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5
Propensity Score Matching

Learning Objectives
zz Describe and compare greedy, genetic, and optimal matching algorithms.

zz Characterize the impact of matching with or without replacement on results 
and analysis choices.

zz Compare one-to-one, fixed ratio, variable ratio, and full matching strategies.

zz Implement methods to estimate treatment effects with samples obtained with 
different matching methods.

zz Implement methods to estimate standard errors of treatment effects with 
samples obtained with different matching methods.

zz Understand the rationale and implementation of Rosenbaum’s sensitivity 
analysis.

5.1. Introduction

This chapter presents the implementation of different propensity score matching meth-
ods, as well as a comparison of methods in terms of covariate balance and bias of treat-
ment effect estimates. Propensity score matching consists of grouping observations 
with similar values of propensity scores. However, while propensity score weighting 
(see Chapter 3) and propensity score stratification (see Chapter 4) preserve the original 
sample size if there is adequate common support, most forms of matching result in 
the discarding of some observations. The sample size after matching is smallest with 
one-to-one matching and can vary considerably with variable ratio and full matching 
strategies. Propensity score matching methods differ in the ratio of treated observa-
tions matched to untreated observations, the algorithm used for identifying matches, 
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whether matches are done with or without replacement, and whether matches are 
based solely on propensity scores or also use values of covariates. This chapter presents 
an overview of variations of propensity score matching and demonstrates them with 
an example. Issues specific to matching methods related to the enforcement of com-
mon support, covariate balance evaluation, the estimation of treatment effects, and 
standard errors are also discussed.

5.2. Description of Example

The example for this chapter consists of the estimation of the effect of mothers hav-
ing a job that provides or subsidizes child care on the length that they breastfeed their 
children, using data from the National Longitudinal Survey of Youth 1979 (NLSY79) 
and the NLSY79 Children and Youth. The health and cognitive benefits of breastfeed-
ing on children are well documented (Borra, Iacovou, & Sevilla, 2012; Quigley et al., 
2012). Therefore, it is important to understand the factors that lead mothers to initiate 
and maintain breastfeeding, including job characteristics, because job demands can 
conflict with breastfeeding efforts. Jacknowitz (2008) examined the effects of moth-
ers having a job that provides or subsidizes child care on whether mothers initiated 
breastfeeding and on whether they breastfed until the child was 6 months old. Using 
multiple regression models, she found that mothers who worked for a company that 
offered child care were more likely to breastfeed to 6 months.

The sample for this example contains 1,209 child records from the NLSY79 Chil-
dren and Youth data set. The sample is restricted to one child per mother, mothers who 
had at least one job in the fourth quarter of pregnancy, and mothers who returned to 
work within 12 weeks of the birth of the child. The NLSY79 data used were restricted 
to years 1988 to 1994, 1996, 1998, 2000, 2002, 2004, 2006, 2008, and 2010 because 
responses about the treatment of interest were available for these years. Because the 
NLSY79 was not designed to be representative of the population of working mothers 
that is the focus of this example, the NLSY79 sampling weights are not be used in this 
demonstration (for an example of propensity score analysis with sampling weights, see 
Chapters 2 and 3).

The outcome variable is the age of the child in weeks when breastfeeding ended. 
This outcome was taken from the NLSY79 Children and Youth data. The treatment 
indicator is whether the mother’s job provided or subsidized child care and was 
obtained from the NLSY79. From the data set analyzed, child care was provided or 
subsidized in 107 (8.85%) of 1,209 cases.

5.3. Propensity Score Estimation

In this example, propensity scores for whether the mother’s job provided or subsi-
dized child care are estimated using logistic regression. Covariates for the propen-
sity score model selected for this example include variables hypothesized to be true  
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confounders, because they relate to both the probability of having a job that provides 
or subsidizes child care and breastfeeding duration (the outcome), as well as predictors 
of breastfeeding duration, which are included to increase the efficiency of treatment 
effect estimates. Some examples of covariates are the benefits provided by the mother’s 
current job (i.e., life insurance, dental insurance, profit sharing, retirement, training 
opportunities), the mother’s education level, hours worked per week, and employment 
sector. The propensity score model also included covariates related to breastfeeding 
duration controlled by Jacknowitz (2008), such as family size, amount of public assis-
tance received by the family, and whether a cesarean section was performed. A total of 
31 covariates were included in the propensity score model. A complete list of covari-
ates used is available in the R code for this chapter in the book’s website. A detailed 
discussion of strategies to select covariates and estimate propensity score models is 
presented in Chapter 2.

It is advantageous to match on the linear propensity score (i.e., the logit of the pro-
pensity score) rather than the propensity score itself, because it avoids compression 
around 0 and 1 (Diamond & Sekhon, 2013). The linear propensity score is obtained with

 log(e (X)) log
( )

( )i
i

i

e X
e X

=
−











1
,  (5.1)

where e Xi( ) is the estimated propensity score. The following R code shows the use of 
the glm function to fit a logistic regression model to the data,1 and then linear propen-
sity scores are obtained according to Equation (5.1).

psModel = glm(psFormula, data, family=binomial())

data$logitPScores = log(fitted(psModel)/(1-fitted(psModel)))

A preliminary evaluation of common support was performed using histograms and 
box plots of the distributions of linear propensity scores for the treated and untreated. 
These graphs are shown in Figures 5.1 and 5.2. They clearly indicate that common sup-
port is potentially adequate to estimate the ATT with matching methods, because the 
distribution of the treated is contained within the distribution of the untreated, and 
therefore an adequate match could be found for every treated observation. However, 
the use of a caliper during the matching process allows for a more precise evaluation 
of the adequacy of common support. The graphs also indicate that estimating the 
ATE using propensity score matching with these data may be difficult because there 
are areas of the distribution of the untreated without any treated cases nearby, which 
could result in poor matching. Therefore, the ATT of a mother working for a company 
that provides or subsidizes child care will be estimated. In applications of propensity 
score matching, the ATT is more commonly estimated than the ATE.

