPTER 3  •  Conceptual Foundations of Statistics

For the most part, however, researchers are interested in samples of a population. A 
sample is a subgroup of the population. If we want to generalize about the third-grade 
students in the country, the population is all-third grade students in America. It is 
impractical, if not impossible, to get information on all such students, so researchers 
limit the population to third grade students in a state. Even this population may be 
too large for practical purposes, so we take a subgroup of these students as a sample. 
We would like to get a representative sample so that our conclusions are general to 
the population.

We need to add a few more refinements to our definitions because we are 
usually directly concerned with samples rather than populations. Statistics are the 
characteristics of samples. Parameters are the characteristics of populations. That is, measures 
of central tendencies (mean, mode, median) and indicators of variability (range 
and standard deviation) are parameters, which are estimated from the sample. One 
formula, the standard deviation, needs to be altered slightly to get a better estimate 
of the actual standard deviation of the population. In other words, when using a 
sample to estimate the standard deviation of a population, divide by n - 1 (number 
in the sample minus 1). This revised formula yields a better estimate of the standard 
deviation for the population; this slightly altered way of calculating the variance is 
called the mean square and has other mathematical and statistical properties that 
make it useful. Thus, the standard deviation for a sample is best defined as

SD
n

=
−∑
−

( )score  Mean 2

1

Thus far in our analysis, we have used the standard deviation as a measure of the 
variability. A related concept that is more useful in statistics is the variance of a set of 
scores. The variance of a sample is its standard deviation squared.

Variance ( )
score Mean

1

2
V

n
=

−∑
−

( )  

The variance and the mean are the two key concepts used in most statistical 
analyses. Both are summaries of a set of scores; the mean is a measure of central 
tendency and the variance a measure of variability. We started our discussion of 
variability with the standard deviation because we assumed that it was more familiar, 
but now the related concept of variance becomes our chief index of variability.

Much of statistical analysis is explaining the variance in the dependent variable. Does the 
independent variable cause the dependent variable to vary or lean in a certain direction? That 
is the key problem of inferential statistics. We ask the question “Were the results of 
my study a consequence of the independent variable, or were they a result of chance?” 
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QUANTITATIVE RESEARCH IN EDUCATION52

In other words, we measure our actual findings against the chance model. We attempt 
to eliminate chance as an explanation of our results in order to buttress the argument 
that our independent variable, not chance, made the difference. To reiterate the central 
thesis of inferential statistics, “Did the results occur by chance, or are they a function of 
our independent variable?” Statistics and probability help us answer this basic question. 
This is not a book on statistics; however, a basic conceptual understanding of statistical 
tests is essential if we are to grasp the nature and meaning of quantitative research.

STATISTICAL TESTS

One more time, here is the basic statistical question: Is what I found in my research 
significantly different from what I would expect to find by chance? What you as a 
researcher need to do is to compare your actual results with the chance model. Do 
the results vary enough from chance to conclude that something else is causing the 
variance or variability in the dependent variable? Statistics provide critical ratios, such 
as the t ratio, the F ratio, or chi square, which enable us to answer the chance question 
with confidence (see “Elements of a Proposal,” Appendix A).

t Test
All critical ratios work the same way, and we illustrate a few so that you understand 
what is happening and why. The t test is a good place to begin because it is a clear, 
straightforward statistical application. If we are doing a study in which the independent 
variable has only two categories and the dependent variable is continuous, then the 
appropriate statistic is a t test.

For example, suppose we want to know if college men and women are significantly 
different with respect to liberal attitudes toward premarital sex. Note that the 
population is all students at College A. Assume that we select a representative sample 
of men and women from College A, and we have all students in the sample respond to 
a reliable and valid scale measuring their attitudes. Assume further that the higher the 
score on the scale, the more liberal their attitudes. How can we test the results of our 
little research problem?

First, we divide the sample into two groups, male and female; the independent variable 
has only two categories. Then we compute the mean scores for men and for women 
on the dependent variable—liberal attitudes toward premarital sex. Finally, we ask 
whether the means for the men and women were significantly different. The t test is an 
appropriate statistical procedure when the independent variable has two and only two categories 
and the dependent variable is continuous.
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53CHAPTER 3  •  Conceptual Foundations of Statistics

Here is how the t test works. To assess whether there is a significant difference (one 
not explained by the chance model), we compare what we found—the actual difference 
in scores between men and women—with the difference expected by chance. The ratio 
between the actual difference and the difference due to chance is a t ratio. A t test is 
defined as

t =
Actual difference in the means
Difference expected by channce

The larger the ratio, the greater the probability that the difference is not a function 
of chance. If the t value is 1, what does that mean? The actual difference between the 
means is exactly what to expect if nothing but chance is working; chance is explaining 
this relationship. But, if the t value is 2, it is more likely that something other than 
chance is operating.

