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LEARNING OUTCOMES

1.	 Gain an overview of Stage 5 of the process for using PLS-SEM, 
which deals with the evaluation of measurement models.

2.	 Describe Stage 5a: evaluating reflectively measured constructs.

3.	 Use the SmartPLS 3 software to assess reflectively measured con-
structs in the corporate reputation example.

C H A P T E R  4

Assessing PLS-SEM 
Results Part I

Evaluation of Reflective  
Measurement Models

CHAPTER PREVIEW

Having learned how to create and estimate a PLS path model, we now 
focus on understanding how to assess the quality of the results. Ini-
tially, we summarize the primary criteria that are used for PLS path 
model evaluation and their systematic application. Then, we focus on 
the evaluation of reflective measurement models. The PLS path model 
of corporate reputation is a practical application enabling you to 
review the relevant measurement model evaluation criteria and the 
appropriate reporting of results. This provides a foundation for the 
overview of formative measurement models in Chapter 5 and how to 
evaluate structural model results, which is covered in Chapter 6.
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Chapter 4    Assessing PLS-SEM Results Part I       105

OVERVIEW OF STAGE 5: EVALUATION OF 
MEASUREMENT MODELS

Model estimation delivers empirical measures of the relationships 
between the indicators and the constructs (measurement models), as 
well as between the constructs (structural model). The empirical 
measures enable us to compare the theoretically established mea
surement and structural models with reality, as represented by the 
sample data. In other words, we can determine how well the theory 
fits the data.

PLS-SEM results are reviewed and evaluated using a systematic 
process. The goal of PLS-SEM is maximizing the explained variance 
(i.e., the R² value) of the endogenous latent variables in the PLS path 
model. For this reason, the evaluation of the quality of the PLS-SEM 
measurement and structural models focuses on metrics indicating the 
model’s predictive capabilities. As with CB-SEM, the most important 
measurement model metrics for PLS-SEM are reliability, convergent 
validity, and discriminant validity. For the structural model, the most 
important evaluation metrics are R2 (explained variance), f  2 (effect 
size), Q2 (predictive relevance), and the size and statistical significance 
of the structural path coefficients. CB-SEM also relies on several of 
these metrics but in addition provides goodness-of-fit measures based 
on the discrepancy between the empirical and the model-implied 
(theoretical) covariance matrix. Since PLS-SEM relies on variances 
instead of covariances to determine an optimum solution, covariance-
based goodness-of-fit measures are not fully transferrable to the PLS-
SEM context. Fit measures in PLS-SEM are generally variance based 
and focus on the discrepancy between the observed (in the case of 
manifest variables) or approximated (in the case of latent variables) 
values of the dependent variables and the values predicted by the 
model in question. Nevertheless, research has proposed several PLS-
SEM–based model fit measures, which are, however, in their early 
stages of development (see Chapter 6 for more details).

The systematic evaluation of these criteria follows a two-step 
process, as shown in Exhibit 4.1. The process involves separate assess-
ments of the measurement models (Stage 5 of the procedure for using 
PLS-SEM) and the structural model (Stage 6).

PLS-SEM model assessment initially focuses on the measurement 
models. Examination of PLS-SEM estimates enables the researcher to 
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106      A Primer on Partial Least Squares

Stage 5: Evaluation of the Measurement Models

Stage 5a: Reflective Measurement 
Models

Stage 5b: Formative Measurement 
Models

•	 Internal consistency (Cronbach’s 
alpha, composite reliability)

•	 Convergent validity (indicator 
reliability, average variance 
extracted)

•	 Discriminant validity

•	 Convergent validity

•	 Collinearity between indicators

•	 Significance and relevance of 
outer weights

Stage 6: Evaluation of the Structural Model

•	 Coefficients of determination (R²)

•	 Predictive relevance (Q²)

•	 Size and significance of path coefficients

•	 f ² effect sizes

•	 q² effect sizes

Exhibit 4.1    Systematic Evaluation of PLS-SEM Results

evaluate the reliability and validity of the construct measures. Specifi-
cally, multivariate measurement involves using several variables (i.e., 
multi-items) to measure a construct. An example is the customer 
loyalty (CUSL) construct described in the PLS-SEM corporate reputa-
tion model, which we discussed earlier.

The logic of using multiple items as opposed to single items for 
construct measurement is that the measure will be more accurate. The 
anticipated improved accuracy is based on the assumption that using 
several indicators to measure a single concept is more likely to repre-
sent all the different aspects of the concept. However, even when using 
multiple items, the measurement is very likely to contain some degree 
of measurement error. There are many sources of measurement error 
in social sciences research, including poorly worded questions in a 
survey, misunderstanding of the scaling approach, and incorrect 
application of a statistical method, all of which lead to random and/
or systematic errors. The objective is to reduce the measurement error 
as much as possible. Multivariate measurement enables researchers to 
more precisely identify measurement error and therefore account for 
it in research findings.
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Chapter 4    Assessing PLS-SEM Results Part I       107

Measurement error is the difference between the true value of a 
variable and the value obtained by a measurement. Specifically, the 
measured value xm equals the true value xt plus a measurement error. 
The measurement error (e = εr + εs) can have a random source (ran-
dom error εr), which threatens reliability, or a systematic source (sys-
tematic error εs), which threatens validity. This relationship can be 
expressed as follows:

xm = xt + εr + εs.

In Exhibit 4.2, we explain the difference between reliability and 
validity by comparing a set of three targets. In this analogy, repeated 
measurements (e.g., of a customer’s satisfaction with a specific ser-
vice) are compared to arrows shot at a target. To measure each true 
score, we have five measurements (indicated by the black dots). The 
average value of the dots is indicated by a cross. Validity is indicated 
when the cross is close to the bull’s-eye at the target center. The closer 
the average value (black cross in Exhibit 4.2) to the true score, the 
higher the validity. If several arrows are fired, reliability is the dis-
tances between the dots showing where the arrows hit the target. If 
all the dots are close together, the measure is reliable, even though 
the dots are not necessarily near the bull’s-eye. This corresponds to 
the upper left box, where we have a scenario in which the measure is 
reliable but not valid. In the upper right box, both reliability and 
validity are shown. In the lower left box, though, we have a situation 
in which the measure is neither reliable nor valid. That is, the repeated 
measurements (dots) are scattered quite widely and the average value 
(cross) is not close to the bull’s-eye. Even if the average value would 
match the true score (i.e., if the cross were in the bull’s-eye), we 
would still not consider the measure valid. The reason is that an 
unreliable measure can never be valid, because there is no way we 
can distinguish the systematic error from the random error (Sarstedt 
& Mooi, 2014). If we repeat the measurement, say, five more times, 
the random error would likely shift the cross to a different position. 
Thus, reliability is a necessary condition for validity. This is also why 
the not reliable/valid scenario in the lower right box is not possible.