1 R code to prepare the data set and to specify the propensity score model in the psFormula object is 
shown in the book’s website.
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5.4. Propensity Score Matching Algorithm

5.4.1. Greedy Matching

Greedy matching consists of choosing each treated case and searching for the best 
available match among the untreated cases without accounting for the quality of the 
match of the entire treated sample. Greedy matching contrasts with genetic match-
ing and optimal matching, discussed later in this chapter, which attempt to optimize 

FIGURE 5.1 l   Histograms of Linear Propensity Scores for Treated and Untreated Observations

FIGURE 5.2 l   Box Plots of Linear Propensity Scores for Treated and Untreated Observations
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global match quality. Greedy matching works well for estimating the ATT when the 
number of treated cases is substantially smaller than the number of untreated cases 
available for matching (i.e., the ratio of treated to untreated sample sizes is small) and 
there is common support for all treated cases. The implementation of greedy match-
ing consists of choosing whether to match with or without replacement, whether to 
enforce a maximum allowable distance, and whether to allow multiple matching. 
These options are reviewed below. 

Matching with or without replacement. Matching with replacement consists of 
selecting one or multiple matches for each case (depending on the desired matching 
ratio) and then returning the matched cases to the pool of observations. In match-
ing without replacement, each case can be used as a match only once. Matching 
with replacement has the advantage of always matching each treated case to the 
closest untreated case and therefore produces larger bias reduction than matching 
without replacement. Also, when performing greedy matching with replacement, 
the order of matches does not matter, while greedy matching without replace-
ment will produce different results depending on the order that cases are matched. 
Matching with replacement performs better when the number of available matches 
is small (Rosenbaum, 1989), but the difference between these methods tends to 
disappear as the size of the pool of available matches increases.

One-to-one, fixed ratio, or variable ratio matching. When each treated case has 
one untreated case matched to it, the procedure is described as one-to-one matching or 
pair matching. One disadvantage of one-to-one matching is that it discards untreated 
cases even if they are appropriate matches for the treated cases, reducing the sample 
size to twice the number of treated cases or fewer if there is lack of common support for 
some treated cases. However, one-to-one matching does not result in a substantial drop 
of power, because the power is driven by the size of the smallest group, and the increased 
homogeneity of the sample increases power (Cohen, 1988).

The use of fixed ratio matching or one-to-k matching, where k specifies a fixed 
matching ratio larger than 1 (e.g., one-to-two, one-to-three), is not recommended in 
most situations, because matching to the specified number of untreated cases will occur 
regardless of whether enough adequate matches are available, leading to an increase in 
bias. Although the use of a caliper may limit the increase in bias, using a caliper with a 
fixed ratio larger than one-to-one may result in substantial loss of treated cases, because 
there may not be enough untreated cases within the caliper to satisfy the specified 
ratio. If matching with a ratio larger than one-to-one is desired to retain a larger sample 
size, it is more advantageous to use either variable ratio matching or full matching.

If each single treatment case is matched to one to several untreated cases (i.e., the 
number of matches varies across treated cases), the method is known as variable ratio 
matching or one-to-many matching. Research has shown that variable ratio match-
ing removes more bias than one-to-one matching (Cepeda, Boston, Farrar, & Strom, 
2003; Gu & Rosenbaum, 1993; Ming & Rosenbaum, 2000). Variable ratio matching is  
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particularly useful if the number of untreated group cases is much larger than the num-
ber of treatment cases (Ming & Rosenbaum, 2001). Variable ratio matching is known 
to outperform one-to-one matching for estimating the treatment effect in general con-
ditions, but the difference in performance between these methods decreases as the 
number of available matches increases (Cepeda et al., 2003; Gu & Rosenbaum, 1993).

Nearest neighbor or within-caliper matching. Greedy propensity score match-
ing has been performed using either a nearest neighbor or nearest neighbor within- 
caliper matching strategy. Matching to the nearest neighbor consists of simply finding the 
untreated observation with the closest propensity score to the propensity score of each 
treated observation. The use of a caliper, which is a maximum distance within which 
matches are allowed, has been shown to improve greedy nearest neighbor matching 
performance. A caliper for matching is usually defined as a fraction of the standard 
deviation of the logit of the propensity score. Targeting to remove at least 90% of bias, 
Rosembaum and Rubin (1985, p. 37) used a caliper of .25 standard deviations. Using 
a caliper not only improves the quality of matching but also enforces common sup-
port, because treated cases without any untreated cases within its caliper are discarded. 
When nearest neighbor matching within a caliper is used, the closest untreated case to 
a treated case is only considered an acceptable match if its propensity score lies within 
the caliper of the treated case.

Implementation of greedy matching. Two different R packages will be used 
to demonstrate greedy matching, because their different features may be helpful to 
researchers. The MatchIt package (Ho et al., 2011) is focused on estimating the ATT, 
and its matchit function will be used to demonstrate greedy one-to-one matching with 
replacement within a 0.25 caliper.

library(MatchIt)

greedyMatching <- matchit(psFormula, distance=data$logitPScores, m.order=“largest”,

data = data, method = “nearest”, ratio=1,replace=T, caliper=0.25)

In the code above, the argument distance=data$logitPScores specifies the variable 
that contains the logit of the propensity scores. However, providing the logit of the 
propensity scores is optional, because the matchit function is able to fit a variety of 
models to estimate the propensity score before performing matching. For example, if 
the argument distance = “linear.logit” is provided, the matchit function estimates pro-
pensity scores using logistic regression and converts the predicted probabilities into 
logits as shown in Equation (5.1) and then performs matching. However, the advan-
tage of estimating the propensity score in advance of using the matchit function as 
it is done in this example is that better control of the process is obtained, including 
using approaches to estimate propensity scores that have not been implemented in the 
matchit function.
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In the matchit function, the argument method = “nearest” in combination with 
caliper = 0.25 specifies that the greedy method is to be performed by searching for the 
nearest untreated observation within a caliper of 0.25 standard deviations of each 
treated observation. The argument m.order = “largest” specifies that matching should 
start from the treated case with the largest propensity score, rather than the small-
est or random. This argument reflects the fact that greedy nearest neighbor match-
ing does not optimize global measures of balance, and therefore different results are 
obtained depending on the order of matching. The ratio=1 argument specifies one-
to-one matching but can be used to specify other fixed matching ratios. The replace = T 
argument specifies matching with replacement, which allows untreated cases to be 
matched to more than one treated case.

