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CHAPTER 4

<
Assessing PLS-SEM \’}\'
Results Part | \{\Q

Evaluation of Reflective

O
Measurement Models 6
LEARNING OUTCOMES

. Gain an overview of Stage 28 process for using PLS-SEM,
which deals with the evaluaf @ measurement models.

% reflectively measured constructs.

CH EVIEW

Wg learned how to create and estimate a PLS path model, we now
Q& on understanding how to assess the quality of the results. Ini-
lly, we summarize the primary criteria that are used for PLS path
Q model evaluation and their systematic application. Then, we focus on
the evaluation of reflective measurement models. The PLS path model
O of corporate reputation is a practical application enabling you to
review the relevant measurement model evaluation criteria and the
appropriate reporting of results. This provides a foundation for the
overview of formative measurement models in Chapter 5 and how to
evaluate structural model results, which is covered in Chapter 6.
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OVERVIEW OF STAGE 5: EVALUATION OF
MEASUREMENT MODELS

Model estimation delivers empirical measures of the relationships
between the indicators and the constructs (measurement models), as
well as between the constructs (structural model). The empirical
measures enable us to compare the theoretically established mea-

surement and structural models with reality, as represented by thé&\:

sample data. In other words, we can determine how well the the

fits the data. .
PLS-SEM results are reviewed and evaluated using y&

process. The goal of PLS-SEM is maximizing the explai nce
(i.e., the R? value) of the endogenous latent variables in path
model. For this reason, the evaluation of the qualitggof the PLS-SEM
measurement and structural models focuses on i(yindicating the
model’s predictive capabilities. As with CB-SE most important
are reliability, convergent
trdgtural model, the most
lained variance), f* (effect
e and statistical significance
-SEM also relies on several of
these metrics but in additi ides goodness-of-fit measures based
on the discrepancy betweengae empirical and the model-implied
(theoretical) covariafjce maatrix. Since PLS-SEM relies on variances
instead of covarjg lcﬁermine an optimum solution, covariance-
t

based goodneg @ asures are not fully transferrable to the PLS-

measurement model metrics for PLS-
validity, and discriminant validity. Fo
important evaluation metrics are
size), O? (predictive relevance),
of the structural path coeffigi

%?? OF the dependent variables and the values predicted by the

in question. Nevertheless, research has proposed several PLS-
M-based model fit measures, which are, however, in their early
stages of development (see Chapter 6 for more details).

The systematic evaluation of these criteria follows a two-step
process, as shown in Exhibit 4.1. The process involves separate assess-
ments of the measurement models (Stage 5 of the procedure for using
PLS-SEM) and the structural model (Stage 6).

PLS-SEM model assessment initially focuses on the measurement
models. Examination of PLS-SEM estimates enables the researcher to
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SUIIER N Systematic Evaluation of PLS-SEM Results

Stage 5: Evaluation of the Measurement Models

Stage 5a: Reflective Measurement | Stage 5b: Formative Measurement
Models Models

e Internal consistency (Cronbach’s | e Convergent validity

alpha, composite reliability) e Collinearity between indicators
¢ Convergent validity (indicator e Significance and relevance of
reliability, average variance outer weights
extracted)
e Discriminant validity .

Stage 6: Evaluation of the Structural Model

¢ Coefficients of determination (R?)

¢ Predictive relevance (Q?) K
e Size and significance of path coefficients O

o f2 effect sizes

o g2 effect sizes LY

loyalty (CUSL) cons scrlbed in the PLS-SEM corporate reputa-
tion model, whi isc ssed earlier.

The logi ing Jrultiple items as opposed to single items for
construct ent is that the measure will be more accurate. The
roved accuracy is based on the assumption that using
ators to measure a single concept is more likely to repre-

tal different aspects of the concept. However, even when using
&ple items, the measurement is very likely to contain some degree

measurement error. There are many sources of measurement error
in social sciences research, including poorly worded questions in a
survey, misunderstanding of the scaling approach, and incorrect
application of a statistical method, all of which lead to random and/
or systematic errors. The objective is to reduce the measurement error
as much as possible. Multivariate measurement enables researchers to
more precisely identify measurement error and therefore account for
it in research findings.
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Measurement error is the difference between the true value of a
variable and the value obtained by a measurement. Specifically, the
measured value x,, equals the true value x, plus a measurement error.
The measurement error (e = €, + ¢ can have a random source (ran-
dom error ¢ ), which threatens reliability, or a systematic source (sys-
tematic error ¢ ), which threatens validity. This relationship can be
expressed as follows:

X, =X, +¢& +E&.

In Exhibit 4.2, we explain the difference between rehablh
validity by comparing a set of three targets. In this analo
measurements (e.g., of a customer’s satisfaction with ag
vice) are compared to arrows shot at a target. To measufg egh true
score, we have five measurements (indicated by th%ck dots). The
average value of the dots is indicated by a crosg™ ¥y is indicated
when the cross is close to the bull’s-eye at the ta % enter. The closer
the average value (black cross in Exhjbit 4.2) to the true score, the
higher the validity. If several arrows ired) reliability is the dis-
tances between the dots showing arrows hit the target. If
all the dots are close together, re is reliable, even though
the dots are not necessarily agathgbull’s-eye. This corresponds to
the upper left box, where ¥ % i
reliable but not valid. In thé
validity are shown. Ifjthe lower left box, though, we have a situation
in which the meas either reliable nor valid. That is, the repeated

ser-

measuremen ®) ar® scattered quite widely and the average value
(cross) is o the bull’s-eye. Even if the average value would
match score (i.e., if the cross were in the bull’s-eye), we

would stif§ not consider the measure valid. The reason is that an
reliaB¥ measure can never be valid, because there is no way we
mstinguish the systematic error from the random error (Sarstedt
Mooi, 2014). If we repeat the measurement, say, five more times,

e random error would likely shift the cross to a different position.
Thus, reliability is a necessary condition for validity. This is also why
the not reliable/valid scenario in the lower right box is not possible.
When evaluating the measurement models, we must distinguish
between reflectively and formatively measured constructs (Chapter 2).
The two approaches are based on different concepts and therefore
require consideration of different evaluative measures. Reflective
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. Comparing Reliability and Validity (Sarstedt &
Exhibit 4.2 Mooi, 2014)