When evaluating the measurement models, we must distinguish 
between reflectively and formatively measured constructs (Chapter 2). 
The two approaches are based on different concepts and therefore 
require consideration of different evaluative measures. Reflective 
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108      A Primer on Partial Least Squares

measurement models are assessed on their internal consistency relia-
bility and validity. The specific measures include the composite relia-
bility (as a means to assess the internal consistency reliability), 
convergent validity, and discriminant validity. The criteria for reflec-
tive measurement models cannot be universally applied to formative 
measurement models. With formative measures, the first step is to 
ensure content validity before collecting the data and estimating the 
PLS path model. After model estimation, different metrics are used to 
assess formative measures for convergent validity, the significance and 
relevance of indicator weights, and the presence of collinearity among 
indicators (Exhibit 4.1).

As implied by its name, a single-item construct (Chapter 2) is not 
represented by a multi-item measurement model. The relationship (i.e., 
the correlation) between the single indicator and the latent variable is 

Source: Sarstedt, M., & Mooi, E. A. (2014). A concise guide to market research (2nd ed., 
p. 35). New York: Springer. With kind permission of Springer Science + Business Media.
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Exhibit 4.2
Comparing Reliability and Validity (Sarstedt & 
Mooi, 2014)
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Chapter 4    Assessing PLS-SEM Results Part I       109

always 1. Put differently, the single indicator and the latent variable 
have identical values. Thus, the criteria for the assessment of measure-
ment models are not applicable to single-item constructs. To evaluate 
the reliability and validity of single-item measures, researchers must 
rely on proxies or different forms of validity assessment. For example, 
researchers can assess a single-item variable by means of criterion 
validity. This is done by correlating the single-item measure with an 
established criterion variable and comparing the resulting correlation 
with the correlation that results if the predictor construct is measured 
by a multi-item scale (e.g., Diamantopoulos et al., 2012). In terms of 
reliability, researchers often assume that one cannot estimate the reli-
ability of single-item measures based on such techniques as common 
factor analysis and the correction for attenuation formula (e.g., 
Sarstedt & Wilczynski, 2009). These procedures require that both the 
multi-item measure and the single-item measure are included in the 
same survey. Thus, these analyses are of primary interest when 
researchers want to assess in a pretest or pilot study whether in the 
main study, a multi-item scale can be replaced with a single-item mea
sure of the same construct. Still, recent research suggests that the reli-
ability and validity of single items are highly context specific, which 
renders their assessment in pretests or pilot studies problematic 
(Sarstedt et al., in press).

The structural model estimates are not examined until the relia-
bility and validity of the constructs have been established. If assess-
ment of reflective (i.e., Stage 5a) and formative (i.e., Stage 5b) 
measurement models provides evidence of the measures’ quality, the 
structural model estimates are evaluated in Stage 6 (Chapter 6). PLS-
SEM assessment of the structural model involves the model’s ability 
to predict the variance in the dependent variables. Hence, after relia-
bility and validity are established, the primary evaluation criteria for 
PLS-SEM results are the coefficients of determination (R² values) as 
well as the size and significance of the path coefficients. The f ² effect 
sizes, predictive relevance (Q²), and the q² effect sizes give additional 
insights about quality of the PLS path model estimations (Exhibit 4.1).

Assessment of PLS-SEM outcomes can be extended to more 
advanced analyses such as examining mediating or moderating 
effects, which we discuss in Chapter 7. Similarly, advanced analyses 
may involve estimating nonlinear effects (e.g., Rigdon, Ringle, & 
Sarstedt, 2010), conducting an importance-performance matrix anal-
ysis (PLS-IPMA; e.g., Rigdon, Ringle, Sarstedt, & Gudergan, 2011; 
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110      A Primer on Partial Least Squares

Schloderer et al., 2014), assessing the mode of measurement model 
by using the confirmatory tetrad analysis (CTA-PLS; Gudergan et al., 
2008), analyzing hierarchical component models (e.g., Becker, 
Klein, & Wetzels, 2012; Ringle et al., 2012), considering heterogene-
ity (e.g., Becker, Rai, Ringle, & Völckner, 2013; Sarstedt & Ringle, 
2010), executing multigroup analyses (Sarstedt, Henseler, & Ringle, 
2011), and assessing measurement model invariance (Henseler, 
Ringle, & Sarstedt, in press). In Chapter 8, we discuss several of these 
aspects in greater detail. The objective of these additional analyses is 
to extend and further differentiate the findings from the basic PLS 
path model estimation. Some of these advanced analyses are neces-
sary to obtain a complete understanding of PLS-SEM results (e.g., 
checking for the presence of unobserved heterogeneity and signifi-
cantly different subgroups), while others are optional. 

The primary rules of thumb on how to evaluate PLS-SEM 
results are shown in Exhibit 4.3. In the following sections, we pro-
vide an overview of the process for assessing reflective measurement 
models (Stage 5a). Chapter 5 addresses the evaluation of formative 
measurement models (Stage 5b), while Chapter 6 deals with struc-
tural model evaluation.

•	 Model assessment in PLS-SEM primarily builds on nonparametric 
evaluation criteria based on bootstrapping and blindfolding. 
Goodness-of-fit measures used in CB-SEM are not universally 
transferrable to PLS-SEM, but recent research has brought forward 
various model fit criteria.

•	 Begin the evaluation process by assessing the quality of the 
reflective and formative measurement models (specific rules 
of thumb for reflective measurement models follow later in this 
chapter and in Chapter 5 for formative measurement models).

•	 If the measurement characteristics of constructs are acceptable, 
continue with the assessment of the structural model results. 
Path estimates should be statistically significant and meaningful. 
Moreover, endogenous constructs in the structural model should 
have high levels of explained variance as expressed in high R2 
values (Chapter 6 presents specific guidelines).

•	 Advanced analyses that extend and differentiate initial PLS-SEM 
findings may be necessary to obtain a correct picture of the results 
(Chapters 7 and 8). 

Exhibit 4.3    Rules of Thumb for Evaluating PLS-SEM Results
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Chapter 4    Assessing PLS-SEM Results Part I       111

STAGE 5A: ASSESSING RESULTS OF REFLECTIVE 
MEASUREMENT MODELS

Assessment of reflective measurement models includes composite reli-
ability to evaluate internal consistency, individual indicator reliability, 
and average variance extracted (AVE) to evaluate convergent validity. 
Assessment of reflective measurement models also includes discrimi-
nant validity. The Fornell-Larcker criterion, cross-loadings, and espe-
cially the heterotrait-monotrait (HTMT) ratio of correlations can be 
used to examine discriminant validity. In the following sections, we 
address each criterion for the evaluation of reflective measurement 
models.