The Match function of the Matching package of R (Sekhon, 2011) can perform greedy 
matching with fixed and variable ratio to estimate either the ATT or ATE. For estimat-
ing the ATT, matching is used to identify which untreated observations have similar 
values of propensity scores as treated observations. For estimation of the ATE, matches 
for treated observations as well as matches for untreated observations are selected. 
Here it will be used to implement variable ratio greedy matching with replacement to 
estimate the ATT.

library(Matching)

greedyMatching2 <- with(data, Match(Y=C0338600, Tr=childCare, X=logitPScores,

estimand = “ATT”, M = 1, caliper = 0.25, replace=TRUE, ties=TRUE))

In the code above, the arguments Y, Tr, and X specify the outcome, the treatment, and 
the propensity scores, respectively. The argument M = 1 specifies one-to-one matching, 
but variable ratio matching is performed implicitly by allowing ties with the argument 
ties=TRUE, and therefore if more than one case are adequate matches to another case, 
all matches are included. The argument replace=TRUE specifies that untreated cases can 
be used for multiple matches, and caliper = 0.25 sets the maximum allowed distance 
between a treated and an untreated case to be equal to 0.25 standard deviations.

5.4.2. Genetic Matching

Genetic matching (Diamond & Sekhon, 2013) minimizes a multivariate weighted dis-
tance on covariates between treated and untreated cases, where a genetic algorithm is 
used to choose weights that optimize postmatching covariate balance. Genetic match-
ing can be used without including propensity scores, but propensity scores can be 
used by themselves or added to the list of covariates. The distance minimized by the 
genetic matching algorithm is the generalized Mahalanobis distance (GMD) (Diamond &  
Sekhon, 2013):

 GMD X X W X X S WS X Xi j i j
T T

i j( , , ) ( ( )/ /= − ( ) −− −)   1 2 1 2   (5.2)
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In the GMD, X are vectors of covariates for treated case i and untreated case j, and 
the weight matrix W is included to reflect the relative importance of each covariate to 
optimize overall covariate balance. W is a diagonal weight matrix with rows and col-
umns equal to the number of covariates. S−1 2/ is the Cholesky decomposition of S, the 
variance covariance matrix of the covariates (Sekhon, 2011). T indicates the transpose. 
The GMD can be understood as a weighted average effect size between treated and 
untreated groups across all covariates.

The genetic matching algorithm is available in the Matching package of R 
(Sekhon, 2011) with the GenMatch function. The GenMatch function uses the 
genetic algorithm to obtain weights that optimize covariate balance. The following 
code demonstrates genetic matching with replacement to estimate the ATT based 
on the linear propensity score and 31 covariates, which are stored in the covariate-
Data object.

geneticWeights <- GenMatch(Tr=data$childCare, X=covariateData,

pop.size=1000, fit.func=“pvals”,

estimand=“ATT”, replace=T, ties=T)

For each generation (i.e., iteration), the genetic algorithm sets the weights in W 
to initial values (the default initial value is 1 in GenMatch) and generates as many W 
as the specified population size in the pop.size argument. Because genetic matching 
optimizes covariate balance asymptotically, it is important to specify a large popula-
tion size for the genetic optimization. The default of the GenMatch function is pop.
size = 100, which is increased to 1,000 in the following code, but larger values may 
be necessary. Then, the algorithm matches for each W in a given generation. Next, it 
computes the loss for each matched sample and selects the W corresponding to the 
minimum loss. The algorithm requires the specification of a loss function, which is a 
summary of a measure of covariate balance. The default loss function is specified in fit.
func = “pvals”, which consists of the maximum of p values from Kolmogorov-Smirnov 
tests and paired t tests for all covariates. While using p values for covariate balance 
assessment is problematic because it depends on sample size, it is a good choice for 
defining the fit function because the sample size is fixed within the optimization (Dia-
mond & Sekhon, 2013). If the convergence criterion is reached, the genetic algorithm 
returns the matched sample and corresponding W matrix; otherwise, it proceeds to the 
next generation. Details about the genetic matching algorithm are provided by Sekhon 
(2011). Once the matrix of weights is obtained with the GenMatch function, the actual 
matching procedure is implemented by the Match function using the weight matrix, 
shown as follows:

geneticMatching <- Match(Y=data$C0338600, Tr=data$childCare, X=covariateData,

Weight.matrix = geneticWeights, estimand = “ATT”,

M = 1, replace=TRUE, ties=TRUE)
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Genetic matching can also be obtained by using the matchit function of the MatchIt 
package, which can run GenMatch in the background. The following code implements 
one-to-many genetic matching without replacement based solely on the linear pro-
pensity score with the matchit function:

geneticMatching2 <- matchit(psFormula, distance=data$logitPScores, data = data,

method = “genetic”, pop.size=1000, fit.func=“pvals”,

estimand=“ATT”, replace=T, ties=T)

A major strength of genetic matching is that it searchers for matches that optimize 
covariate balance. Sekhon and Grieve (2009, 2012) found through simulation stud-
ies that genetic matching based on covariates without using the propensity score is 
able to provide adequate covariate balance, and in their studies, it produced better 
balance than propensity score matching. In another simulation study, Diamond and 
Sekhon (2013) found that genetic matching on covariates provided greater bias reduc-
tion and lower root mean squared error than greedy matching using propensity scores 
estimated with logistic regression, random forests, and boosted regression trees, in con-
ditions where the treatment assignment model had nonlinear and interaction terms. 
Therefore, genetic matching without the propensity score could be particularly useful 
for situations when propensity score matching fails to achieve covariate balance, or 
propensity score estimation results in complete separation or quasi-complete separa-
tion (Allison, 2004) of treated and untreated groups.