Reliable

Not reliable
*®

X
.@%
Not valj Valid

Source: Sarstedt, M., & M&i, E). (2014). A concise guide to market research (2nd ed.,
p-35). New York: Spri ith Kind permission of Springer Science + Business Media.

measuremga s are assessed on their internal consistency relia-
bility and! @m ty W he specific measures include the composite relia-
bilityff(as eans to assess the internal consistency reliability),

nve validity, and discriminant validity. The criteria for reflec-

easurement models cannot be universally applied to formative

1
Qasurement models. With formative measures, the first step is to

sure content validity before collecting the data and estimating the
PLS path model. After model estimation, different metrics are used to
assess formative measures for convergent validity, the significance and
relevance of indicator weights, and the presence of collinearity among
indicators (Exhibit 4.1).
As implied by its name, a single-item construct (Chapter 2) is not
represented by a multi-item measurement model. The relationship (i.e.,
the correlation) between the single indicator and the latent variable is
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always 1. Put differently, the single indicator and the latent variable
have identical values. Thus, the criteria for the assessment of measure-
ment models are not applicable to single-item constructs. To evaluate
the reliability and validity of single-item measures, researchers must
rely on proxies or different forms of validity assessment. For example,
researchers can assess a single-item variable by means of criterion
validity. This is done by correlating the single-item measure with an
established criterion variable and comparing the resulting correlation
with the correlation that results if the predictor construct is meas

by a multi-item scale (e.g., Diamantopoulos et al., 2012). In tergas O
reliability, researchers often assume that one cannot estingaf®,

ability of single-item measures based on such techniques on
factor analysis and the correction for attenuation f (e.g.,
Sarstedt & Wilczynski, 2009). These procedures req#tre that both the
multi-item measure and the single-item measurgsag®Nocluded in the
same survey. Thus, these analyses are of p interest when
researchers want to assess in a pretest or pilot stidy whether in the
main study, a multi-item scale can be re cedqith a single-item mea-

sure of the same construct. Still, rec% ch' suggests that the reli-
ability and validity of single itergsmgreaa€hly context specific, which
renders their assessment in or pilot studies problematic
(Sarstedt et al., in press).

The structural model estgafltes are not examined until the relia-
bility and validity ofgthe constrticts have been established. If assess-
ment of reflecti . &age 5a) and formative (i.e., Stage Sb)

to prllict g€ variance in the dependent variables. Hence, after relia-
jlity alidity are established, the primary evaluation criteria for
-SEM results are the coefficients of determination (R2 values) as
1["as the size and significance of the path coefficients. The f2 effect
es, predictive relevance (Q?), and the g2 effect sizes give additional
insights about quality of the PLS path model estimations (Exhibit 4.1).
Assessment of PLS-SEM outcomes can be extended to more
advanced analyses such as examining mediating or moderating
effects, which we discuss in Chapter 7. Similarly, advanced analyses
may involve estimating nonlinear effects (e.g., Rigdon, Ringle, &
Sarstedt, 2010), conducting an importance-performance matrix anal-
ysis (PLS-IPMA; e.g., Rigdon, Ringle, Sarstedt, & Gudergan, 2011;
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Schloderer et al., 2014), assessing the mode of measurement model
by using the confirmatory tetrad analysis (CTA-PLS; Gudergan et al.,
2008), analyzing hierarchical component models (e.g., Becker,
Klein, & Wetzels, 2012; Ringle et al., 2012), considering heterogene-
ity (e.g., Becker, Rai, Ringle, & Volckner, 2013; Sarstedt & Ringle,
2010), executing multigroup analyses (Sarstedt, Henseler, & Ringle,
2011), and assessing measurement model invariance (Henseler, 4

Ringle, & Sarstedt, in press). In Chapter 8, we discuss several of theseﬁ\

aspects in greater detail. The objective of these additional analysdggs
to extend and further differentiate the findings from the basigapL’
path model estimation. Some of these advanced analyseg %
sary to obtain a complete understanding of PLS-SEM & 'S,
checking for the presence of unobserved heterogeneity ignifi-
cantly different subgroups), while others are optiog
The primary rules of thumb on how tqge
results are shown in Exhibit 4.3. In the follow
vide an overview of the process for assessing refle
models (Stage 5a). Chapter 5 address e exaluation of formative
measurement models (Stage 5b), w, ter 6 deals with struc-
tural model evaluation.

1ve measurement

SUITIERE Rules of Thegnb Myr Evaluating PLS-SEM Results

* Model assessmegt in PLS-SEM primarily builds on nonparametric
evaluation crjterig béged on bootstrapping and blindfolding.
Goodness- asures used in CB-SEM are not universally

* Bggi evdluation process by assessing the quality of the
%:e and formative measurement models (specific rules
o) b for reflective measurement models follow later in this
chapter and in Chapter 5 for formative measurement models).

¢"1f the measurement characteristics of constructs are acceptable,
continue with the assessment of the structural model results.
Path estimates should be statistically significant and meaningful.
Moreover, endogenous constructs in the structural model should
have high levels of explained variance as expressed in high R?
values (Chapter 6 presents specific guidelines).

e Advanced analyses that extend and differentiate initial PLS-SEM
findings may be necessary to obtain a correct picture of the results
(Chapters 7 and 8).

e
S
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STAGE 5A: ASSESSING RESULTS OF REFLECTIVE
MEASUREMENT MODELS

Assessment of reflective measurement models includes composite reli- \@
ability to evaluate internal consistency, individual indicator reliability,

and average variance extracted (AVE) to evaluate convergent validity.

Assessment of reflective measurement models also includes discrimi- OQ

nant validity. The Fornell-Larcker criterion, cross-loadings, and espe,

cially the heterotrait-monotrait (HTMT) ratio of correlations ca K

used to examine discriminant validity. In the following sectiog€¥we

address each criterion for the evaluation of reflective i@

models.