Internal Consistency Reliability

The first criterion to be evaluated is typically internal consistency 
reliability. The traditional criterion for internal consistency is 
Cronbach’s alpha, which provides an estimate of the reliability based 
on the intercorrelations of the observed indicator variables. This 
statistic is defined as follows:

Cronbach s
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In this formula, s2
i  represents the variance of the indicator variable 

i of a specific construct, measured with M indicators (i = 1, . . . , M), 
and  s2

t   is the variance of the sum of all M indicators of that construct. 
Cronbach’s alpha assumes that all indicators are equally reliable (i.e., 
all the indicators have equal outer loadings on the construct). But 
PLS-SEM prioritizes the indicators according to their individual reli-
ability. Moreover, Cronbach’s alpha is sensitive to the number of items 
in the scale and generally tends to underestimate the internal consis-
tency reliability. As such, it may be used as a more conservative mea-
sure of internal consistency reliability. Due to Cronbach’s alpha’s 
limitations, it is technically more appropriate to apply a different 
measure of internal consistency reliability, which is referred to as 
composite reliability. This measure of reliability takes into account the 
different outer loadings of the indicator variables and is calculated 
using the following formula:
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where li symbolizes the standardized outer loading of the indicator 
variable i of a specific construct measured with M indicators, ei is the 
measurement error of indicator variable i, and var(ei) denotes the vari-
ance of the measurement error, which is defined as 1 – l 2i.

The composite reliability varies between 0 and 1, with higher 
values indicating higher levels of reliability. It is generally interpreted 
in the same way as Cronbach’s alpha. Specifically, composite reliabil-
ity values of 0.60 to 0.70 are acceptable in exploratory research, while 
in more advanced stages of research, values between 0.70 and 0.90 
can be regarded as satisfactory. Values above 0.90 (and definitely 
above 0.95) are not desirable because they indicate that all the indica-
tor variables are measuring the same phenomenon and are therefore 
not likely to be a valid measure of the construct. Specifically, such 
composite reliability values occur if one uses semantically redundant 
items by slightly rephrasing the very same question. As the use of 
redundant items has adverse consequences for the measures’ content 
validity (e.g., Rossiter, 2002) and may boost error term correlations 
(Drolet & Morrison, 2001; Hayduk & Littvay, 2012), researchers are 
advised to minimize the number of redundant indicators. Finally, 
composite reliability values below 0.60 indicate a lack of internal 
consistency reliability. 

Cronbach’s alpha is a conservative measure of reliability (i.e., it 
results in relatively low reliability values). In contrast, composite reli-
ability tends to overestimate the internal consistency reliability, 
thereby resulting in comparatively higher reliability estimates. There-
fore, it is reasonable to consider and report both criteria. When ana-
lyzing and assessing the measures’ internal consistency reliability, the 
true reliability usually lies between Cronbach’s alpha (representing 
the lower bound) and the composite reliability (representing the 
upper bound).

Convergent Validity

Convergent validity is the extent to which a measure correlates 
positively with alternative measures of the same construct. Using the 
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Chapter 4    Assessing PLS-SEM Results Part I       113

domain sampling model, indicators of a reflective construct are 
treated as different (alternative) approaches to measure the same 
construct. Therefore, the items that are indicators (measures) of a 
specific reflective construct should converge or share a high propor-
tion of variance. To evaluate convergent validity of reflective con-
structs, researchers consider the outer loadings of the indicators and 
the average variance extracted (AVE).

High outer loadings on a construct indicate the associated 
indicators have much in common, which is captured by the con-
struct. The size of the outer loading is also commonly called indi-
cator reliability. At a minimum, the outer loadings of all indicators 
should be statistically significant. Because a significant outer load-
ing could still be fairly weak, a common rule of thumb is that the 
standardized outer loadings should be 0.708 or higher. The ration-
ale behind this rule can be understood in the context of the square 
of a standardized indicator’s outer loading, referred to as the com-
munality of an item. The square of a standardized indicator’s outer 
loading represents how much of the variation in an item is 
explained by the construct and is described as the variance 
extracted from the item. An established rule of thumb is that a 
latent variable should explain a substantial part of each indicator’s 
variance, usually at least 50%. This also implies that the variance 
shared between the construct and its indicator is larger than the 
measurement error variance. This means that an indicator’s outer 
loading should be above 0.708 since that number squared (0.7082) 
equals 0.50. Note that in most instances, 0.70 is considered close 
enough to 0.708 to be acceptable.

Researchers frequently obtain weaker outer loadings (<0.70) in 
social science studies, especially when newly developed scales are used 
(Hulland, 1999). Rather than automatically eliminating indicators 
when their outer loading is below 0.70, researchers should carefully 
examine the effects of item removal on the composite reliability, as 
well as on the content validity of the construct. Generally, indicators 
with outer loadings between 0.40 and 0.70 should be considered for 
removal from the scale only when deleting the indicator leads to an 
increase in the composite reliability (or the average variance extracted; 
see next section) above the suggested threshold value. Another consid-
eration in the decision of whether to delete an indicator is the extent 
to which its removal affects content validity. Indicators with weaker 
outer loadings are sometimes retained on the basis of their 
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114      A Primer on Partial Least Squares

contribution to content validity. Indicators with very low outer load-
ings (below 0.40) should, however, always be eliminated from the 
construct (Bagozzi, Yi, & Philipps, 1991; Hair et al., 2011). Exhibit 
4.4 illustrates the recommendations regarding indicator deletion based 
on outer loadings.

A common measure to establish convergent validity on the con-
struct level is the average variance extracted (AVE). This criterion is 
defined as the grand mean value of the squared loadings of the indica-
tors associated with the construct (i.e., the sum of the squared load-
ings divided by the number of indicators). Therefore, the AVE is 

Exhibit 4.4    Outer Loading Relevance Testing

Delete the reflective
indicator but

consider its impact
on content validity

Outer loading
relevance testing 

Analyze the
impact of indicator 
deletion on internal

consistency reliability 

Outer loading
is < 0.40 

Outer loading
is ≥ 0.40 

but < 0.70 

Deletion
increases 

measure(s) 
above threshold 

Deletion does
not increase
 measure(s) 

above threshold 

Outer  loading
is ≥ 0.70 

Retain the reflective
indicator 

Potentially delete the reflective
indicator but

consider its impact on
content validity

Retain the
reflective indicator 
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equivalent to the communality of a construct. The AVE is calculated 
using the following formula:

∑
=













l

M
AVE .i

M

i
2

=1

Using the same logic as that used with the individual indicators, 
an AVE value of 0.50 or higher indicates that, on average, the con-
struct explains more than half of the variance of its indicators. Con-
versely, an AVE of less than 0.50 indicates that, on average, more 
variance remains in the error of the items than in the variance 
explained by the construct.