5.4.3. Optimal Matching

Optimal matching was proposed by Rosenbaum (1989) as a solution to the problem 
that greedy matching does not guarantee matches with the minimum total distance 
between treated and matched groups. Optimal matching produces matches that attain 
minimal total distances by using network flow optimization methods (Carré, 1979; 
Ford & Fulkerson, 1962). Hansen (2007) created the optmatch package for R, which pro-
duces one-to-one, one-to-k, and full matching. However, Rosenbaum (1989) cautioned 
that optimal one-to-one and one-to-k matching only guarantees minimum total dis-
tance given the constraint of the matching ratio desired. Optimal one-to-one match-
ing is expected to outperform one-to-one greedy matching, but the differences in 
match quality are small when many matches are available. However, when the treated 
to untreated ratio is large, one-to-one optimal matching is noticeably better than one-
to-one greedy matching (Gu & Rosenbaum, 1993).

The following code uses the matchit function of the MatchIt package with the argu-
ment method = “optimal”, which runs the optmatch package in the background to per-
form optimal one-to-one optimal matching without replacement:

optimalMatching <- matchit(psFormula,distance=data$logitPScores, data = data,

  method = “optimal”, ratio=1)
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5.4.4. Full Matching

Full matching (Rosenbaum, 1991) matches each treated case to at least one untreated 
case and vice versa, without replacement. Therefore, this procedure can be viewed 
as a propensity score stratification where the number of strata containing at least 
one treated and one untreated observation is maximized. Differently from one-to-
one matching with replacement and variable ratio matching with replacement, the 
matched sets never overlap and observations are not discarded, which allows the esti-
mation of treatment effects and standard errors with methods appropriate for finely 
stratified samples (Hansen, 2007). Full matching is particularly helpful when there 
are large differences in the distributions of propensity scores between treated and 
untreated (assuming common support is still adequate): In this case, there will be 
many untreated cases with low propensity scores, so in the lower part of the propen-
sity score distribution, there will be several matches for each treated case. However, in 
the upper part of the propensity score distribution, there will be few untreated cases 
to match to each treated case (Hansen, 2007; Stuart & Green, 2008). Full matching 
has been found to perform better than one-to-many greedy matching in terms of dis-
tance within matched sets as well as covariate balance, especially when the number of 
covariates is large (Gu & Rosenbaum, 1993).

The following code implements optimal full matching using the matchit function of 
the MatchIt package with the argument method = “full”, running the optimatch package 
in the background:

fullMatching <- matchit(psFormula,distance=data$logitPScores, data = data, method = “full”)

Table 5.1 presents a summary of the matching methods implemented in this section, 
highlighting their unique characteristics. From the methods implemented, genetic, 
optimal, and full matching optimize distances for the entire sample, while greedy 
matching does not. From these methods, only genetic matching can optimize covari-
ate balance directly, while optimal and full matching only match based on propensity 
scores. It is not possible to recommend a single matching algorithm implementation 
as superior to the others for all situations, because matching algorithm performance 
depends on the treated and untreated sample sizes, the degree of common support, 
and the distributions of propensity scores for treated and untreated. Therefore, it is 
best to implement multiple methods and compare covariate balance between them, as 
done in the next section.

5.5. Evaluation of Covariate Balance

There are 31 covariates in the propensity score model, but covariance balance is evalu-
ated for the propensity score, continuous covariates, and levels of categorical covari-
ates, so the total number of covariate balance measures obtained is 42. This section Draf
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TABLE 5.1 l  List of Matching Methods Used for Example

Matching Method Summary

One-to-one greedy with 
replacement and caliper

Match based on closest observation without considering total 
distance for sample; fast to implement; replacement allows 
best matches to be used; caliper enforces common support

Variable ratio greedy with 
replacement and caliper

Match based on closest observation without considering total 
distance for sample; allows multiple matches per observation

Variable ratio genetic with 
replacement (propensity 
score [PS] + covariates)

Match optimizing loss function, which is a summary of a 
measure of covariate balance

Variable ratio genetic with 
replacement (PS only)

Match optimizing loss function based on balance of propensity 
scores, faster than matching on covariates

One-to-one optimal 
without replacement

Match minimizing global propensity score distance

Full matching Match entire sample by creating strata with at least one 
treated and one untreated, minimizing global propensity score 
distance

provides code to evaluate covariate balance with both the MatchIt and Matching packages. 
The following code is for covariate balance evaluation with the MatchIt package after 
one-to-one greedy matching was implemented, but similar code can be used for any 
matching method implemented with the MatchIt package, such as genetic, optimal, 
and full matching.

balance.greedyMatching <- summary(greedyMatching, standardize=T)

The next piece of code is to evaluate covariate balance with the MatchBalance func-
tion of the Matching package after genetic matching is implemented, but it can be used 
for greedy matching as well. The argument match.out = geneticMatching specifies the 
object generated by the Match function containing the matches, so to use this code 
to evaluate balance for the greedy matching shown earlier, the only change needed is 
match.out = greedyMatching2.

balance.geneticMatching <- MatchBalance(psFormula, data = data,

match.out = geneticMatching, ks = F, paired=F)