Internal Consistency Reliability
The first criterion to be evaluated is typicall rnal consistency

reliability. The traditional criterion§for 1nternal consistency is
Cronbach’s alpha, which prov1des a N the reliability based
on the intercorrelations of the f indicator variables. This

statistic is defined as follows:
1\/1 2
Cronbach’sa. j - ‘
M -1 s

4

In this fo s; r8presents the variance of the indicator variable
i of a specifi uct, measured with M indicators (i =1,..., M),
and s is ia e of the sum of all M indicators of that construct.
Cronffachg afpha assumes that all indicators are equally reliable (i.e.,
the cators have equal outer loadings on the construct). But
NS-SEM prioritizes the indicators according to their individual reli-
ility. Moreover, Cronbach’s alpha is sensitive to the number of items
the scale and generally tends to underestimate the internal consis-
Q tency reliability. As such, it may be used as a more conservative mea-
sure of internal consistency reliability. Due to Cronbach’s alpha’s
limitations, it is technically more appropriate to apply a different
measure of internal consistency reliability, which is referred to as
composite reliability. This measure of reliability takes into account the

different outer loadings of the indicator variables and is calculated
using the following formula:

1

1
2
t
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(214
(Zﬁl L, )2 + Z]:: var(e;)

where [, symbolizes the standardized outer loading of the indicator
variable 7 of a specific construct measured with M indicators, ¢, is the
measurement error of indicator variable 4, and var(e;) denotes the vari-

. . . 2
ance of the measurement error, which is defined as 1 - [;. K

p.=

ity values of 0.60 to 0.70 are acceptable in exploratory rege
in more advanced stages of research, values betweeg 0.70w
can be regarded as satisfactory. Values above O %nd definitely
above 0.95) are not desirable because they indi all the indica-
tor variables are measuring the same phenomen®m#nd are therefore
not likely to be a valid measure of tiRgconstruct. Specifically, such
composite reliability values occur if l&s antically redundant
items by slightly rephrasing the e question. As the use of
Qcnces for the measures’ content
p ay boost error term correlations
(Drolet & Morrison, 2001; uk & Littvay, 2012), researchers are
advised to minimize, the nunWer of redundant indicators. Finally,

alg below 0.60 indicate a lack of internal

Cronbacf Q a ¥ a conservative measure of reliability (i.e., it
results in e ow reliability values). In contrast, composite reli-
abilit Msffo overestimate the internal consistency reliability,
there@:lting in comparatively higher reliability estimates. There-
e, it is reasonable to consider and report both criteria. When ana-

@1 and assessing the measures’ internal consistency reliability, the

e reliability usually lies between Cronbach’s alpha (representing

Q the lower bound) and the composite reliability (representing the

: upper bound).

Convergent Validity

Convergent validity is the extent to which a measure correlates
positively with alternative measures of the same construct. Using the
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domain sampling model, indicators of a reflective construct are
treated as different (alternative) approaches to measure the same
construct. Therefore, the items that are indicators (measures) of a
specific reflective construct should converge or share a high propor-
tion of variance. To evaluate convergent validity of reflective con-
structs, researchers consider the outer loadings of the indicators and
the average variance extracted (AVE).

L 2
High outer loadings on a construct indicate the associated«\Q

indicators have much in common, which is captured by the K

struct. The size of the outer loading is also commonly called
cator reliability. At a minimum, the outer loadings of a
should be statistically significant. Because a significant
ing could still be fairly weak, a common rule of thum
standardized outer loadings should be 0.708 or higher. The ration-
ale behind this rule can be understood in the of the square
of a standardized indicator’s outer loading, r to as the com-
munality of an item. The square of a standardized indicator’s outer
loading represents how much of th§ vagiation in an item is
explained by the construct alnd%j ibed as the variance
extracted from the item. An ¢ rule of thumb is that a
latent variable should explain tantial part of each indicator’s
variance, usually at least § % 1s also implies that the variance
shared between the constrg#and its indicator is larger than the
measurement error gariance. Phis means that an indicator’s outer
loading should b ve M708 since that number squared (0.708?)
equals 0.50. Yot®¢halin most instances, 0.70 is considered close
be acceptable.
ReseA quently obtain weaker outer loadings (<0.70) in
Estudies, especially when newly developed scales are used
999). Rather than automatically eliminating indicators
n their outer loading is below 0.70, researchers should carefully
mine the effects of item removal on the composite reliability, as
Well as on the content validity of the construct. Generally, indicators
with outer loadings between 0.40 and 0.70 should be considered for
removal from the scale only when deleting the indicator leads to an
increase in the composite reliability (or the average variance extracted;
see next section) above the suggested threshold value. Another consid-
eration in the decision of whether to delete an indicator is the extent
to which its removal affects content validity. Indicators with weaker
outer loadings are sometimes retained on the basis of their
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contribution to content validity. Indicators with very low outer load-
ings (below 0.40) should, however, always be eliminated from the
construct (Bagozzi, Yi, & Philipps, 1991; Hair et al., 2011). Exhibit
4.4 illustrates the recommendations regarding indicator deletion based
on outer loadings.

A common measure to establish convergent validity on the con-
struct level is the average variance extracted (AVE). This criterion is ¢
defined as the grand mean value of the squared loadings of the indica- \
tors associated with the construct (i.e., the sum of the squared | K

ings divided by the number of indicators). Therefore, the A%
2

m Outer Loading Relevance Testing

Outer loading 0
relevance testifg

Outer loading
is < 0.40

Outer loading
is=>0.70

Delete the reflé Analyze the Retain the reflective
indicat impact of indicator indicator

con5|de i deletion on internal

onc d' consistency reliability

Deletion
increases

measure(s)
above threshold

Deletion does
not increase
measure(s)

above threshold

Potentially delete the reflective Retain the
indicator but reflective indicator
consider its impact on
content validity

e
S



Chapter 4 Assessing PLS-SEM Results Part1 115

equivalent to the communality of a construct. The AVE is calculated
using the following formula:

M
2.k

M

Using the same logic as that used with the individual indicators, ,Q
an AVE value of 0.50 or higher indicates that, on average, the con- \
struct explains more than half of the variance of its indicators. -&
versely, an AVE of less than 0.50 indicates that, on average, Cx
variance remains in the error of the items than in thé® %
explained by the construct.