The AVE of each reflectively measured construct should be evalu-
ated. In the example introduced in Chapter 2, an AVE estimate is 
needed only for constructs COMP, CUSL, and LIKE. For the single-
item construct CUSA, the AVE is not an appropriate measure since 
the indicator’s outer loading is fixed at 1.00.

Discriminant Validity

Discriminant validity is the extent to which a construct is truly 
distinct from other constructs by empirical standards. Thus, establish-
ing discriminant validity implies that a construct is unique and cap-
tures phenomena not represented by other constructs in the model. 
Traditionally, researchers have relied on two measures of discriminant 
validity. The cross-loadings are typically the first approach to assess 
the discriminant validity of the indicators. Specifically, an indicator’s 
outer loading on the associated construct should be greater than any 
of its cross-loadings (i.e., its correlation) on other constructs. The best 
way to assess and report cross-loadings is in a table with rows for the 
indicators and columns for the latent variable. Exhibit 4.5 illustrates 
this analysis in an example with three latent variables (Y1, Y2, and Y3), 
each measured with two indicators. As can be seen, the loadings 
always exceed the cross-loadings. For example, x11 loads high on its 
corresponding construct Y1 (0.75) but much lower on constructs Y2 
(0.49) and Y3 (0.41). In this example, the analysis of cross-loadings 
suggests that discriminant validity has been established. On the con-
trary, the presence of cross-loadings that exceed the indicators’ outer 
loadings would represent a discriminant validity problem. 

The Fornell-Larcker criterion is the second approach to assessing 
discriminant validity. It compares the square root of the AVE values 
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Exhibit 4.5    Cross-Loadings Analysis

Y1 Y2 Y3

x11 0.75 0.49 0.41

x12 0.83 0.27 0.35

x21 0.55 0.82 0.60

x22 0.45 0.82 0.42

x31 0.43 0.53 0.87

x32 0.42 0.55 0.84

Note: One expects that an indicator has the highest loading value (in bold) with the 
construct to which it has been assigned to.

with the latent variable correlations. Specifically, the square root of 
each construct’s AVE should be greater than its highest correlation 
with any other construct. An alternative approach to evaluating the 
results of the Fornell-Larcker criterion is to determine whether the 
AVE is larger than the squared correlation with any other construct. 
The logic of the Fornell-Larcker method is based on the idea that a 
construct shares more variance with its associated indicators than 
with any other construct.

Exhibit 4.6 illustrates this concept. In the example, the AVE val-
ues of the constructs Y1 and Y2 are 0.55 and 0.65, respectively. The 
AVE values are obtained by squaring each outer loading, obtaining 
the sum of the three squared outer loadings, and then calculating the 
average value. For example, with respect to construct Y1, 0.60, 0.70, 
and 0.90 squared are 0.36, 0.49, and 0.81, respectively. The sum of 
these three numbers is 1.66, and the average value is therefore 0.55 
(i.e., 1.66/3). The correlation between constructs Y1 and Y2 (as indi-
cated by the double-headed arrow linking the two constructs) is 0.80. 
Squaring the correlation of 0.80 indicates that 64% (i.e., the squared 
correlation; 0.80² = 0.64) of each construct’s variation is explained by 
the other construct. Therefore, Y1 explains less variance in its indica-
tor measures x1 to x3 than it shares with Y2, which implies that the 
two constructs (Y1 and Y2), which are conceptually different, are not 
sufficiently different in terms of their empirical standards. Thus, in 
this example, discriminant validity is not established.

The analysis and presentation of the results of the Fornell-Larcker 
criterion are illustrated in Exhibit 4.7—for a PLS path model with 

Copyright ©2017 by SAGE Publications, Inc.  This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute



Chapter 4    Assessing PLS-SEM Results Part I       117

Y1

corr.2 = 0.64
Y2

corr.2 = 0.64x2

x1

x3

x5

x4

x6

0.70

0.60

0.90

0.80

0.70

0.90

corr. = 0.80

AVE
= 0.55

AVE
= 0.65

Exhibit 4.6
Visual Representation of the Fornell-Larcker 
Criterion

two reflective constructs (i.e., Y1 and Y2), one formative construct (i.e., 
Y3), and a single-item construct (i.e., Y4). The first consideration is that 
only reflective multi-item constructs are evaluated using the 
Fornell-Larcker criterion. Therefore, constructs Y3 and Y4 are excep-
tions to this type of evaluation since the AVE value is not a meaningful 
criterion for formative and single-item measures. Looking only at 
constructs Y1 and Y2, note that the square root of each construct’s 
AVE is on the diagonal. The nondiagonal elements represent the cor-
relations between the latent variables. To establish discriminant valid-
ity, the square root of each construct’s AVE must be larger than its 
correlation with other constructs. To evaluate the reflective construct 
Y2 in Exhibit 4.7, one would compare all correlations in the row of Y2 
and the column of Y2 with its square root of the AVE. In the case study 
illustration of the corporate reputation path model later in this chap-
ter, the actual estimated values for this type of analysis are provided.

Recent research that critically examined the performance of 
cross-loadings and the Fornell-Larcker criterion for discriminant 
validity assessment has found that neither approach reliably detects 

Y1 Y2 Y3 Y4

Y1
AVEY1

Y2
CORRY Y1 2

AVEY2

Y3
CORRY Y1 3

C RRY YO
2 3

Formative 
measurement model

Y4
CORRY Y1 4

CORRY Y2 4
CORRY Y3 4 Single-item construct

Exhibit 4.7    Example of Fornell-Larcker Criterion Analysis
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118      A Primer on Partial Least Squares

discriminant validity issues (Henseler et al., 2015). Specifically, cross-
loadings fail to indicate a lack of discriminant validity when two 
constructs are perfectly correlated, which renders this criterion inef-
fective for empirical research. Similarly, the Fornell-Larcker criterion 
performs very poorly, especially when indicator loadings of the con-
structs under consideration differ only slightly (e.g., all indicator load-
ings vary between 0.60 and 0.80). When indicator loadings vary more 
strongly, the Fornell-Larcker criterion’s performance in detecting 
discriminant validity issues improves but is still rather poor overall. 
(also see Voorhees, Brady, Calantone, & Ramirez, 2016).

As a remedy, Henseler et al. (2015) propose assessing the 
heterotrait-monotrait ratio (HTMT) of the correlations. In short, 
HTMT is the ratio of the between-trait correlations to the within-
trait correlations. HTMT is the mean of all correlations of indica-
tors across constructs measuring different constructs (i.e., the 
heterotrait-heteromethod correlations) relative to the (geometric) 
mean of the average correlations of indicators measuring the same 
construct (i.e., the monotrait-heteromethod correlations; for a for-
mal definition of the HTMT statistic, see Henseler et al., 2015). 
Technically, the HTMT approach is an estimate of what the true 
correlation between two constructs would be, if they were perfectly 
measured (i.e., if they were perfectly reliable). This true correlation 
is also referred to as disattenuated correlation. A disattenuated cor-
relation between two constructs close to 1 indicates a lack of discri-
minant validity. 