The comparison of covariate balance achieved by different matching methods is 
shown in Table 5.1. None of the matching methods produced absolute standardized Draf
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mean differences lower than 0.1 for all covariates, but three produced differences 
lower than 0.25 standard deviations for all covariates. It is interesting to note that 
genetic matching with the propensity score performed better than genetic match-
ing with the propensity score plus covariates, but this may not always be the case, 
so comparing both methods is recommended. At this point, the researcher may 
proceed with the analysis or go back and try to improve covariate balance. This 
decision depends on the researcher’s chosen target for adequate balance, and dif-
ferent recommendations for what is acceptable covariate balance are presented in  
Chapter 1. If the target is to obtain standardized mean differences below 0.1 for all 
covariates, the researcher could attempt to change the propensity score model or 
change the propensity score estimation method and perform matching again. How-
ever, if the target is to obtain standardized mean differences below 0.25, then three of 
the matching methods shown in Table 5.2 performed adequately. In the next section, 
the matched data sets from variable ratio genetic with replacement (propensity score + 
covariates), variable ratio genetic matching with replacement (propensity score only), 
and full matching will be used to demonstrate a variety of treatment effect estimation 
methods.

TABLE 5.2 l  Comparison of Covariate Balance Across Matching Methods

Matching Method

Maximum Absolute 
Standardized Mean 

Difference

Covariates With Absolute 
Standardized Mean 

Difference Above 0.1, n (%)

One-to-one greedy with 
replacement and caliper

0.21 11 (26.1)

Variable ratio greedy with 
replacement and caliper

0.30 4 (9.5)

Variable ratio genetic with 
replacement (PS + covariates)

0.23 12 (28.6)

Variable ratio genetic with 
replacement (PS only)

0.13 8 (19.0)

One-to-one optimal without 
replacement

0.28 11 (26.1)

Full matching 0.26 4 (9.5)

Note: PS = propensity score. Results based on 42 standardized mean differences, which include the propensity 
score, continuous covariates, and values of categorical covariates.

Draf
t P

roo
f - 

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute

Copyright ©2017 by SAGE Publications, Inc.   
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.



Chapter 5  Propensity Score Matching 99 

5.6. Estimation of Treatment Effects

Treatment effect estimation methods with propensity score matched samples may 
differ depending on matching method, nature of the outcome, and whether the 
researcher decides to use parametric or nonparametric methods. The implementa-
tion of propensity score methods separates the design part of the analysis from the 
analysis of outcome (Rubin, 2005, 2007, 2008). In this chapter, the design part of 
the analysis consists of propensity score matching. Because of this separation, any 
parametric or nonparametric method can be used for the analysis of outcomes. In 
many academic fields, researchers have strong traditions of using specific paramet-
ric models for certain outcomes. Ho et al. (2007) recommend using the same para-
metric models with the propensity score matched samples, because they account 
for theoretical relationships well known in the field and provide additional bias 
reduction. An example of a complex parametric model (i.e., structural equation 
modeling) used with propensity score matching is provided in Chapter 8. In the 
current chapter, the focus is on simple matching estimators proposed by Abadie and 
Imbens (2002, 2006), the bias-corrected Abadie and Imbens estimator, and treat-
ment effect estimation based on mean differences and linear regression (Schafer & 
Kang, 2008).

There is disagreement on whether propensity score matching produces cluster-
ing effects that should be accounted for in the outcome analysis. Schafer and Kang 
(2008) argued that matched samples should be treated as independent data because 
matching does not produce correlations between outcomes of matched individu-
als. Stuart (2010) supported Schafer and Kang’s argument by adding that propensity 
score matching does not guarantee that covariate values are the same for matched 
pairs, only that covariate distributions are similar for treated and matched groups. 
In contrast, Austin (2011a) argued that because covariates that have similar distribu-
tions for matched and treated groups are related to the outcomes, the distributions 
of outcomes will be more similar for treated and matched samples than from ran-
domly selected samples. With a simulation study of the effect of binary treatments 
on binary outcomes, Austin found that analyses treating the matched pairs as depen-
dent rather than independent resulted in Type I error rates closer to the .05 alpha 
level, coverage of 95% confidence intervals closer to 95%, and narrower confidence 
intervals. Therefore, he recommended that matched samples be analyzed with meth-
ods for dependent samples. Although the differences between the results with inde-
pendent and dependent sample methods in Austin’s simulation study were small, 
they were consistently in favor of treatment matched pairs as dependent samples. 
Given that additional research is needed on this issue, this chapter includes methods 
for estimating standard errors for treatment effects that represent both sides of this 
debate.

The first estimator of the treatment effect appropriate for matching discussed here 
is the Abadie-Imbens simple matching estimator (Abadie & Imbens, 2002, 2006). 
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Under Rubin’s potential outcomes framework, the treatment effect for a single case 
i is τ i i iY Y= −1 0 , where Yi

1  is the potential outcome under the treatment condition 
and Yi

0  is the potential outcome under the untreated condition (see Chapter 1 for 
details). Similarly to a missing data problem, propensity score matching can be seen as 
a method to provide imputations for the potential outcomes:

 ˆ

( )

Y
Y Z

M
Y Zi

i i

i
j J i j i

M

1

1

1
0

=
=

=






 ∈

 if 

 if Σ   (5.3)

 ˆ

( )

Y
Y Z

M
Y Zi

i i

i
j J i j i

M

0

0

1
1

=
=

=






 ∈

 if 

 if Σ
  (5.4)

In Equations (5.3) and (5.4), Yi  is the observed outcome of case i, which was 
either exposed to the treated ( Zi = 1 ) or the untreated ( Zi = 0 ) condition. Mi  is  
the total number of matches for each case; the total set of matches for case i  
is J iM ( ) , and the outcome of each matched case j is Yj . Given the imputed poten-
tial outcomes obtained through matching, the ATE can be estimated as the average 
of the differences between the imputed potential outcomes under the treated and 
untreated conditions for all n cases, while the ATT can be estimated taking the 
average difference only for the n1 treated cases, as shown below (Abadie & Imbens, 
2002, 2006):

 ATE
n

Y Y
n

i i= −( )1
1

1 0Σ ˆ ˆ   (5.5)

 ATT
n

Y Y
i Z

n

i i= −( )
∈

1

1

1
1 0

1

Σ ˆ ˆ   (5.6)

Estimates obtained with the matching estimators in Equations (5.5) and (5.6), 
as well as standard errors estimated with the Abadie and Imbens (2006) method, 
are provided by the Matching package (Sekhon, 2011). The Abadie-Imbens estima-
tors will be demonstrated with the matched sample obtained with genetic match-
ing with the propensity score and 31 covariates. The Abadie-Imbens matching 
estimators were proposed for general multivariate matching but can be used for 
propensity score matching. The following code for estimating treatment effects 
with the Abadie-Imbens estimators using the sample from genetic matching is also 
applicable to data sets obtained with greedy matching. The geneticMatching object 
was created earlier by sequentially using the functions GenMatch and Match of the 
Matching package.Draf
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summary(geneticMatching)

This code produces the following output:

Estimate... 3.7664
AI SE...... 2.6266
T-stat..... 1.4339
p.val...... 0.1516

Original number of observations.............. 1209
Original number of treated obs............... 107
Matched number of observations............... 107
Matched number of observations (unweighted).  107

The estimate of the ATT is 3.766 (SE = 2.626, p = .152), indicating that mothers 
who had a job that provided or subsidized child care did not breastfeed their child 
longer than if they had a job that did not provide this benefit. The output above 
indicates that the number of mothers in the treatment condition is 107, and they 
are matched to 107 untreated mothers. Therefore, for this example, although the 
algorithm is set to allow multiple matches per treated case, it produced one-to- 
one matching, because only one untreated observation was identified for each treated 
observation that optimized balance in the propensity score as well as 31 covariates.

Abadie and Imbens (2002) showed that the matching estimator will be biased if the 
matching is not exact, but this bias can reduced by regressing the outcomes on covari-
ates only with the matched data. The Matching package allows bias adjustment, which 
is accomplished with the Match function by adding the BiasAdjust=T argument and  
Z=covariateData, which specifies the data set containing the covariates that will be used 
for bias adjustment.

geneticMatchingBA <- Match(Y=data$C0338600, Tr=data$childCare, X=covariateData,

BiasAdjust=T, Z=covariateData, Weight.matrix = geneticWeights,

estimand = “ATT”, M = 1, replace=TRUE, ties=TRUE)

The code for multivariate genetic matching with bias adjustment for all covariates 
shown above produces estimates that can be extracted with the summary function:

summary(geneticMatchingBA)

Estimate... 4.352
AI SE...... 2.7694
T-stat..... 1.5714
p.val...... 0.11608Draf
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The estimate of the ATT is 4.352 (SE = 2.769, p = .116), showing that bias adjust-
ment did not alter the conclusion obtained without bias adjustment that there is no 
treatment effect.

The MatchIt package (Ho et al., 2011) does not estimate treatment effects directly, 
but it provides a matched data set with case weights that can be used to estimate the 
ATT. In one-to-one matching without replacement, all case weights are 1. However, 
if fixed ratio (greater than one-to-one) or variable ratio matching is done, weights for 
treated cases are 1 but weights for all untreated cases matched to a treated case are the 
inverse of the total number of matches the treated case received Also, if matching is 
done with replacement, case weights for each untreated case are summed across the 
multiple matched groups in which it was included. Finally, the weights of the matched 
cases are multiplied by the ratio of the total number of matched cases and total number 
of treated cases, which scales the untreated weights to sum to the number of matched 
cases (Ho, Imai, King, & Stuart, 2014). The following equation implements the calcula-
tion of weights described above:

 w

Z

n
n M
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i

m

n

m
i

i=






 =
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1
1

 if =1 

if = 0Σ   (5.7)

where ni is the number of treated cases that case i was matched to, Mm  is the total 
number of matches including case i that each treated case received, n0  is the total 
number of matched cases, and n1 is the total number of treated cases. If a caliper is 
used, treated cases without untreated cases within their calipers are dropped before 
weights are calculated.

Using the matched sample obtained with variable ratio genetic matching with 
replacement based only on the propensity score, the following code demonstrates the 
estimation of treatment effects as a difference between weighted means. The func-
tion match.data of the MatchIt package was used to extract the data.geneticMatching2 
matched data set, which is then analyzed with the survey (Lumley, 2004) package. 
First, the svydesign function is used to specify the name of the data to be analyzed and 
the weights variable that contains the weights resulting from the variable ratio with 
replacement matching method.

data.geneticMatching2= match.data(geneticMatching2)

library(survey)

design.geneticMatching2 <- svydesign(ids=~1, weights=~weights,

data=data.geneticMatching2)

Then, the svyglm is used with the formula C0338600~childCare to fit the simple regres-
sion model Y Zi i i= + +β β ε0 1 , where β1  is the treatment effect.
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model.geneticMatching2 <- svyglm(C0338600~childCare, design.geneticMatching2,

family=gaussian())

The code above applies weights as defined in Equation (5.7) to the outcomes but does 
not implement any method to account for any clustering effects due to matching. The 
treatment effect is shown with the summary function:

summary(model.geneticMatching2)

Coefficients:
       Estimate Std. Error t value Pr(>|t|)  
(Intercept)       8.916   1.581  5.641  5.5e-08 ***
childCareTRUE     4.607   2.679  1.720  0.087 . 

With variable ratio genetic matching with replacement, the ATT estimate is 4.607 
(SE = 2.679, p = .087), which is similar to the previous two estimates.

Next, the ATT will be estimated using the data set extracted with the matched.data 
function from the fullMatching object, which contains the results of full matching per-
formed earlier with the matchit function. Full matching does not drop any observa-
tions, so the sample size for the estimation of treatment effects is much larger than 
with one-to-one matching.

data.fullMatching= match.data(fullMatching)

After the matched data set is extracted, the svydesign function of the survey package is 
used to specify the data and weights to be used to fit the outcome model.

design.fullMatching <- svydesign(ids=~1, weights=~weights,

data=data.fullMatching)

The following code uses a regression model fit with the svyglm function of the survey 
package to estimate the ATT as the difference between weighted means, with weights 
obtained according to Equation (5.7).

model.fullMatching <- svyglm(C0338600~childCare, design.fullMatching, family=gaussian())

summary(model.fullMatching)

Coefficients:
       Estimate Std. Error t value Pr(>|t|)  
(Intercept)   10.0428   0.8887 11.300  <2e-16 ***
childCareTRUE  3.4806   2.3346  1.491  0.136 
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The analysis results with the data set obtained with full matching show a treatment 
effect estimate (ATT = 3.481, SE = 2.335, p = .136) that is lower than those estimated 
with the methods presented previously, but it agrees with the other results with respect 
to the estimate not being statistically significant.

The use of a without-replacement matching strategy provides nonoverlapping 
matched pairs, which allows the use of a design-based method to account for clustering 
effects. Abadie and Imbens (2008) showed that bootstrapping is not an appropriate 
estimator for the standard error of treatment effects when matching with replacement is 
performed. However, Austin and Small (2014) found that bootstrapping matched pairs 
is an effective method to estimate standard errors when matching without replacement  
is used. In the following code, standard errors are obtained by bootstrapping the clus-
ters of observations formed by the full matching algorithm. The argument ids=~subclass 
to the svydesign function specifies the cluster ids. This strategy is consistent with Aus-
tin’s recommendation to adjust for pair effects when estimating standard errors from 
matched data.

design.fullMatching2 <- svydesign(ids=~subclass, weights=~weights,

data=data.fullMatching)

The as.svrepdesign function specifies that bootstrapping will be performed with 1,000 
replications:

design.fullMatching2 = as.svrepdesign(design.fullMatching2, type=“bootstrap”,

replicates=1000)

model.fullMatching2 <- svyglm(C0338600~childCare, design.fullMatching2, family=gaussian())

summary(model.fullMatching2)

Coefficients:
       Estimate Std. Error t value Pr(>|t|)  
(Intercept)   10.043   0.880 11.413  <2e-16 ***
childCareTRUE  3.481   2.385  1.459  0.148 

The only difference between the results below and the previous ones is the standard 
error estimation method, but the difference between the standard errors is very small. 
The estimate obtained (ATT = 3.481, SE = 2.385, p = .148) for the effect of the avail-
ability of company-provided or subsidized child care on length of breastfeeding is not 
statistically significant. 
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5.7. Sensitivity Analysis

Sensitivity analysis consists of examining what magnitude of hidden bias would change 
inferences about a treatment effect. Rosenbaum (2002) proposed a nonparametric  
sensitivity analysis method for continuous and ordinal outcomes based on the Wil-
coxon signed ranks test. Rosenbaum’s sensitivity analysis method is briefly described 
here and demonstrated with the rbounds package in R.  

Rosenbaum’s sensitivity analysis is based on the principle that if two cases have 
the same values on observed covariates but different probabilities of treatment assign-
ment, the odds ratio of these cases receiving the treatment is
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If there is an unobserved confounder, the odds ratio will be larger than 1 and smaller 
than a constant �  (gamma) that measures the degree of departure from the absence 
of hidden bias.

 

1 1

1 1Γ
Γ< <

π π

π π

j k

k

( )

( )

−

−  
(5.9)

Therefore, the value of Γ can be manipulated to evaluate how large it has to be for 
inferences about the significance of the treatment effect to change. If Γ has to attain 
very high values for inferences to change, then it is possible to conclude that the 
treatment effect is insensitive to hidden bias. Rosenbaum’s sensitivity analysis consists 
of computing p values of the lower and upper bounds of the Wilcoxon signed rank 
statistic for the outcome difference between treated and untreated groups, under null 
hypotheses with increasing values of Γ.

The rbounds package was designed to work together with the Matching package to 
implement Rosenbaum’s sensitivity analysis method. It can handle matched outcomes 
obtained with packages other than Matching, but it can currently handle only one-to-
one and fixed ratio matching. Therefore, sensitivity analysis with one-to-one genetic 
matching will be demonstrated but not with full matching. The following line of code 
uses the psens function of the rbounds package to implement the sensitivity analysis 
with the geneticMatching object obtained previously with the Match function of the 
Matching package, by varying the sensitivity parameter gamma from 1 to a maximum 
given by Gamma = 3, in increments of 0.1 specified by the GammaInc argument:
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TABLE 5.3 l  Summary of Main Functions Used in This Chapter

Package Function Objective

stats glm Estimate propensity scores with logistic regression

MatchIt matchit Implement greedy matching and as interface for 
genetic, optimal, and full matching

MatchIt match.data Extract the matched data set from the object created 
with the matchit function

Matching GenMatch Obtain covariate weights for genetic matching

psens(geneticMatching, Gamma=3, GammaInc=.1)