Let’s continue a little further without getting bogged down in statistical calculations. 
The general formula for a t test is as follows:

t =
−Mean from Group 1 Mean from Group 2

Standard error of the  difference between the means of the two groups

There are several important aspects of this general formula:

1.	 We are examining the actual difference between the means of the 
two groups.

2.	 We are comparing the actual difference with what is expected by 
chance.

3.	 Statisticians can determine what is expected by chance by computing 
the standard error of the difference between the two means.

4.	 A t ratio is computed that indicates the extent to which the results 
depart from the chance model: The greater the t value, the greater 
the likelihood that chance is not explaining the relationship.

Fortunately for us, using any one of a number of statistical packages, the computer 
calculates the standard error of the difference between the means as well as the t ratio 
and its level of significance (p value).

A p value is a probability level that indicates the level of significance, that is, the 
probability that the results are a function of chance. When you read research publications, 
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QUANTITATIVE RESEARCH IN EDUCATION54

you find statements like (t = 2.62, p <.01). This means that a t test produced a t ratio 
of 2.62, which was significant beyond the .01 level of significance (p <.01); hence, we 
can be quite confident that the chance model does not explain the relationship. By 
convention, most researchers accept a relation as statistically significant if the p value is 
equal to or less than .05. What that means is that the relation could have occurred by 
chance only 5 times or less out of 100.

Let’s return to the question of whether men and women at College A have different 
attitudes toward premarital sex.

•• First, we add up all the scores for the men and divide by the 
number of men (mean score for men) and do the same for the 
women (mean score for women).

•• Next, we subtract the scores (mean score of men minus mean 
score of women).

•• Then, we compute the standard error of the difference between 
the means of men and women (the difference we would expect to 
get by chance).

•• Finally, we compare the two by computing a t ratio (actual 
difference divided by the standard error of the difference).

Fortunately, our laptop and SPSS computer program does all this as quickly as we 
can hit the Execute button. The results include the t value and give us its level of 
significance.

What would it mean in our research project if we obtained the following: (t = 1.02,  
p >.95)? The answer is that a t value of 1.02 is not statistically significant. We can tell 
this just by looking at the t value because 1 would indicate perfect chance to explain the 
result. The p >.95 indicates that more than 95 times out of 100, chance would explain 
our results. Hence, in College A, we can conclude with great confidence that there is no 
significant difference between men and women in their attitudes toward premarital sex.

F Test
The independent variable is not always a dichotomous variable, one with only two 
categories. Sometimes the independent variable has more than two categories. If so, 
we cannot use the t test. We need a more general test that does essentially the same 
thing, that is, produces a critical ratio to check the departure from the chance model. 
In a case when there is more than two categories in the independent variable and a 
continuous dependent variable, the more general F ratio provides our answer. An F test 
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55CHAPTER 3  •  Conceptual Foundations of Statistics

is done using a statistical procedure called analysis of variance (ANOVA). There are 
a variety of ANOVAs, and we now focus on the least complex; however, conceptually 
all ANOVAs are similar in that one or more F values are computed to answer the 
question of the deviation from the chance model question.

Let’s illustrate a simple one-way ANOVA with an example. Suppose I want to test 
the effectiveness of three teaching approaches with graduate students in education—
teacher directed, student directed, and shared. I am teaching a large group of 90 
students in an introductory course in education, about a third of all the beginning 
graduate education students. Does my teaching approach make any difference in the mastery 
of key concepts in education? Assume that I can divide the group into three similar 
subgroups; probably the best way to do this is to assign the students to the groups 
at random. Assume further that the 90 students are representative of all beginning 
graduate education students at my university.