Exhibit 4.8 illustrates the HTMT approach. The average hetero-
trait-heteromethod correlations equal all pairwise correlations between 
variables x1, x2, and x3 and x4, x5, and x6 (gray-shaded area in the cor-
relation matrix in Exhibit 4.8). In the example, the average heterotrait-
heteromethod correlation is 0.341. The average monotrait-heteromethod 
correlations of Y1 equal the mean of all pairwise correlations between 
x1, x2, and x3 (i.e., 0.712). Similarly, the mean of all pairwise correla-
tions between x4, x5, and x6 (i.e., 0.409) defines the average monotrait-
heteromethod correlations of Y2. The HTMT statistic for the 
relationship between Y1 and Y2 therefore equals

HTMT Y Y1 2

0 341

0 712 0 409
0 632,

.

. .
. .( ) =

⋅
=

The exact threshold level of the HTMT is debatable; after all, 
“when is a correlation close to 1?” Based on prior research and their 
study results, Henseler et al. (2015) suggest a threshold value of 0.90 
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Exhibit 4.8   Visual Representation of the HTMT Approach

Y1 Y2

x4

x5

x6

x1 x2 x3 x4 x5 x6

x1 1

x2 0.770 1

x3 0.701 0.665 1

x4 0.426 0.339 0.393 1

x5 0.423 0.345 0.385 0.574 1

x6 0.274 0.235 0.250 0.318 0.335 1

x1

x2

x3

if the path model includes constructs that are conceptually very simi-
lar (e.g., affective satisfaction, cognitive satisfaction, and loyalty). In 
other words, an HTMT value above 0.90 suggests a lack of discrimi-
nant validity. When the constructs in the path model are conceptually 
more distinct, a lower and thus more conservative threshold value of 
0.85 seems warranted (Henseler et al., 2015). Furthermore, the 
HTMT can serve as the basis of a statistical discriminant validity test. 
However, as PLS-SEM does not rely on any distributional assump-
tions, standard parametric significance tests cannot be applied to test 
whether the HTMT statistic is significantly different from 1. Instead, 
researchers have to rely on a procedure called bootstrapping to derive 
a distribution of the HTMT statistic (see Chapter 5 for more details 
on the bootstrapping procedure). 

In bootstrapping, subsamples are randomly drawn (with replace-
ment) from the original set of data. Each subsample is then used to 
estimate the model. This process is repeated until a large number of 
random subsamples have been created, typically about 5,000. The 
estimated parameters from the subsamples (in this case, the HTMT 
statistic) are used to derive standard errors for the estimates. With this 
information, it is possible to derive a bootstrap confidence interval. 
The confidence interval is the range into which the true HTMT popu-
lation value will fall, assuming a certain level of confidence (e.g., 95%). 
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120      A Primer on Partial Least Squares

A confidence interval containing the value 1 indicates a lack of dis
criminant validity. Conversely, if the value 1 falls outside the interval’s 
range, this suggests that the two constructs are empirically distinct. 
Since the HTMT-based assessment using a confidence interval relies 
on inferential statistics, one should primarily rely on this criterion, 
especially in light of the limitations of cross-loadings and the Fornell-
Larcker criterion. However, the latter two measures still constitute 
standard means for discriminant validity assessment.

What should researchers do if any of the criteria signal a lack of 
discriminant validity? There are different ways to handle discriminant 
validity problems (Exhibit 4.9). The first approach retains the con-
structs that cause discriminant validity problems in the model and 
aims at increasing the average monotrait-heteromethod correlations 
and/or decreasing the average heteromethod-heterotrait correlations 
of the constructs measures. 

To decrease the HTMT by increasing a construct’s average 
monotrait-heteromethod correlations, one can eliminate items that 
have low correlations with other items measuring the same construct. 
Likewise, heterogeneous subdimensions in the construct’s set of items 
could also deflate the average monotrait-heteromethod correlations. 
In this case, the construct (e.g., quality) can be split into homogeneous 
subconstructs (e.g., product quality and service quality), perhaps using 
a higher-order construct, if the measurement theory supports this step 
(e.g., Kocyigit & Ringle, 2011). These subconstructs then replace the 
more general construct in the model. When following this approach, 
however, the discriminant validity of the newly generated constructs 
with all the other constructs in the model needs to be reevaluated. 

To decrease the average heteromethod-heterotrait correlations, 
one can (1) eliminate items that are strongly correlated with items in 
the opposing construct, or (2) reassign these indicators to the other 
construct, if theoretically plausible. It is important to note that the 
elimination of items purely on statistical grounds can have adverse 
consequences for the content validity of the constructs. Therefore, this 
step entails carefully examining the scales (based on prior research 
results or on a pretest when newly developed measures are involved) 
to determine whether all the construct domain facets have been 
captured. At least two expert coders should conduct this judgment 
independently to ensure a high degree of objectivity. 

Another approach to treating discriminant validity problems 
involves merging the constructs that cause the problems into a more 
general construct. Again, measurement theory must support this step. 
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Exhibit 4.9    Handling Discriminant Validity Problems

Continue with the
analysis

Discriminant validity
assessment using the

HTMT criterion

Establish discriminant
validity while keeping the
problematic constructs

Discriminant
validity

established

Discriminant
validity not
established

Discriminant
validity not
established

Discriminant
validity

established

Continue with the
analysisEstablish discriminant

validity by merging the
problematic constructs 

Discriminant
validity not
established

Discriminant
validity

established

Discard the model
Continue with the

analysis

In this case, the more general construct replaces the problematic con-
structs in the model. This step may entail modifications to increase a 
construct’s average monotrait-heteromethod correlations and/or to 
decrease the average heteromethod-heterotrait correlations. 

In Exhibit 4.10, we summarize the criteria used to assess the reli-
ability and validity of reflective construct measures. If the criteria are 

Copyright ©2017 by SAGE Publications, Inc.  This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute



122      A Primer on Partial Least Squares

•	 Internal consistency reliability: composite reliability should 
be higher than 0.70 (in exploratory research, 0.60 to 0.70 is 
considered acceptable). Consider Cronbach’s alpha as the lower 
bound and composite reliability as the upper bound of internal 
consistency reliability.

•	 Indicator reliability: the indicator’s outer loadings should be 
higher than 0.70. Indicators with outer loadings between 0.40 and 
0.70 should be considered for removal only if the deletion leads to 
an increase in composite reliability and AVE above the suggested 
threshold value.

•	 Convergent validity: the AVE should be higher than 0.50.

•	 Discriminant validity:

	 Use the HTMT criterion to assess discriminant validity in  
PLS-SEM.