Rosenbaum Sensitivity Test for Wilcoxon Signed Rank P-Value 
 Unconfounded estimate .... 0.1305 
Gamma Lower bound Upper bound
  1.0      0.1305      0.1305
  1.1      0.0686      0.2224
  1.2      0.0343      0.3311
  1.3      0.0166      0.4456
  1.4      0.0077      0.5560
  1.5      0.0035      0.6553
  1.6      0.0016      0.7396
  1.7      0.0007      0.8080
  1.8      0.0003      0.8613
  1.9      0.0001      0.9017
  2.0      0.0001      0.9315
  2.1      0.0000      0.9529
  2.2      0.0000      0.9681
  2.3      0.0000      0.9786
  2.4      0.0000      0.9858
  2.5      0.0000      0.9906
  2.6      0.0000      0.9939
  2.7      0.0000      0.9960
  2.8      0.0000      0.9974
  2.9      0.0000      0.9984
           0.0000      0.9990

In this particular example, the results show that although the p value assuming no 
hidden bias is not statistically significant, a value of equal to 1.2 or larger could lead to 
a significant p value, and therefore the conclusion that there is no effect of availability 
of company-provided or company-subsidized child care on length of breastfeeding is 
vulnerable to hidden bias. If the lower bound of the p value did not overlap the signifi-
cance level even with Γ as high as 3, then there would be evidence of the results not 
being sensitive to hidden bias.
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5.8. Conclusion

Both multivariate and propensity score matching have been used and studied exten-
sively since seminal work by Rubin in the late 1970s and early 1980s. Therefore, 
discipline-specific preferences have been developed with respect to how matching 
is used. For example, in the economics field, matching is performed primarily with 
replacement (Abadie & Imbens, 2006; Imbens, 2004; Imbens & Wooldridge, 2009), 
while in medicine, it is performed most commonly without replacement (Austin, 
2008; Austin & Small, 2014). Although matching with replacement is able to produce 
better covariate balance than matching without replacement, it complicates statistical 
analysis, particularly with respect to estimation of standard errors.

With large samples with many untreated cases available for each treated case, match-
ing with or without replacement makes little difference in covariate balance. This is 
particularly true when algorithms that optimize covariate balance, such as the genetic 
and optimal algorithms, are being used. However, as shown in the covariate balance 
evaluation comparison in Table 5.2, despite the theoretical advantages of optimal, full, 
and genetic matching over greedy matching, it is not always possible to predict how 
each matching algorithm will actually perform with respect to covariate balance for a 
particular sample. Therefore, it is recommended that multiple matching algorithms are 
implemented and the results are compared. It is common in applications of propensity 
score matching to report results based on multiple methods, which provides some evi-
dence on how sensitive the conclusions are to matching algorithm choice.

Implementation of a propensity score matching method is more complicated and 
involves many choices of algorithms and tuning parameters than implementation of 

Package Function Objective

Matching Match Implement genetic matching with weights provided by 
the GenMatch function, as well as greedy matching

Matching MatchBalance Evaluate covariate balance of matching results provided 
by the Match function

survey svydesign Create an object that specifies the data to be analyzed, 
strata ids, cluster ids, and weights

survey as.svrepdesign Add replication weights to an object created with 
svydesign function, to allow bootstrapping

survey svyglm Estimate treatment effect with a generalized linear 
model

rbounds psens Implement Rosenbaum’s sensitivity analysis method
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Study Questions

 1. What is the difference between the 

common support requirements for 

matching for estimating the ATT and 

the ATE?

 2. Why is it advantageous to match 

based on the logit of the propensity 

score rather than the propensity score 

itself?

 3. How is greedy matching performed?

 4. How is optimal matching performed?

 5. How is genetic matching performed?

 6. What is the role of the generalized 

Mahalanobis distance in genetic 

matching?

 7. In what situation would greedy 

matching be expected to perform as 

well as optimal matching?

 8. What is the advantage of optimal 

matching over greedy matching?

 9. What is the advantage of genetic 

matching over optimal and greedy 

matching?

10. What is the expected difference in 

performance between one-to-one, 

one-to-many, and variable ratio 

matching?

11. How is a caliper used in matching, 

and what is the advantage of using it?

propensity score weighting shown in Chapter 3. This begs the question of whether 
there are situations when using matching would be preferable over propensity score 
weighting. First, there are situations when matching is able to produce better covariate 
balance than weighting, due to a combination of factors, such as differences in sample 
sizes and the distributions of propensity scores of treated and untreated. Second, when 
there are difficulties in estimating propensity scores due to nonconvergence or quasi-
separation of treated and untreated groups, matching based on covariates without the 
propensity score with the genetic matching algorithm is possible. Finally, there are 
situations when a stakeholder of an evaluation project is willing to accept matching 
as a quasi-experimental design method but not weighting. For example, the current 
standards of the What Works Clearinghouse (U.S. Department of Education, Institute 
of Education Sciences, & What Works Clearinghouse, 2013), which is a government 
organization that reviews educational research, describes matching as a method of 
quasi-experimental analysis but not weighting. Therefore, if the evaluators of an edu-
cational intervention are aiming to obtain a favorable review from the What Works 
Clearinghouse but cannot perform an experimental design, matching would be an 
acceptable option.
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12. How can common support be 

strictly enforced in propensity score 

matching?

13. What is the expected difference in 

performance between matching with 

and without replacement?

14. How is full matching performed?

15. Which matching methods require the 

use of weights and why?

16. Why do some researchers argue that 

matched samples should be treated as 

independent samples?

17. Why do some researchers argue that 

matched samples should be treated as 

related samples?

18. What is the Abadie-Imbens simple 

estimator for matched samples?

19. How can treatment effects for 

matched samples be estimated with 

regression?

20. What is the objective of sensitivity 

analysis?

21. What is the role of the odds ratio and 

the gamma constant in Rosenbaum’s 

sensitivity analysis?

Draf
t P

roo
f - 

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute

Copyright ©2017 by SAGE Publications, Inc.   
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.



Draf
t P

roo
f - 

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute

Copyright ©2017 by SAGE Publications, Inc.   
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.