What is my independent variable in the research problem? How many independent 
variables do I have? Three? No, actually I have only one independent variable 
(teaching approach) with three variations or categories (teacher-directed, student-
directed, and shared approaches). The independent variable is a manipulated 
categorical variable. I, the researcher, will manipulate the variable by teaching each 
group in one of three ways. What is the dependent variable? I am interested in mastery 
of basic education concepts, and I have a final exam that I developed over the years 
that is reliable and valid; that is, it taps the content that I am interested in having 
students master in a consistent manner. The dependent variable is measured by my test 
and is continuous: The higher the test score, the greater the level of mastery of basic 
concepts. The F test is an appropriate statistical procedure when the independent variable has 
two or more categories and the dependent variable is continuous.

Here is how an F test is computed using ANOVA. At the end of the term, I compute 
the mean score on mastery for each of the three groups. Almost certainly, there will be 
differences in the means, but the question is essentially the same here as it was for the 
t test: Is there a significant difference among the three mean scores? I proceed by doing 
the following:

•• First, compute the mean for each of the three groups on the 
mastery exam.

•• Next, calculate the total variance for the entire sample. That 
is, combine all three groups into one, and compute the overall 
mean for the entire 90 students. To compute the variance for 
the entire group, which is called the total variance (Vt), use the 
following formula described earlier:
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QUANTITATIVE RESEARCH IN EDUCATION56

Variance V
score Mean 2

( )
( )

= ∑
−

  −
n 1

•• Now compute the variance between the groups. To do this, we 
treat each of the three means for the groups as data points and 
use our variance formula. The between-group variance is the 
variance caused by the independent variable; it is also called 
systematic or experimental variance.

•• The variance due to error is commonly called the within-group 
variance; it is also called error variance. This computation is a 
little more difficult to explain, but conceptually it is the variance 
“left over” from the total variance after the between-groups or 
experimental variance is removed from the total variance. The 
within-group variance is a measure of chance variation.

•• Finally, calculate the F ratio, which is the variance produced by 
the independent variable divided by the variance due to chance.

F =
Variance due to the independent variable

Variance due tochaange
Between-groups variance
Within-groups variance

=

We have come a long way to show that the F ratio using ANOVA is essentially the 
same as a t ratio in that both compare actual findings in relation to chance and yield 
an index and a probability level to enable us to make confident judgments about the 
nature of our relationships. A significant F ratio in this kind of problem simply means 
that there is a significant difference among the three groups. To find which pairs of means 
are different, we must do some further post hoc analyses, which can be found in any 
good statistics book. But, the idea is the same: Compare your actual results with what you 
would expect by chance.

Chi-Square Test
Sometimes, both the independent and the dependent variables are categorical. If so, we 
need another statistical tool called the chi-square (c2) test to compute the critical ratio 
for such situations. Suppose you want to examine the relationship between gender 
and graduation. Is the gender of the students related to whether or not one graduates? What 
are the independent and dependent variables of this research problem? What kind of 
variable is each in terms of measurement? Gender is the independent variable; it is the 
presumed cause and has two variations or categories: male and female. Graduation is 
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57CHAPTER 3  •  Conceptual Foundations of Statistics

the dependent variable, and it also has two categories: graduate and no graduate. One 
might also consider graduation as a continuous variable, that is, graduation rate, but to 
illustrate the chi-square, we cast graduation as a dichotomous variable.

We decide to go back to the freshman class of four years ago and see how many men 
and women graduated at the end of four years. We select a random sample of 100: 50 
men and 50 women. We summarize the results of our research in a 2 × 2 cross break or 
contingency table (see Table 3.1).

Men Women

Graduate 15 35   50

No graduate 35 15   50

50 50 100

Table 3.1  Summary of the Results of our Analysis

As we examine the results in the 2 × 2 table, we see that in our sample, women may 
be more likely to graduate than men, but what is the likelihood that the results can 
be explained by chance? In other words, we need to compare what we found in this 
analysis with what we would expect to find by chance. Do the results here represent a 
major departure from the chance model? We need a critical ratio. The chi-square test 
is the appropriate statistic when both variables are categorical. The chi-square is a test of 
frequency counts. What do the numbers in the cells of our 2 × 2 table represent? 
Yes, frequencies—the number of students in each cell. The chi-square is an index of 
the actual results compared with those expected by chance. Examine the formula for 
chi-square:

Chi - square( )
( )

χ2 0
2

= ∑
−











f f
f

e

e

Now, we use the formula and the previous results obtained and summarized in our  
2 × 2 cross break. The chance model would predict 25 students in each cell; that is, 
the expected frequency for each cell (fe) is 25. Now compare the expected with the 
actual for each cell by subtracting the expected frequency (fe) from the observed 
frequency (fo), squaring the difference, and then dividing the difference by the 
expected frequency (fe). Let’s do the computations for each cell and sum them as the 
formula instructs.
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c2 = [(15 - 25)2/25] + [(35 - 25)2/25] + [(15 - 25)2/25] + [(35 - 25)2/25]

c2 = [100/25] + [100/25] + [100/25] + [100/25]

c2 = 4 + 4 + 4 + 4

c2 = 16.

The c2 index is 16. What would the chi-square have been if only chance were working? 
Each cell would have had the number 25, and c2 would have been 0. Run the numbers, 
and make sure you see why the answer is 0. Thus, our index of departure from chance 
in this example is 16. Using a computer program, we would have found (c2 = 16,  
p <.01). The results show that a c2 of 16 is statistically significant beyond the .01 level 
of significance; that is, these results would occur by chance less than 1 time out of 100. 
Our conclusion would be that women are more likely to graduate from the college 
than are men. Note that, as always, our conclusion is probabilistic, not certain. The 
point of this exercise is to demonstrate the meaning of yet another critical ratio, one 
that works when both variables are categorical.

Effect Size
The three tests that we examined thus far—the t test, the F test, and chi-square—
are statistics that help us answer the basic statistical question: Is what I found 
in my analysis significantly different than I would expect to find by chance? None of 
these statistics, however, tells us anything about the magnitude of the relation. 
Increasingly, researchers want to know the strength of the relation, that is, its effect 
size. The magnitude of the independent variable’s effect on the dependent variable is the 
effect size. Suffice it to say that when using t tests, analysis of variance, or chi-square 
analysis, we must do additional computations to determine effect size. For example, a 
contingency coefficient and an omega-squared (Hays, 1994; Kerlinger & Lee, 2000) 
are relatively straightforward computations that will tell us the magnitude of the 
effect size. The point here is that the F and t values and chi-square tell us if there is 
a statistically significant relationship, but they do not indicate the magnitude of the 
relation; other indices are needed.

We turn next to coefficients of correlation, which not only answer the question of 
statistical significance, but also indicate the magnitude of the relationship between 
the independent and dependent variable—the proportion of variance in the 
dependent variable explained by the independent variable. Correlation coefficients, 
unlike the statistics explored thus far, answer both the statistical significance and the 
effect size questions.
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Linear Regression and Coefficient of Correlation
What if both the independent and the dependent variables are continuous? We need 
another statistic: A coefficient of correlation (r) will give us the answer to whether 
the relation is likely a chance one or not. But, another useful feature of the correlation 
is that we can use it to test not only the departure from the chance model, but also 
the strength of the relation. A coefficient of correlation is a number that indicates the 
magnitude of the relation between two continuous variables such that the higher the absolute 
value of the correlation, the stronger the relation. Correlations range in value from -1 to 
+1. If the two variables vary together, they have a positive correlation, which means 
that as the value of one increases, so does the other. If the correlation is negative, then 
as the independent variable changes, the dependent variable changes in the opposite 
direction. Which is stronger, a correlation of +1 or one of -1? Neither. Both are perfect 
correlations; both are as high as they can get, but in opposite directions. The sign of 
the correlation represents the direction of the relation and has nothing to do with its 
strength. So r = -.85 is a stronger correlation than r = +.41 because the sign merely 
indicates whether the variables are varying in the same or opposite direction.

The calculations of coefficients of correlations are a little more tedious and not as 
self-evident as the other statistics that we have discussed, so we will not spend much 
time with the formulas and computations. Instead, we illustrate the correlations 
with a table. Correlations describe linear relations, which are straight lines when 
graphed. The relation between two variables, x and y, is a set of ordered pairs. That 
means that for every value of x there is one corresponding value of y. We can express 
the pairs of values in set notation, or we can simply express them in a table or graph 
or both. Consider the relations between three sets of ordered pairs (relations) as 
expressed in Table 3.2.