	 The confidence interval of the HTMT statistic should not include 
the value 1 for all combinations of constructs.

	 According to the traditional discriminant validity assessment 
methods, an indicator’s outer loadings on a construct should 
be higher than all its cross-loadings with other constructs. 
Furthermore, the square root of the AVE of each construct 
should be higher than its highest correlation with any other 
construct (Fornell-Larcker criterion).

Exhibit 4.10
Rules of Thumb for Evaluating Reflective 
Measurement Models

not met, the researcher may decide to remove single indicators from 
a specific construct in an attempt to more closely meet the criteria. 
However, removing indicators should be carried out with care since 
the elimination of one or more indicators may improve the reliability 
or discriminant validity but at the same time may decrease the mea
surement’s content validity.

CASE STUDY ILLUSTRATION—REFLECTIVE 
MEASUREMENT MODELS

Running the PLS-SEM Algorithm

We continue working with our PLS-SEM example on corporate 
reputation. In Chapter 3, we explained how to estimate the PLS path 
model and how to obtain the results by opening the default report in 
the SmartPLS 3 software. Recall that to do so, you must first load the 
simple corporate reputation model and then run the model by click-
ing on the icon at the top right or by using the pull-down menu by 
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going to Calculate → PLS Algorithm. After running the PLS Algo-
rithm, the SmartPLS results report automatically opens; if not, go to 
the Calculation Results tab on the bottom left of the screen and click 
on Report.

Before analyzing the results, you need to quickly check if the 
algorithm converged (i.e., the stop criterion of the algorithm was 
reached and not the maximum number of iterations). To do so, go to 
Interim Results → Stop Criterion Changes in the results report. You 
will then see the table shown in Exhibit 4.11, which shows the num-
ber of iterations of the PLS-SEM algorithm. This number should be 
lower than the maximum number of iterations (e.g., 300) that you 
defined in the PLS-SEM algorithm parameter settings (Chapter 2). 
At the bottom left side of the table, you will see that the algorithm 
converged after Iteration 5.

If the PLS-SEM algorithm does not converge in fewer than 300 
iterations (the default setting in the software), the algorithm could not 
find a stable solution. This kind of situation almost never occurs. But 
if it does occur, there are two possible causes of the problem: (1) the 
selected stop criterion is at a very small level (e.g., 1.0E-10) so that 
little changes in the coefficients of the measurement models prevent 
the PLS-SEM algorithm from stopping, or (2) there are problems with 
the data and they need to be checked carefully. For example, data 
problems may occur if the sample size is too small or if an indicator 
has many identical values (i.e., the same data points, which results in 
insufficient variability).

When your PLS path model estimation converges, which it practi-
cally always does, you need to examine the following PLS-SEM calcu-
lation results tables from the results report for reflective measurement 
model assessment: Outer Loadings, Composite Reliability, Cronbach’s 
Alpha, Average Variance Extracted (AVE), and Discriminant Validity. 
We examine other information in the report in Chapters 5 and 6, when 
we extend the simple path model by including formative measures and 
examine the structural model results.

Exhibit 4.11    Stop Criterion Table in SmartPLS
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124      A Primer on Partial Least Squares

Reflective Measurement Model Evaluation

The simple corporate reputation model has three latent variables 
with reflective measurement models (i.e., COMP, CUSL, and LIKE) 
as well as a single-item construct (CUSA). For the reflective measure-
ment models, we need the estimates for the relationships between the 
reflective latent variables and their indicators (i.e., outer loadings). 
Exhibit 4.12 displays the results table for the outer loadings, which 
can be found under Final Results → Outer Loadings. By default, the 
outer loadings are also displayed in the modeling window after run-
ning the PLS-SEM algorithm. All outer loadings of the reflective 
constructs COMP, CUSL, and LIKE are well above the threshold 
value of 0.70, which suggests sufficient levels of indicator reliability. 
The indicator comp_2 (outer loading: 0.798) has the smallest indica-
tor reliability with a value of 0.637 (0.7982), while the indicator 
cusl_2 (outer loading: 0.917) has the highest indicator reliability, with 
a value of 0.841 (0.9172). 

To evaluate the composite reliability of the construct measures, 
left-click on the Construct Reliability and Validity tab under Quality 
Criteria in the results report. Here, you have the option of displaying 
the composite reliability values using a bar chart or in a matrix format. 
Exhibit 4.13 shows the bar chart of the constructs’ composite reliabil-
ity values. The horizontal blue line indicates the common minimum 
threshold level for composite reliability (i.e., 0.70). If a composite reli-
ability value is above this threshold value, the corresponding bar is 
colored green. If the composite reliability value is lower than 0.70, the 
bar is colored red. In our example, all composite reliability values 
exceed the threshold. Clicking on the Matrix tab shows the specific 
composite reliability values. With values of 0.865 (COMP), 0.899 
(CUSL), and 0.899 (LIKE), all three reflective constructs have high 

Exhibit 4.12    Outer Loadings
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126      A Primer on Partial Least Squares

levels of internal consistency reliability. Note that the composite reli-
ability value of the single-item variable CUSA is 1.00. But this cannot 
be interpreted as evidence that the construct exhibits perfect reliability 
and should not be reported with other measures of reliability.

Going to Quality Criteria → Construct Reliability and Validity  
gives you the option to show the chart of Cronbach’s alpha values for 
all constructs (Exhibit 4.14). All bars in the chart appear in green, 
indicating that all construct measures are above the 0.70 threshold. 
The specific Cronbach’s alpha (0.776 for COMP, 0.831 for CUSL, 
and 0.831 for LIKE) values can be accessed by left-clicking on the 
Matrix tab. Again, as CUSA is measured using a single item, interpret-
ing this construct’s Cronbach’s alpha value is not meaningful. 

Convergent validity assessment is based on the AVE values, which 
can be accessed by going to Quality Criteria → Construct Reliability 
and Validity in the results report. As with composite reliability and 
Cronbach’s alpha, SmartPLS offers the option of displaying the results 
using bar charts (Exhibit 4.15) or in a matrix format. In this example, 
the AVE values of COMP (0.681), CUSL (0.748), and LIKE (0.747) are 
well above the required minimum level of 0.50. Thus, the measures of 
the three reflective constructs have high levels of convergent validity.