The AVE of each reflectively measured construct sho®
ated. In the example introduced in Chapter 2, agfAVE estimate is
needed only for constructs COMP, CUSL, and or the single-
item construct CUSA, the AVE is not an appr measure since
the indicator’s outer loading is fixed at 1.00.

AVE =

A

Discriminant Validity
Discriminant validity is tht to which a construct is truly

distinct from other constru cmpirical standards. Thus, establish-
ing discriminant validity im that a construct is unique and cap-
tures phenomena nqg represented by other constructs in the model.
Traditionally, reseggcigrs ®yve relied on two measures of discriminant

validity. The ¢ oaddings are typically the first approach to assess
the discrimiga idif§ of the indicators. Specifically, an indicator’s
outer loa associated construct should be greater than any

of its @ wddings (i.e., its correlation) on other constructs. The best

way t ss and report cross-loadings is in a table with rows for the

wtors and columns for the latent variable. Exhibit 4.5 illustrates

s analysis in an example with three latent variables (Y|, Y,, and Y;),

ch measured with two indicators. As can be seen, the loadings

Q always exceed the cross-loadings. For example, x,, loads high on its

corresponding construct Y, (0.75) but much lower on constructs Y,

O (0.49) and Y, (0.41). In this example, the analysis of cross-loadings

suggests that discriminant validity has been established. On the con-

trary, the presence of cross-loadings that exceed the indicators’ outer
loadings would represent a discriminant validity problem.

The Fornell-Larcker criterion is the second approach to assessing

discriminant validity. It compares the square root of the AVE values
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SO EN Cross-Loadings Analysis

Y, Y,
X, 0.75 0.49
X, 0.83 0.27
Xy, 0.55 0.82
X 0.45 0.82
Xy, 0.43 0.53
Xy 0.42 0.55

Note: One expects that an indicator has the highest loading value (irl

construct to which it has been assigned to

with the latent variable correlations. Specifica &quare root of

each construct’s AVE should be greater than it hest correlation

with any other construct. An alternati@roach to evaluating the
iS

results of the Fornell-Larcker criterj termine whether the

AVE is larger than the squared c. 1gh with any other construct.

The logic of the Fornell-Larcke od is based on the idea that a
construct shares more vari its associated indicators than
with any other construct.

Exhibit 4.6 illusgrates this @ncept. In the example, the AVE val-
ues of the constr . Md Y, are 0.55 and 0.65, respectively. The
AVE values ar, aied by squaring each outer loading, obtaining
the sum of sqffared outer loadings, and then calculating the
xample, with respect to construct Y,, 0.60, 0.70,

and (490 #red are 0.36, 0.49, and 0.81, respectively. The sum of
these ' numbers is 1.66, and the average value is therefore 0.55
&}.66/3). The correlation between constructs Y, and Y, (as indi-

by the double-headed arrow linking the two constructs) is 0.80.
Q uaring the correlation of 0.80 indicates that 64% (i.e., the squared

correlation; 0.802 = 0.64) of each construct’s variation is explained by
the other construct. Therefore, Y, explains less variance in its indica-
O tor measures x, to x; than it shares with Y,, which implies that the
two constructs (Y, and Y,), which are conceptually different, are not
sufficiently different in terms of their empirical standards. Thus, in
this example, discriminant validity is not established.
The analysis and presentation of the results of the Fornell-Larcker
criterion are illustrated in Exhibit 4.7—for a PLS path model with
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Exhibit 4.6 V|§ua! Representation of the Fornell-Larcker
Criterion

two reflective constructs (i.e., Y, and Y,), one formative ¢ s‘t A
Y,), and a single-item construct (i.e., Y,). The first conside \t at
only reflective multi-item constructs are evaluate e the
Fornell-Larcker criterion. Therefore, constructs Y, qhd Y, are excep-
tions to this type of evaluation since the AVE va a meaningful
criterion for formative and single-item meas ooking only at
constructs Y, and Y,, note that the square root of each construct’s
AVE is on the diagonal. The nondiago leents represent the cor-
relations between the latent variabl stablish discriminant valid-
ity, the square root of each co E must be larger than its
correlation with other const valuate the reflective construct
Y, in Exhibit 4.7, one wou are all correlations in the row of Y,
and the column of Y, with its Suare root of the AVE. In the case study

illustration of the co oraﬁ—‘reputation path model later in this chap-
ter, the actual esti values for this type of analysis are provided.

Recent rg @ t

cross-loady # the Fornell-Larcker criterion for discriminant
validit ent has found that neither approach reliably detects

r

D

t critically examined the performance of

Example of Fornell-Larcker Criterion Analysis

Y, Y, Y, Y,

Y, IAVEY1

Y2 (j()RRy1 yz /4\/Ey2
Y, COR Ry1 v, COR RYZ Y, Formative
measurement model
Y, | CORRyy, | CORRy,y, | CORRyy, Single-item construct
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discriminant validity issues (Henseler et al., 2015). Specifically, cross-
loadings fail to indicate a lack of discriminant validity when two
constructs are perfectly correlated, which renders this criterion inef-
fective for empirical research. Similarly, the Fornell-Larcker criterion @
performs very poorly, especially when indicator loadings of the con- \
structs under consideration differ only slightly (e.g., all indicator load- 0
ings vary between 0.60 and 0.80). When indicator loadings vary more ’Q
strongly, the Fornell-Larcker criterion’s performance in detecting \
discriminant validity issues improves but is still rather poor ove K
(also see Voorhees, Brady, Calantone, & Ramirez, 2016).

As a remedy, Henseler et al. (2015) propose ass®si
heterotrait-monotrait ratio (HTMT) of the correlatio
HTMT is the ratio of the between-trait correlations to
trait correlations. HTMT is the mean of all correl@tions ot indica-
tors across constructs measuring different gog cts (i.e., the
heterotrait-heteromethod correlations) relatihe (geometric)
mean of the average correlations of indicators mieasuring the same

construct (i.e., the monotrait-heterom odﬁorrelations; for a for-
enseler et al., 2015).

mal definition of the HTMT stati
Technically, the HTMT appro@v estimate of what the true

correlation between two const ould be, if they were perfectly
measured (i.e., if they werg eCtly reliable). This true correlation
is also referred to as disatterNgafted correlation. A disattenuated cor-
relation between tw@ construct® close to 1 indicates a lack of discri-
minant validity.