The first set of ordered pairs (1) has a correlation coefficient of +1; the numbers vary 
together. For each change in the independent variable x, there is a corresponding 
change in the dependent variable y of the same magnitude and direction. In the 
second set of ordered pairs (2), sometimes a change in x produces a positive change 
in y and sometimes a negative change; there is no systematic pattern in the relation; 
there is no relation (r = 0). Finally, in the third set (3), for each change in x there is a 
corresponding change in y of the same magnitude except in the opposite direction; 
we have a perfect negative correlation (r = -1); x and y vary together in opposite 
directions. In brief, the correlation coefficient provides an index of the extent to which 
the two variables vary together and the direction of the variation.

A computer program will provide you with correlation coefficients and levels of 
significance. Consider the statement (r = -.52, p <.01). The correlation is negative: 
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As x increases, y decreases. The relation is statistically significant; that is, chance is 
unlikely to explain the relationship; in fact, in less than 1 time in 100, the two variables 
would not be related. The correlation coefficient also suggests how strong the relation 
is between the two variables. Square the coefficient of correlation and multiply it by 
100, and you have an estimate of the percentage of the variance in the dependent 
variable (y) caused by the independent variable (its effect size). For example, if r =.50, 
then the independent variable x explains 25% of the variance in y. If r = 0, then none 
of the variance in y is explained by x. If r = -.83, then about 69% of the variance in 
y is explained by x. An important point: What scientists try to do with their research and 
statistics is to identify independent variables that explain the variance in the dependent variable. 
Explaining variance in a dependent variable is an important goal of scientific research.

A final observation about a correlation coefficient—it is mathematically the coefficient 
of x in the formula for a straight line, as expressed by the following equation:

y = mx + b.

Think of the set of ordered pairs that represents the relation between the independent 
variable, x, and the dependent variable, y, as a graph of a line that passes through those 
points such that the line represents the best fit for all the points; mathematically, 
that means the sum of all the distances from the points to the line (sometimes called 
a regression line) would be as small as possible. If we standardize x and y, then the 
coefficient of x is the correlation coefficient for the regression line for the relation of x 
and y. In sum, a correlation coefficient for a relation in which both variables have been 
standardized is the slope of its regression line. The regression line for two variables 
will take the form of y = mx + b, where m is the slope of the line and the correlation 
coefficient for the standardized data and b is the y-intercept. Perhaps we are getting a 
little too technical, so let’s move on.

(1) r = 1.00 (2) r = 0 (3) r = -1.00

x y x y x y

1 1 1 2 1 5

2 2 2 5 2 4

3 3 3 3 3 3

4 4 4 1 4 2

5 5 5 4 5 1

Table 3.2  Correlations for Three Sets of Numbers
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Multiple Regression and  
Multiple Coefficient of Correlation
Thus far, all the tests that we describe are bivariate; that is, they examine the relation 
between one independent and one dependent variable. In the actual world, relationships 
are more complicated. Typically, dependent variables are influenced by more than 
one variable at a time; thus, we need multivariate statistics. You should be beginning 
to realize that there are statistics for just about any relation you can imagine, but 
most are designed to answer basic questions: Can I reject the chance model as a good 
explanation? How strong is this relationship?

Just as a simple correlation (r) tells us whether the chance model can be rejected 
and how strong the relation is between x and y, a multiple correlation (R) tells us 
the same thing. But, in the case of the multiple R we have a little more information 
because R represents how much variance in the continuous dependent variable y is explained 
by a set of continuous independent variables (x1, x2, x3 . . . xn). Moreover, each x variable has 
a coefficient, which is sometimes called a regression coefficient or beta weight. So, 
a multiple regression analysis produces a multiple R, which represents the combined 
influence of all the independent variables on the dependent variable y, as well as a 
regression coefficient or beta weight for each independent variable (x). The coefficients 
represent the strength of the relation between that x and the dependent y, controlling 
for the other xs—that is, taking out the influence of the other independent variables. 
Consider the following formula for a multiple regression line:

y = ax1 + bx2 + cx3 + i (the intercept).

Note that this equation is simply an extension of simple regression; multiple regression 
is an extension of simple regression where there are multiple independent variables 
predicting a single dependent variable. In the regression equation above, we have three 
independent variables instead of only one. For example, we might be trying to predict 
student achievement (y) based on the IQ (x1), motivation (x2), and sense of optimism 
(x3) of students. If we had data from some sample of students on these variables, we 
could use a standard statistical package to run a multiple regression analysis on this set 
of variables. The analysis would first compute an R, which would tell us how strong 
the relation is between this set of variables and student achievement. For example, 
what is the combined impact of IQ, motivation, and sense of optimism on student 
achievement? If we square the R, then R2 is a good estimate of how much of the 
variance in student achievement is explained by the combination of IQ, motivation, 
and sense of optimism. The program also computes a t value or F ratio to gauge the 
likelihood that the relation is a matter of chance. Furthermore, the analysis yields a 
standardized beta coefficient for each independent variable, which tells us how much 
influence each independent variable has relative to the other independent variables, 
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QUANTITATIVE RESEARCH IN EDUCATION62

and, of course, for each coefficient there will be a corresponding test to determine its 
departure from chance.

Remember that the two variables in simple correlation are both continuous; this is also 
the case in multiple regression—all the variables are typically continuous. 

Hierarchical Linear Modeling (HLM)
HLM is simply multiple regression performed with hierarchical data, data that are 
clustered or nested within different units of analysis. For example, in school effects 
research, students are nested in schools. There are two different levels of analysis: the 
individual (students) and the school.

Why use HLM if it is just multiple regression? Let’s go back to the purpose of 
multiple regression—to test the relationship among a set of independent variables and 
a single dependent variable. But, what if the question is how important is the school 
versus the individual in influencing some dependent variable? HLM enables us to 
answer this question efficiently. A standard multiple regression analysis of student 
achievement across schools does not simultaneously account for both student and 
school effects; HLM does. 

To estimate a school effect in standard multiple regression, the researcher needs to 
aggregate individual student data to the school level by calculating a mean student 
score for each school. In the process of aggregating, however, we lose the differential 
effect of individual students on the dependent variable. So, how does HLM differ? 
Let’s say we are interested in the relationship between collective faculty trust in 
students and student achievement. This question involves hierarchical data because 
student achievement is measured at the individual student level, but collective faculty 
trust is measured as a school property. Students are nested in schools; therefore, it is 
necessary to separate the variance in student achievement due to differences in schools 
and differences in individual students. In our example, we might find that 20% of the 
variance in student achievement is attributed to school differences while the other 
80% is due to individual differences or to chance.

Remember the purpose of research is to explain the variance of a dependent 
variable, in this case achievement. There are several student factors that may explain 
differences in student achievement at the individual student level. Likewise, there 
are many school factors that may explain achievement differences across schools. We 
need to include these multiple variables in the regression model. In our example, we 
might use a measure of SES (socioeconomic status) as well as IQ at the individual 
level, and a measure of school poverty along with collective faculty trust at the school 
level. With this model, we now are accounting for achievement differences due to 
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student SES, IQ, school poverty, and collective trust of the faculty. In this case, the 
four independent variables are student SES, IQ, school poverty, and collective faculty 
trust. Note that the independent variables are at different levels—student SES and 
IQ are individual variables while school poverty and collective faculty trust are school 
variables. The reason we use HLM is because the multiple independent variables are 
at two different levels.

Thus far, our analyses focused on examining the relations between independent 
variables and one dependent variable. When statistical analyses simultaneously test 
relations among both multiple independent and multiple dependent variables, the 
procedures are called multivariate. We could continue building our set of statistical 
procedures. For example, what if we are interested in multiple independent variables 
and multiple dependent variables? There are, of course, statistical tests for such 
circumstances, multivariate analysis of variance (MANOVA), canonical correlation, 
and structural equation modeling (SEM). But, we have gone far enough to give you a 
flavor of statistics, what they do, and when and how they are employed.

SUMMARY

If you have carefully read and studied this chapter, 
you now have a good working repertoire of 
statistical procedures and tests; however, the 
chapter is not a substitute for a set of statistics 
courses, but it should provide the conceptual 
understanding that you need to begin to analyze 
and frame quantitative research. Let’s review the 
key points:

•• The mean, mode, and median are measures of 
central tendencies.

•• The range and standard deviation are 
measures of variability.

•• The basic purpose of inferential statistics is 
to answer the question “Were the results of 
my study a consequence of the independent 
variable, or were they a result of chance?”

•• Your inventory of statistical tests includes

{{ the t test for the difference between two 
means,

{{ ANOVA and the F test,

{{ the chi-square test,

{{ coefficients of correlation (r), 

{{ multiple regression and multiple cor-
relations (R), and

{{ hierarchical linear modeling (HLM).