Finally, in the Discriminant Validity tab under Quality Criteria, 
SmartPLS 3 offers several means to assess whether the construct 
measures discriminate well empirically. According to the Fornell-
Larcker criterion, the square root of the AVE of each construct should 
be higher than the construct’s highest correlation with any other 
construct in the model (this notion is identical to comparing the AVE 
with the squared correlations between the constructs). Exhibit 4.16 
shows the results of the Fornell-Larcker criterion assessment with the 
square root of the reflective constructs’ AVE on the diagonal and the 
correlations between the constructs in the off-diagonal position. For 
example, the reflective construct COMP has a value of 0.825 for the 
square root of its AVE, which needs to be compared with all correla-
tion values in the column of COMP. Note that for CUSL, you need 
to consider the correlations in both the row and column. Overall, the 
square roots of the AVEs for the reflective constructs COMP (0.825), 
CUSL (0.865), and LIKE (0.864) are all higher than the correlations 
of these constructs with other latent variables in the path model, thus 
indicating all constructs are valid measures of unique concepts.

Another alternative to assessing discriminant validity is the cross-
loadings. One can check the cross-loadings (click on Cross Loadings in 
the Discriminant Validity section of the results report) to make this 
evaluation. Discriminant validity is established when an indicator’s 
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Exhibit 4.16    Fornell-Larcker Criterion

Exhibit 4.17    Cross-Loadings

loading on its assigned construct is higher than all of its cross-loadings 
with other constructs. Exhibit 4.17 shows the loadings and cross-
loadings for every indicator. For example, the indicator comp_1 has the 
highest value for the loading with its corresponding construct COMP 
(0.858), while all cross-loadings with other constructs are considerably 
lower (e.g., comp_1 on CUSA: 0.464). The same finding holds for the 
other indicators of COMP as well as the indicators measuring CUSL 
and LIKE. Overall, cross-loadings as well as the Fornell-Larcker crite-
rion provide evidence for the constructs’ discriminant validity.

However, note that while frequently used in applied research, 
neither the Fornell-Larcker criterion nor the cross-loadings allow 
for reliably detecting discriminant validity issues. Therefore, an 
alternative, more reliable criterion, HTMT, should be applied. The 
Discriminant Validity section of the results report includes 
the Heterotrait-Monotrait Ratio (HTMT). Exhibit 4.18 shows the 
HTMT values for all pairs of constructs in a matrix format. The 
next tab also shows these HTMT values in bar charts, using 0.85 as 
the relevant threshold level. As can be seen, all HTMT values are 
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Exhibit 4.18    HTMT

clearly lower than the more conservative threshold value of 0.85, 
even for CUSA and CUSL, which, from a conceptual viewpoint, are 
very similar. Recall that the threshold value for conceptually similar 
constructs is 0.90.

In addition to examining the HTMT ratios, you should test 
whether the HTMT values are significantly different from 1. This 
requires computing bootstrap confidence intervals obtained by run-
ning the bootstrapping option. To run the bootstrapping procedure, 
go back to the modeling window and left-click on Calculate → Boot-
strapping in the pull-down menu. In the dialog box that opens, choose 
the bootstrapping options as displayed in Exhibit 4.19 (Chapter 5 
includes a more detailed introduction to the bootstrapping procedure 
and the parameter settings). Make sure to select the Complete Boot-
strapping option, which, unlike the Basic Bootstrapping option, 
includes the results for HTMT. Finally, click on Start Calculation. 

After running bootstrapping, open the results report. Go to 
Quality Criteria → Heterotrait-Monotrait (HTMT) and left-click 
on the tab Confidence Intervals Bias Corrected. The menu that 
opens up (Exhibit 4.20) shows the original HTMT values (column 
Original Sample (O)) for each combination of constructs in the 
model, along with the average HTMT values computed from 
the 5,000 bootstrap samples (column Sample Mean (M)). Note that 
the results in Exhibit 4.20 will differ from your results and will 
change when rerunning the bootstrapping procedure. The reason is 
that bootstrapping builds on randomly drawn bootstrap samples, 
which will differ every time the procedure is run. The differences in 
the overall bootstrapping results are marginal, however, provided 
that a sufficiently large number of bootstrap samples have been 
drawn (e.g., 5,000). The columns labeled 2.5% and 97.5% show the 
lower and upper bounds of the 95% (bias-corrected and acceler-
ated) confidence interval. As can be seen, neither of the confidence 
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Exhibit 4.20    Confidence Intervals for HTMT

Latent 
Variable

Indicators

Convergent Validity
Internal Consistency 

Reliability
Discriminant 

Validity

Loadings
Indicator 
Reliability

AVE
Composite 
Reliability

Cronbach’s 
Alpha

>0.70 >0.50 >0.50 0.60–0.90 0.60–0.90

HTMT 
confidence 

interval does 
not include 1

COMP

comp_1 0.858 0.736

0.681 0.865 0.776 Yescomp_2 0.798 0.637

comp_3 0.818 0.669

CUSL

cusl_1 0.833 0.694

0.748 0.899 0.831 Yescusl_2 0.917 0.841

cusl_3 0.843 0.711

LIKE

like_1 0.879 0.773

0.747 0.899 0.831 Yeslike_2 0.870 0.757

like_3 0.843 0.711

Exhibit 4.21
Results Summary for Reflective Measurement 
Models

intervals includes the value 1. For example, the lower and upper 
bounds of the confidence interval of HTMT for the relationship 
between CUSA and COMP are 0.364 and 0.565, respectively (again, 
your values will likely look slightly different because bootstrapping is 
a random process). As expected, since the conservative HTMT thresh-
old of 0.85 already supports discriminant validity (Exhibit 4.18), the 
bootstrap confidence interval results of the HTMT criterion also 
clearly speak in favor of the discriminant validity of the constructs.

Exhibit 4.21 summarizes the results of the reflective measurement 
model assessment. As can be seen, all model evaluation criteria have 
been met, providing support for the measures’ reliability and validity.
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SUMMARY

•	 Gain an overview of Stage 5 of the process for using PLS-SEM, 
which deals with the evaluation of measurement models. PLS-SEM 
results are reviewed and evaluated using a systematic process. The 
goal of PLS-SEM is maximizing the explained variance (i.e., the R² 
value) of the endogenous latent variables in the PLS path model. For 
this reason, the evaluation of the quality of the PLS-SEM measure-
ment and structural models focuses on metrics indicating the model’s 
predictive capabilities. Evaluation of PLS-SEM results is a two-step 
approach (Stages 5 and 6) that starts with evaluating the quality of 
the measurement models (Stage 5). Each type of measurement model 
(i.e., reflective or formative) has specific evaluation criteria. With 
reflective measurement models, reliability and validity must be 
assessed (Stage 5a). In contrast, evaluation of formative measurement 
models (Stage 5b) involves testing the measures’ convergent validity 
and the significance and relevance of the indicator weights as well as 
collinearity. Satisfactory outcomes for the measurement model are a 
prerequisite for evaluating the relationships in the structural model 
(Stage 6), which includes testing the significance of path coefficients 
and the coefficient of determination (R² value). Depending on the 
specific model and the goal of the study, researchers may want to use 
additional advanced analyses such as mediation or moderation, which 
we discuss in Chapters 7 and 8. 