Exhibit 4 trafes the HTMT approach. The average hetero-

trait-heterQuagl orrelations equal all pairwise correlations between
variables @a x, and x,, x,, and x, (gray-shaded area in the cor-
relatign m in Exhibit 4.8). In the example, the average heterotrait-

tero od correlation is 0.341. The average monotrait-heteromethod

cOyelations of Y, equal the mean of all pairwise correlations between

Q x,, and x; (Le., 0.712). Similarly, the mean of all pairwise correla-

ons between x,, x,, and x, (i.e., 0.409) defines the average monotrait-

Q heteromethod correlations of Y,. The HTMT statistic for the
O relationship between Y, and Y, therefore equals

HTMT(Y,,Y,)= 3% _¢ 632,

1/0.712-0.409

The exact threshold level of the HTMT is debatable; after all,
“when is a correlation close to 12” Based on prior research and their
study results, Henseler et al. (2015) suggest a threshold value of 0.90
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SUIIIEEN Visual Representation of the HTMT Approach

AL &
.

X |0770] 1 \

X; |0.7010.665| 1

. |0.426(0339]0393| 1

xs |0.423|0.3450.385| 0.574

Xe |0.274|0.235|0250|0.318(0.3357 1

if the path model includes constg
lar (e.g., affective satisfactig
other words, an HTMT valWg
nant validity. When the constr

Oove

at are conceptually very simi-

aifive satisfaction, and loyalty). In

0.90 suggests a lack of discrimi-

s in the path model are conceptually

more distinct, a loweRandyhus more conservative threshold value of
(Henseler et al., 2015). Furthermore, the
asis of a statistical discriminant validity test.
However,@ QEM does not rely on any distributional assump-
tions, parametric significance tests cannot be applied to test
whetlWg thit HTMT statistic is significantly different from 1. Instead,

earchers have to rely on a procedure called bootstrapping to derive

0.85 seems w
HTMT can sé

th

ibution of the HTMT statistic (see Chapter 5 for more details
the bootstrapping procedure).
In bootstrapping, subsamples are randomly drawn (with replace-

ment) from the original set of data. Each subsample is then used to
estimate the model. This process is repeated until a large number of
random subsamples have been created, typically about 5,000. The
estimated parameters from the subsamples (in this case, the HTMT
statistic) are used to derive standard errors for the estimates. With this
information, it is possible to derive a bootstrap confidence interval.
The confidence interval is the range into which the true HTMT popu-
lation value will fall, assuming a certain level of confidence (e.g., 95%).
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A confidence interval containing the value 1 indicates a lack of dis-

criminant validity. Conversely, if the value 1 falls outside the interval’s

range, this suggests that the two constructs are empirically distinct.

Since the HTMT-based assessment using a confidence interval relies @
on inferential statistics, one should primarily rely on this criterion, \
especially in light of the limitations of cross-loadings and the Fornell-

Larcker criterion. However, the latter two measures still constitute ¢

standard means for discriminant validity assessment.

What should researchers do if any of the criteria signal a lac &
discriminant validity? There are different ways to handle discrimy x
validity problems (Exhibit 4.9). The first approach retajn®
structs that cause discriminant validity problems in theg
aims at increasing the average monotrait-heteromethod @ ations
and/or decreasing the average heteromethod-hetergffait correlations
of the constructs measures. &

To decrease the HTMT by increasing btruct’s average
monotrait-heteromethod correlations, one can effminate items that
have low correlations with other items@ ing the same construct.
Likewise, heterogeneous subdimens@1 e construct’s set of items
could also deflate the average memgtragigheteromethod correlations.
In this case, the construct (e.g. ) can be split into homogeneous
subconstructs (e.g., producgfjuajy and service quality), perhaps using
a higher-order construct, if t easurement theory supports this step
(e.g., Kocyigit & Ringle, 2011)®These subconstructs then replace the
more general con in%he model. When following this approach,
mindnt validity of the newly generated constructs
with all thgs pnstructs in the model needs to be reevaluated.

e average heteromethod-heterotrait correlations,
one CQ iminate items that are strongly correlated with items in
e op g construct, or (2) reassign these indicators to the other
cOystruct, if theoretically plausible. It is important to note that the
anmation of items purely on statistical grounds can have adverse
nsequences for the content validity of the constructs. Therefore, this
step entails carefully examining the scales (based on prior research
results or on a pretest when newly developed measures are involved)
to determine whether all the construct domain facets have been
captured. At least two expert coders should conduct this judgment
independently to ensure a high degree of objectivity.
Another approach to treating discriminant validity problems
involves merging the constructs that cause the problems into a more
general construct. Again, measurement theory must support this step.
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SO N Handling Discriminant Validity Problems

Discriminant validity
assessment using the

HTMT criterion
; ?
Discriminant Discriminant
validity validity not
established established

Continue with the

analysis Establish discriminant

validity while keeping th
problematic constr,

1 S

X

Discriminant Discriminant
validity not validity
established

!

Continue with the
analysis

valiflity by merging the
Q0D! ma&constructs

Discriminant
validity
established

Discard the model Continue with the

analysis

In this case, the more general construct replaces the problematic con-
structs in the model. This step may entail modifications to increase a
construct’s average monotrait-heteromethod correlations and/or to
decrease the average heteromethod-heterotrait correlations.

In Exhibit 4.10, we summarize the criteria used to assess the reli-
ability and validity of reflective construct measures. If the criteria are
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Exhibit 4.10 Rules of Thumb for Evaluating Reflective
Measurement Models

e Internal consistency reliability: composite reliability should
be higher than 0.70 (in exploratory research, 0.60 to 0.70 is
considered acceptable). Consider Cronbach’s alpha as the lower
bound and composite reliability as the upper bound of internal
consistency reliability.

e Indicator reliability: the indicator’s outer loadings should be
higher than 0.70. Indicators with outer loadings between 0.40 an
0.70 should be considered for removal only if the deletion leads
an increase in composite reliability and AVE above the sug e%
threshold value. K

¢ Convergent validity: the AVE should be higher than 0.5
e Discriminant validity:
o Use the HTMT criterion to assess discri '&validity in
PLS-SEM. Q
o The confidence interval of the HTMT statisti uld notinclude
the value 1 for all combinations nstructs.
o According to the traditional djseri nﬁvalidity assessment
methods, an indicator’s outer gs on a construct should
be higher than all its r%‘ gs with other constructs.

Furthermore, the squ gotJof the AVE of each construct
should be higher t 1ghest correlation with any other
construct (Fornell-Lar: criterion).
not met, the regeqrc ay decide to remove single indicators from
a specific co in @n attempt to more closely meet the criteria.
However indicators should be carried out with care since
the eligMn g of one or more indicators may improve the reliability
or dis@gimhant validity but at the same time may decrease the mea-

ement’s content validity.

QASE STUDY ILLUSTRATION—REFLECTIVE

MEASUREMENT MODELS

Running the PLS-SEM Algorithm

We continue working with our PLS-SEM example on corporate
reputation. In Chapter 3, we explained how to estimate the PLS path
model and how to obtain the results by opening the default report in
the SmartPLS 3 software. Recall that to do so, you must first load the
simple corporate reputation model and then run the model by click-
ing on the icon at the top right or by using the pull-down menu by
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going to Calculate — PLS Algorithm. After running the PLS Algo-
rithm, the SmartPLS results report automatically opens; if not, go to
the Calculation Results tab on the bottom left of the screen and click

on Report.

Before analyzing the results, you need to quickly check if the
algorithm converged (i.e., the stop criterion of the algorithm was
reached and not the maximum number of iterations). To do so, go to 4
Interim Results — Stop Criterion Changes in the results report. You&\

ber of iterations of the PLS-SEM algorithm. This number sho

will then see the table shown in Exhibit 4.11, which shows the n&
b
0

lower than the maximum number of iterations (e.g., 300%
ha he

defined in the PLS-SEM algorithm parameter settings

At the bottom left side of the table, you will see that t

converged after Iteration 5.

If the PLS-SEM algorithm does not converg
iterations (the default setting in the software),

)

wer than 300
brithm could not

find a stable solution. This kind of situation almost never occurs. But
if it does occur, there are two possible

selected stop criterion is at a very
little changes in the coefficients
the PLS-SEM algorithm from st
the data and they need ta
problems may occur if the sa
has many identical vglues (i.e., T

insufficient varia bl

When yo
cally alwa
lation res
modef{ass

pa

1Y

t
sesf the problem: (1) the
3

e.g., 1.0E-10) so that

asurement models prevent
,or (2) there are problems with
@'V ed carefully. For example, data

e size is too small or if an indicator
e same data points, which results in

model estimation converges, which it practi-
u need to examine the following PLS-SEM calcu-

1e®from the results report for reflective measurement
ent: Outer Loadings, Composite Reliability, Cronbach’s

pha,Ww€rage Variance Extracted (AVE), and Discriminant Validity.

SGIITIREE Stop Criterion Table in SmartPLS

amine other information in the report in Chapters 5 and 6, when
extend the simple path model by including formative measures and
mine the structural model results.

Stop Criterion Changes
L Matrix

comp_l1
Iteration 0 1.000
Iteration 1 0.536
Iteration 2 0.536
Iteration 3 0.536
Iteration 4 0.536
Iteration 5 0.536

comp_2
1.000
0.341
0.340
0.340
0.340
0.340

comp_3
1.000
0.328
0.328
0.328
0.328
0.328

cusa.
1.000
1.000
1.000
1.000
1.000
1.000

cusl_1
1.000
0.368
0.369
0.369
0.369
0.369

cusl_2
1.000
0.421
0.420
0.420
0.420
0.420

cusl_3
1.000
0.365
0.365
0.365
0.365
0.365

like_1
1.000
0.419
0.418
0.418
0.418
0.418

like_2
1.000
0.378
0.378
0.378
0378
0.378

like_3
1.000
0.359
0.360
0.360
0.360
0.360

e
S
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Reflective Measurement Model Evaluation

The simple corporate reputation model has three latent variables
with reflective measurement models (i.e., COMP, CUSL, and LIKE)
as well as a single-item construct (CUSA). For the reflective measure-
ment models, we need the estimates for the relationships between the
reflective latent variables and their indicators (i.e., outer loadings).

Exhibit 4.12 displays the results table for the outer loadings, which g
can be found under Final Results — Outer Loadings. By default,&

outer loadings are also displayed in the modeling window after r
ning the PLS-SEM algorithm. All outer loadings of theqref{Egss
constructs COMP, CUSL, and LIKE are well above th %
value of 0.70, which suggests sufficient levels of indicat ha Bility.
The indicator comp_2 (outer loading: 0.798) has thggsma indica-
tor reliability with a value of 0.637 (0.798%), Wkthe indicator
cusl_2 (outer loading: 0.917) has the highest ing @ liability, with
a value of 0.841 (0.917?%).

To evaluate the composite reliabilge of the construct measures,
left-click on the Construct Reliabilit ity tab under Quality
Criteria in the results report. Here, yo® hive the option of displaying
the composite reliability values bar chart or in a matrix format.
Exhibit 4.13 shows the bar g8 e constructs’ composite reliabil-
ity values. The horizontal ig' e indicates the common minimum
threshold level for composite r@ability (i.e., 0.70). If a composite reli-
ability value is abgv&thisyhreshold value, the corresponding bar is
colored green. Limlge posite reliability value is lower than 0.70, the
bar is colored In Sur example, all composite reliability values
exceed t d. Clicking on the Matrix tab shows the specific
comg@ bility values. With values of 0.865 (COMP), 0.899

(CU. d 0.899 (LIKE), all three reflective constructs have high

Outer Loadings

Outer Loadings

] Matrix

COMP. CUSA CUSL LIKE
comp_L 0.858
comp_2 0.798
comp_3 0.818
cusa 1.000
cusl_1 0.833
cusl_2 0.917
cusl3 0.843
like_1 0.879
like_2 0.870
like_3 0.843

&
O
%
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levels of internal consistency reliability. Note that the composite reli-
ability value of the single-item variable CUSA is 1.00. But this cannot
be interpreted as evidence that the construct exhibits perfect reliability
and should not be reported with other measures of reliability.

Going to Quality Criteria — Construct Reliability and Validity
gives you the option to show the chart of Cronbach’s alpha values for
all constructs (Exhibit 4.14). All bars in the chart appear in green, 4
indicating that all construct measures are above the 0.70 threshold.

A

The specific Cronbach’s alpha (0.776 for COMP, 0.831 for CL&

Matrix tab. Again, as CUSA is measured using a single ite
ing this construct’s Cronbach’s alpha value is not meaning

Convergent validity assessment is based on the AVE gdwhich
can be accessed by going to Quality Criteria — Coyftruct Reliability

and Validity in the results report. As with co reliability and

and 0.831 for LIKE) values can be accessed by left-clicking %h
t S

Cronbach’s alpha, SmartPLS offers the option ofjdisplaying the results
using bar charts (Exhibit 4.15) or in a matrix format. In this example,
the AVE values of COMP (0.681), CUS% and LIKE (0.747) are
well above the required minimum le% 0. Thus, the measures of
the three reflective constructs haygshio els of convergent validity.
Finally, in the Discriminant @ ity tab under Quality Criteria,
SmartPLS 3 offers severa qs to assess whether the construct
measures discriminate wellNa#pirically. According to the Fornell-
Larcker criterion, thegsquare rodt of the AVE of each construct should
be higher than t nsict’s highest correlation with any other

squar@ BT the reflective constructs’ AVE on the diagonal and the
rrelMefls between the constructs in the off-diagonal position. For
le, the reflective construct COMP has a value of 0.825 for the

3
Q,\are root of its AVE, which needs to be compared with all correla-

on values in the column of COMP. Note that for CUSL, you need
to consider the correlations in both the row and column. Overall, the
square roots of the AVEs for the reflective constructs COMP (0.825),
CUSL (0.865), and LIKE (0.864) are all higher than the correlations
of these constructs with other latent variables in the path model, thus
indicating all constructs are valid measures of unique concepts.
Another alternative to assessing discriminant validity is the cross-
loadings. One can check the cross-loadings (click on Cross Loadings in
the Discriminant Validity section of the results report) to make this
evaluation. Discriminant validity is established when an indicator’s

e
S
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SNSRI Fornell-Larcker Criterion

Discriminant Validity

|| Fornell-Larcker Criterium | || Cross Loadings | || Heterotrait-Monotrait Ratio (HTMT) \@

CoMP CUSA CcusL LIKE
CoMP 0.825

CUSA 0.436 1.000

cusL 0.450 0.689  0.865

LIKE 0.645 0.528 0.615 0.864 L 4

with other constructs. Exhibit 4.17 shows the loading
loadings for every indicator. For example, the indicator co
highest value for the loading with its corresponding const
(0.858), while all cross-loadings with other construcfare considerably
lower (e.g., comp_1 on CUSA: 0.464). The sa i holds for the
other indicators of COMP as well as the indica easuring CUSL
and LIKE. Overall, cross-loadings as %he Fornell-Larcker crite-

rion provide evidence for the constru Mhinant validity.
However, note that while freg used in applied research,
or the cross-loadings allow
validity issues. Therefore, an
bn, HTMT, should be applied. The
8 of the results report includes
the Heterotrait-Mo tra&\Ratio (HTMT). Exhibit 4.18 shows the
HTMT values dg airs of constructs in a matrix format. The
thé8e HTMT values in bar charts, using 0.85 as

Cross-Loadings

riminant Validity

|] Cross Loadings ‘ ] Heterotrait-Monotrait Ratio (HTMT) |

|| Fornell-Larcker Criterium

COMP CUSA CUSL LIKE
comp_l1 0.858 0.464 0.465 0.607
comp_2 0.798 0.286 0.304 0.460
comp_3 0.818 0.272 0.296 0.497
cusa 0.436 1.000 0.689 0.528
cusl_1 0.430 0.536 0.833 0.557
cusl_2 0.396 0.655 0.917 0.573
cusl_3 0.341 0.593 0.843 0.461
like_1 0.602 0.510 0.561 0.879
like_2 0.523 0.434 0.530 0.870
like_3 0.544 0.420 0.499 0.843
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SONTIENEN HTMT

Discriminant Validity

__| Fornell-Larcker Criterion | |_] Cross Loadings | [_] Heterotrait-Monotrait Ratio (HTMT) | {1 ¢ Heterotrait-Monotrait Ratio (HTMT)

COMP CUSA CcusL LIKE
CcompP
CUSA 0.465
cusL 0.532 0.755
LIKE 0.780 0.577 0.737

N\

clearly lower than the more conservative threshold valu®
even for CUSA and CUSL, which, from a conceptual vie re
very similar. Recall that the threshold value for concept imilar
constructs is 0.90.

In addition to examining the HTMT ratjeg, Wgu should test
whether the HTMT values are significantly t from 1. This

requires computing bootstrap confidence interval§ obtained by run-
ning the bootstrapping option. To run&(qtstrapping procedure,
go back to the modeling window a ¢k on Calculate — Boot-
strapping in the pull-down men r%alog box that opens, choose
the bootstrapping options as ed in Exhibit 4.19 (Chapter 5
includes a more detailed i @ tion to the bootstrapping procedure
and the parameter settings). Ngeke sure to select the Complete Boot-
strapping option, which, unliRe the Basic Bootstrapping option,
includes the resul HMT. Finally, click on Start Calculation.
After ru bod¢strapping, open the results report. Go to
i Heterotrait-Monotrait (HTMT) and left-click
on the t ence Intervals Bias Corrected. The menu that
openglup ibit 4.20) shows the original HTMT values (column
igi ample (O)) for each combination of constructs in the
el, along with the average HTMT values computed from

Qﬁ ,000 bootstrap samples (column Sample Mean (M)). Note that
e

results in Exhibit 4.20 will differ from your results and will
change when rerunning the bootstrapping procedure. The reason is
that bootstrapping builds on randomly drawn bootstrap samples,
which will differ every time the procedure is run. The differences in
the overall bootstrapping results are marginal, however, provided
that a sufficiently large number of bootstrap samples have been
drawn (e.g., 5,000). The columns labeled 2.5% and 97.5% show the
lower and upper bounds of the 95% (bias-corrected and acceler-
ated) confidence interval. As can be seen, neither of the confidence

&

x<
O
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SO WAN Confidence Intervals for HTMT

Heterotrait-Monotrait Ratio (HTMT)
|] Mean, STDEV, T-Values, P-Values | || Confidence Intervals | || C Intervals Bias C B
Original Sample (O) Sample Mean (M) Bias 2.5% 97.5%
CUSA -> COMP 0.465 0.465 0.000 0.364 0.565
CUSL -> COMP 0.532 0.533 0.000 0.421 0.638
CUSL -> CUSA 0.755 0.754 -0.000 0.684 0.814
LIKE -> COMP 0.780 0.778 -0.001 0.690 0.853 ’
LIKE -> CUSA 0.577 0.577 -0.000 0.489 0.661
LIKE -> CUSL 0.737 0.736 -0.001 0.653 0.816

intervals includes the value 1. For example, the lowe
bounds of the confidence interval of HTMT for the 2

between CUSA and COMP are 0.364 and 0.5635, respect gain,
your values will likely look slightly different becausgfbootstrapping is
a random process). As expected, since the conserem TMT thresh-

old of 0.85 already supports discriminant vali hibit 4.18), the

bootstrap confidence interval results of the HITMT criterion also

clearly speak in favor of the discriminMﬁty of the constructs.
Exhibit 4.21 summarizes the res e reflective measurement

model assessment. As can be seg

Results Summary for

ective Measurement

wddel evaluation criteria have
easures’ reliability and validity.

Models
V|
. Internal Consistency Discriminant
| Validity Reliability Validity
A Indicator AVE Composite | Cronbach’s
Latent . Reliability Reliability Alpha
Variable Indicat
HTMT
5070 | >0.50 | >0.50 | 0.60-0.90 | 0.60-0.90 | CcoMfidence
interval does
not include 1
) 1 0.858 0.736
O, comp_2 0.798 0.637 0.681 0.865 0.776 Yes
comp_3 0.818 0.669
O cusl.1 | 0833 | 0694
CUSL cusl_2 0.917 0.841 0.748 0.899 0.831 Yes
cusl_3 0.843 0.711
like_1 0.879 0.773
LIKE like_2 0.870 0.757 0.747 0.899 0.831 Yes
like_3 0.843 0.711
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SUMMARY

¢ Gain an overview of Stage 5 of the process for using PLS-SEM,
which deals with the evaluation of measurement models. PLS-SEM
results are reviewed and evaluated using a systematic process. The
goal of PLS-SEM is maximizing the explained variance (i.e., the R2
value) of the endogenous latent variables in the PLS path model. For ¢

ment and structural models focuses on metrics indicating the mo
predictive capabilities. Evaluation of PLS-SEM results is a tw,

approach (Stages 5 and 6) that starts with evaluating thg
the measurement models (Stage 5). Each type of measurepméy el
(i.e., reflective or formative) has specific evaluation ¢ Q With
reflective measurement models, reliability and glidity must be
assessed (Stage 5a). In contrast, evaluation of fogsmy
models (Stage 5b) involves testing the measure Q vergent validity
and the significance and relevance of the indicator weights as well as
collinearity. Satisfactory outcomes for megsurement model are a
prerequisite for evaluating the relatfo in the structural model
(Stage 6), which includes testing sigffificance of path coefficients
i (R? value). Depending on the
b study, researchers may want to use
as mediation or moderation, which

measurement

we discuss in Chaptegs 7 and 8.

e Descri aPe)Sa: Evaluating reflectively measured con-
structs. The reflective measurement model assessment is to

de support for the suitability of their inclusion in the
. The key criteria include indicator reliability, composite
iability, convergent validity, and discriminant validity. Convergent

’s variance. Discriminant validity means that every reflective con-
struct must share more variance with its own indicators than with
other constructs in the path model. Reflective constructs are appro-
priate for PLS-SEM analyses if they meet all these requirements.

Q y means the construct includes more than 50% of the indica-

e Use the SmartPLS 3 software to assess reflectively measured
constructs in the corporate reputation example. The case study illus-
tration uses the corporate reputation path model and the data set
introduced in Chapter 2. The SmartPLS 3 software provides all
relevant results for the evaluation of the measurement models.

this reason, the evaluation of the quality of the PLS-SEM measure- KQ
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Tables and figures for this example demonstrate how to correctly
report and interpret the PLS-SEM results. This hands-on example
not only summarizes the concepts that have been introduced before
but also provides additional insights for their practical application.

REVIEW QUESTIONS

1.

What is indicator reliability and what is the minimum thr%

old value for this criterion?
2
. What is composite reliability and what is th \%

threshold value for this criterion?

. What is average variance extracted and Wh(the minimum

threshold value for this criterion?
. Explain the idea behind discriminant VQ and how it can

be established.
\.‘

CRITICAL THINKING QL@%S

1.

2.

3

N

Why are the criteria flective measurement model assess-
ment not applicable tOprmative measures?

How do yege 1ee single-item constructs? Why is internal
consis reli@bility a meaningless criterion when evaluat-
INZSi m constructs?

esearchers rely purely on statistical evaluation crite-
rialto select a final set of indicators to include in the path
model? Discuss the trade-off between statistical analyses and
content validity.

KEY TERMS

AVE Collinearity

Average variance extracted (AVE) Communality (construct)
Bootstrap confidence interval Communality (item)
Bootstrapping Composite reliability

Coefficient of determination (RZ)  Content validity

*

e
S
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Convergent validity Heterotrait-monotrait ratio

Cronbach’s alpha (HTMT)

Cross-loadings HTMT

Disattenuated correlation Indicator reliability

Discriminant validity Internal consistency reliability

Evaluation criteria Monotrait-heteromethod
correlations

Explained variance

. . 2
12 effect size Predictive relevance (Q?) K
. q* effect size

Formative measurement

models Q? value ¢
Fornell-Larcker criterion R2 value \
Heterotrait-heteromethod Reliability

correlations Validity
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