•• Which test is appropriate depends on the 
nature of the independent and dependent 
variables, that is, whether they are continuous 
or categorical and nested or not (see Table 3.3 
for a summary).
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Independent Variable Dependent Variable Statistical Test

Dichotomous Continuous t test

Categorical Continuous F test (ANOVA)

Categorical Categorical Chi-square (c2)

Continuous Continuous Correlation (r)

Multiple and continuous Continuous Multiple correlation (R)

Multiple, continuous, and 
nested

Continuous Hierarchical Linear 
Modeling (HLM)

Table 3.3  Types of Variables and Appropriate Statistical Tests

CHECK YOUR UNDERSTANDING

1.	 An educational researcher conducted 
an experiment with two groups: an 
experimental group (A) and a control group 
(B). A was a taught using “dynamic inquiry,” 
and B was taught in a traditional way. At the 
end of the unit, a performance test was given 
to both groups, and their scores were as 
follows:

A	 B

3	 6

5	 5

1	 7

4	 8

2	 4

Using the formulas in this chapter, compute 
the mean, standard deviation, and variance for 
Group A and Group B. Based on the results, 
develop a hypothesis relating dynamic inquiry and 
effectiveness.

2.	 The following scores are the result of a test of 
reading comprehension in a fourth grade class:

0, 2, 4, 1, 3, 5, 2, 4, 6, 6, 4, 2, 5, 3, 1, 4, 2, 0

What are the mean, mode, and median for this set 
of scores? What are the range, average deviation, 
and standard deviation? In your own words, not in 
statistical terms, describe the variance and central 
tendency of this distribution.

3.	 A student score of 600 on the SAT (Scholastic 
Aptitude Test) is the same as a standard score 
of 1. How does this student compare with all 
those who have taken the test? What if the 
SAT score is 300 or a standard score of -2? 
What is a standard score? (Hint: For the SAT 
test, the mean score is 500, and SD = 100.)

4.	 Compute a t value for Exercise 1 above, 
assuming that the standard error of the 
difference between the two means is 1. 
Interpret what that t value means. Is the 
difference in the means of the two groups 
statistically significant?

                                                                            Copyright ©2016 by SAGE Publications, Inc. 
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher. 

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute



65CHAPTER 3  •  Conceptual Foundations of Statistics

5.	 You computed a correlation between the 
socioeconomic status of your students and 
their math achievement scores (r =.70). 
Interpret what this correlation means. If this 
is a true correlation, what can you as a teacher 
do to improve performance? How much does 
SES help or hinder your task?

6.	 You just read an interesting article where the 
researcher shows that the multiple regression 
of home background (HB), intelligence (IQ), 
and motivation (M) on achievement produces 
an R2 of .87 and the standardized beta weights 
are .31, .41, and .34, respectively. How 
strong is the relation? Which variable is the 

most important in explaining achievement? 
What is the relative influence of each of the 
independent variables? What conclusions can 
you draw?

7.	 A school district wants to examine the 
influence of academic optimism on student 
achievement. Data are collected for academic 
optimism of the schools, the socioeconomic 
status of students, the attendance record of 
students, and the mathematics achievement of 
students. What are the independent variables? 
Dependent variable? School-level variables? 
Individual-level variables? What kind of 
analysis is required? Why?

KEY TERMS

ANOVA (analysis  

of variance) (p. 55)

Beta weight (p. 61)

Between-group  

variance (p. 56)

Chi-square (c2) (p. 56)

Coefficient of  

correlation (r) (p. 59)

Effect size (p. 58)

Error variance (p. 56)

Experimental  

variance (p. 56)

F value (p. 55)

Hierarchical linear  

modeling (HLM) (p. 62)

Level of  

significance (p. 53)

Mean (p. 45)

Median (p. 45)

Mode (p. 45)

Multiple correlation (R) (p. 61)

Multiple regression (p. 61)

Negative correlation (p. 59)

Normal distribution (p. 49)

Population (p. 50)

p Value (p. 53)

Range (p. 47)

Research hypothesis (p. 000)

Sample (p. 51)

Standard deviation (p. 47)

Standard score (p. 50)

Systematic variance (p. 56)

t Test (p. 52)

t Value (p. 53)

Within-group variance (p. 56)

z Score (p. 50)
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