•	 Describe Stage 5a: Evaluating reflectively measured con-
structs. The goal of reflective measurement model assessment is to 
ensure the reliability and validity of the construct measures and 
therefore provide support for the suitability of their inclusion in the 
path model. The key criteria include indicator reliability, composite 
reliability, convergent validity, and discriminant validity. Convergent 
validity means the construct includes more than 50% of the indica-
tor’s variance. Discriminant validity means that every reflective con-
struct must share more variance with its own indicators than with 
other constructs in the path model. Reflective constructs are appro-
priate for PLS-SEM analyses if they meet all these requirements.

•	 Use the SmartPLS 3 software to assess reflectively measured 
constructs in the corporate reputation example. The case study illus-
tration uses the corporate reputation path model and the data set 
introduced in Chapter 2. The SmartPLS 3 software provides all 
relevant results for the evaluation of the measurement models. 
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Tables and figures for this example demonstrate how to correctly 
report and interpret the PLS-SEM results. This hands-on example 
not only summarizes the concepts that have been introduced before 
but also provides additional insights for their practical application.

REVIEW QUESTIONS

	 1.	 What is indicator reliability and what is the minimum thresh-
old value for this criterion?

	 2.	 What is composite reliability and what is the minimum 
threshold value for this criterion?

	 3.	 What is average variance extracted and what is the minimum 
threshold value for this criterion?

	 4.	 Explain the idea behind discriminant validity and how it can 
be established.

CRITICAL THINKING QUESTIONS

	 1.	 Why are the criteria for reflective measurement model assess-
ment not applicable to formative measures?

	 2.	 How do you evaluate single-item constructs? Why is internal 
consistency reliability a meaningless criterion when evaluat-
ing single-item constructs?

	 3.	 Should researchers rely purely on statistical evaluation crite-
ria to select a final set of indicators to include in the path 
model? Discuss the trade-off between statistical analyses and 
content validity.

KEY TERMS

AVE

Average variance extracted (AVE)

Bootstrap confidence interval

Bootstrapping

Coefficient of determination (R²)

Collinearity

Communality (construct)

Communality (item)

Composite reliability

Content validity

Copyright ©2017 by SAGE Publications, Inc.  This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute



Chapter 4    Assessing PLS-SEM Results Part I       135

SUGGESTED READINGS

Boudreau, M. C., Gefen, D., & Straub, D. W. (2001). Validation in informa-
tion systems research: A state-of-the-art assessment. MIS Quarterly, 
25, 1–16.

Chin, W. W. (1998). The partial least squares approach to structural equa-
tion modeling. In G. A. Marcoulides (Ed.), Modern methods for busi-
ness research (pp. 295–358). Mahwah, NJ: Erlbaum.

Chin, W. W. (2010). How to write up and report PLS analyses. In V. Esposito 
Vinzi, W. W. Chin, J. Henseler, & H. Wang (Eds.), Handbook of partial 
least squares: Concepts, methods and applications in marketing and 
related fields (Springer Handbooks of Computational Statistics Series, 
Vol. II, pp. 655–690). Berlin: Springer.

Do Valle, P. O., & Assaker, G. (in press). Using partial least squares struc-
tural equation modeling in tourism research: A review of past research 
and recommendations for future applications. Journal of Travel 
Research.

Gefen, D., Rigdon, E. E., & Straub, D. W. (2011). Editor’s comment: An 
update and extension to SEM guidelines for administrative and social 
science research. MIS Quarterly, 35, iii–xiv.

Götz, O., Liehr-Gobbers, K., & Krafft, M. (2010). Evaluation of structural 
equation models using the partial least squares (PLS) approach. In 
V. Esposito Vinzi, W. W. Chin, J. Henseler, & H. Wang (Eds.), Hand-
book of partial least squares: Concepts, methods and applications 
(Springer Handbooks of Computational Statistics Series, Vol. II, 
pp. 691–711). Berlin: Springer.

Hair, J. F., Ringle, C. M., & Sarstedt, M. (2011). PLS-SEM: Indeed a silver 
bullet. Journal of Marketing Theory and Practice, 19, 139–151.

Convergent validity

Cronbach’s alpha

Cross-loadings

Disattenuated correlation

Discriminant validity

Evaluation criteria

Explained variance

ƒ² effect size

Formative measurement  
models

Fornell-Larcker criterion

Heterotrait-heteromethod  
correlations

Heterotrait-monotrait ratio 
(HTMT)

HTMT

Indicator reliability

Internal consistency reliability

Monotrait-heteromethod  
correlations

Predictive relevance (Q²)
q² effect size

Q² value

R² value

Reliability

Validity

Copyright ©2017 by SAGE Publications, Inc.  This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute



136      A Primer on Partial Least Squares

Hair, J. F., Ringle, C. M., & Sarstedt, M. (2013). Partial least squares struc-
tural equation modeling: Rigorous applications, better results and 
higher acceptance. Long Range Planning, 46, 1–12.

Hair, J. F., Sarstedt, M., Ringle, C. M., & Mena, J. A. (2012). An assessment 
of the use of partial least squares structural equation modeling in mar-
keting research. Journal of the Academy of Marketing Science, 40, 
414–433.

Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for 
assessing discriminant validity in variance-based structural equation 
modeling. Journal of the Academy of Marketing Science, 43, 
115–135.

Henseler, J., Ringle, C. M., & Sinkovics, R. R. (2009). The use of partial 
least squares path modeling in international marketing. Advances in 
International Marketing, 20, 277–320.

Ringle, C. M., Sarstedt, M., & Straub, D. W. (2012). A critical look at the 
use of PLS-SEM in MIS Quarterly. MIS Quarterly, 36, iii–xiv.

Roldán, J. L., & Sánchez-Franco, M. J. (2012). Variance-based structural 
equation modeling: Guidelines for using partial least squares in infor-
mation systems research. In M. Mora, O. Gelman, A. L. Steenkamp, & 
M. Raisinghani (Eds.), Research methodologies, innovations and 
philosophies in software systems engineering and information systems 
(pp. 193–221). Hershey, PA: IGI Global.

Straub, D., Boudreau, M. C., & Gefen, D. (2004). Validation guidelines for 
IS positivist research. Communications of the Association for Informa-
tion Systems, 13, 380–427.

Tenenhaus, M., Esposito Vinzi, V., Chatelin, Y. M., & Lauro, C. (2005). PLS 
path modeling. Computational Statistics & Data Analysis, 48, 
159–205.

Voorhees, C. M., Brady, M. K., Calantone, R., & Ramirez, E. (2016). Dis-
criminant validity testing in marketing: An analysis, causes for concern, 
and proposed remedies. Journal of the Academy of Marketing Science, 
44, 119-134.

Copyright ©2017 by SAGE Publications, Inc.  This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute




