
EXPLORING THE RELATIONSHIP 
BETWEEN TWO VARIABLES

The Linear Regression Model

11

In the last chapter, we reviewed two models for testing hypotheses about the relationship between 
two variables. By making one simple assumption (i.e., when there is no relationship between the 
two variables, any X-value in our data could occur with any Y-value in our data), we can perform a 

randomization (permutation) test. We can also use the classical statistical model to conduct hypothesis 
tests about the parameter of a bivariate normal distribution called r, which describes the degree of 
relationship between the two variables for that population. The latter tests are not restricted to whether 
or not there is a relationship between the two variables (does ρ 5 0?); we can also test hypotheses about 
the specific value of ρ (for example, does ρ 5 .5?) and about whether the population correlations are the 
same or different in different bivariate normal distributions (does ρ1 5 ρ2?).

In this chapter, we will explore another classical statistical model for the relationship between 
two variables called the linear regression model. This model makes different assumptions about 
the population from which we sample. Although we can only test the hypothesis that ρ 5 0 with 
this model, it is more useful because it provides the foundation for analysis of variance, multivariate 
analysis, and hypothesis tests when the relationship is not linear.

To illustrate the use of the linear regression model, we will return our focus to the research 
study conducted by McManus, Feyes, and Saucier (2011) that we introduced in Chapter 10. Recall 
that the researchers were interested in examining the factors associated with prejudicial attitudes 
toward individuals with intellectual disabilities. As we previously described, they used a sample 
of 125 undergraduate students and assessed their quantity of contact with individuals with 
intellectual disabilities, their quality of contact with individuals with intellectual disabilities, 
and the amount of knowledge they reported that they possessed about intellectual disabilities. 
The participants reported their levels of these variables on several items on scales from 1 (strongly 
disagree) to 9 (strongly agree), and their responses were averaged to produce scores for each of 

Copyright ©2018by SAGE Publications, Inc.   
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute



Part IV   ■   Specific Techniques to Answer Specific Questions 302 

these three factors, with higher scores ref lecting higher levels of quantity of contact, 
quality of contact, and perceived knowledge, respectively. The researchers assessed 
the participants’ levels of prejudicial attitudes toward individuals with intellectual 
disabilities using the Mental Retardation Attitude Inventory–Revised (MRAI-R; 
Antonak & Harth, 1994). This measure also employed several items using scales 
from 1 (strongly disagree) to 9 (strongly agree), and the participants’ responses were 
averaged, with higher scores ref lecting more positive (i.e., less prejudicial) attitudes 
toward individuals with intellectual disabilities.

As we previously noted, consistent with their predictions, McManus et al. (2011) 
found that participants’ levels of quantity and quality of contact with individuals with 
intellectual disabilities and their perceived knowledge about intellectual disabilities 
were positively correlated with their scores on the MRAI-R. Thus, as levels of quantity 
and quality of contact increased and as perceived knowledge increased, so did positive 
attitudes toward individuals with intellectual disabilities.

In Chapter 10, we focused on the relationship between the participants’ quality of 
contact with individuals with intellectual disabilities and their attitudes toward individuals 
with intellectual disabilities. In this chapter, we will again focus on this relationship by 
using the participants’ quality of contact with individuals with intellectual disabilities as 
a predictor variable and the participants’ scores on the MRAI-R as a criterion variable.

ASSUMPTIONS FOR THE LINEAR 
REGRESSION MODEL

Unlike with the bivariate normal distribution model, we make no assumptions about 
the distribution of the values on the X-axis. However, we assume that for every value of 
X, the Y scores are normally distributed around a straight line Y′ 5 α 1 β X and the 
variances of those normal distributions are equal.

In the linear regression model, we make no assumptions about the distribution of the 
variable we call X or how we obtain the values of   X: X can have a normal distribution as 
in the bivariate normal distribution model, and we can randomly sample the values of X  
(as in that model). On the other hand, X could be a nominal variable for which the values 
are preselected. However, no matter what the distribution of X is or how we obtain the 
values of X, in this model, we do assume the following for each X: the values of Y are 
normally distributed, all of these normal distributions of Y values have the same variance, 
and the means of these normal distributions lie on a straight line. We can estimate the 
parameters and test hypotheses by taking a random sample from this population. These 
assumptions can be summarized as follows:
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Chapter 11   ■   Exploring the Relationship Between Two Variables 303 

1.	 The variable we call X can have any distribution, and it does not matter whether 
the values of X were obtained by random sampling or were preselected.

2.	 For every value of X, the associated values of Y have a normal distribution.
3.	 The means of these normal distributions of Y values lie on a straight line. The 

equation for that line is Y ′ 5 α 1 βX, where α is the Y-intercept of the line and β 
is the slope. This line is called population regression line.

4.	 These normal distributions of Y scores all have the same variance around that 
straight line. (This assumption is called homoscedasticity.)

5.	 We can estimate the values of the two parameters α  and β by taking a random 
sample from this population.

These assumptions are represented graphically in Figure 11.1.
In Figure 11.1, we can locate every Y-value in any of the normal distributions from 

the following equation:

	 Yi 5 α 1 βXi 1 εi	 (11.1)

where Yi is the Y-value we are seeking, α is the Y-intercept of the line on which the means of 
the normal distributions of the Y-values lie, β is the slope of that line, Xi is the X-value for the 
normal distribution in which we are seeking the Y-value, and εi is the distance the particular 
Y-value is above or below the line. These components are shown on the graph in Figure 11.2.

According to Equation 11.1, we locate the point in the normal distribution for any Xi 
by going up a distance α, then go up another distance βXi. That takes you to the mean 

Figure 11.1  ■ � This population consists of three values of X (X1, X2, X3). For 
each Xi, the Y-values have a normal distribution. The variances 
of these normal distributions are the same, and the means of 
these normal distributions are on the line Y′ 5 α 1 βX.

Y' = α + β Xi

X1

Y

X2 X3 X
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Part IV   ■   Specific Techniques to Answer Specific Questions 304 

of the Y-values for Xi. Then go up or down the distance εi to get to Yi. Every point (Xi, Yi) 
can be defined that way.

The symbol εi in Equation 11.1 represents the distance each Y-value is from the mean 
of the normal distribution in which it resides. Because those means are on the line Y ′ 5 α 
1 βX, ε represents the distance each Y value is from the line, that is ε 5 Y 2 Y ′. Clearly, 
if Y  has a normal distribution for each X, then ε also has a normal distribution with με 5 0 
and σ = σε Y

2 2  for each X (homoscedasticity).

ESTIMATING PARAMETERS WITH THE  
LINEAR REGRESSION MODEL

We use the method of least squares to estimate the intercept and slope of the population 
regression line Y 5 α 1 β X. We start by taking a random sample from the population 
and finding the values of the estimators of α and β (A and B respectively) that minimize 
the function Σ[Y – (A 1 BX)] 2.

The relationship between the two variables X and Y is described by the population  
line Y ′ 5 α 1 βX. There are two parameters in this equation (α and β). To estimate 
these parameters, we take a random sample from the population and attempt to find the 
line that best fits the sample data. The equation for that line is Y ′ 5 A 1 BX, where A is  
the estimate of α and B is the estimate of β. Clearly, there are an infinite number of lines 
that can be drawn on top of the sample data. Some of these lines fit the sample data better 

Figure 11.2  ■ � How Equation 11.1 locates any Y-value for any X-value using 
the linear regression model.

Y' = α + β Xi

X1

Y

X2 X3 X

ε

βXi

α
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Chapter 11   ■   Exploring the Relationship Between Two Variables 305 

than others. What criterion should we use to choose among these lines? The criterion that 
has been adopted is the least squares criterion, which instructs us to find the values for A 
and B that minimize the sum of the squared deviations of the data points from the line. Put 
simply, we are attempting to identify the line that comes the closest to all of the data points 
collectively. Applying this criterion is the basis for the method of least squares.

The method of least squares works as follows:

1.	 Draw a random sample from the population.
2.	 Try to fit the equation Y ′ 5 A 1 BX to the sample data by finding values for 

A and B that minimize the value of Σ[Y 2 (A 1 BX )]2. Because Y ′ 5 A 1 BX, 
this expression can be rewritten as finding the values for A and B that minimize 
Σ(Y 2 Y ′)2 (that is, finding the values that minimize the sum of the squared 
deviations between the sample values, Y, and the corresponding value on the 
sample regression line, Y ′).

The reader who is familiar with differential calculus can use that technique to find 
A and B: Find the first derivative of Σ[Y 2 (A 1 BX )]2 with respect to A and again with 
respect to B. Set these terms equal to zero, thereby yielding two simultaneous equations 
with two unknowns. You can use algebra to find the values of A and B that satisfy those 
two simultaneous equations. The reader who is not familiar with differential calculus will 
have to take on faith that the following formulas give us the values of A and B that make 
Σ[Y 2 (A 1 BX )]2 a minimum: 

A=Y −r SY
SX

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
X

�
(11.2)

B= r SY
SX

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟ �

(11.3)

Substituting these expressions into the equation for the sample regression line (Y ′ 5 
A 1 BX ), we get the following formula:

Y ′= Y −r SY
SX
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⎥
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(11.4a)

Equation 11.4 is the sample regression line. It is based on five easily obtainable 
sample statistics: Y , X , SY, SX, and r. When there is a non-zero correlation between 
X and Y, we can use Equation 11.4 to help us predict Y-scores from knowledge of 
X-scores.
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Part IV   ■   Specific Techniques to Answer Specific Questions 306 

REGRESSION AND PREDICTION

We can use the sample regression line to predict values on the Y-axis for any value on the 
X-axis. We scale the accuracy of our prediction in terms of the variance in the observed 
scores around the predicted scores. The higher the value of the Pearson r, the lower the 
variance, and the closer our predicted scores are to the observed scores. We can also use 
the method of least squares to find a regression line for predicting the X-scores from the 
Y-scores. The phenomenon of regression toward the mean is a consequence of using the 
method of least squares to estimate the population regression line with the resulting 
sample regression line.

Equation 11.4a is the sample regression line. When two variables are related, knowledge of 
an individual’s score on one variable should help us to predict his or her score on the other 
variable; that is, after we find the sample regression line for one sample from a population, 
we can use that regression line to predict the Ys from the Xs for other individuals sampled 
from that population. The predicted value will be the value of Y ′ from Equation 11.4a for 
a given value of X.

For the data from McManus et al. (2011), X Quality  5 6.13, YMRAI-R  5 6.52, sQuality 5 
1.78, sMRAI-R 5 1.04, and r 5 .615. Inserting these values into Equation 11.4a yields the 
following sample regression line:

	 Y ′ 5 4.35 1 0.35X	  (11.4b)

where Y ′ is the predicted score on the MRAI-R scale and X is the individual’s 
score on the quality of contact scale. This sample regression line has 4.35 as the 
Y-intercept and 0.35 as the slope. These values are the least squares estimates for 
the parameters α and β of the population regression line. Therefore, if someone 
scores 7 on the quality of contact scale, we predict the score on the MRAI-R scale 
would be 6.79. The value of Y ′ is our best prediction for someone’s score on the 
MRAI-R scale (indicating the positivity of their attitudes toward individuals with 
intellectual disabilities) given their score on the quality of contact (indicating the 
quality of their past experiences with individuals with intellectual disabilities). This 
prediction demonstrates that, consistent with the positive relationship between these 
variables, individuals’ relatively high scores on quality of contact are associated with 
their having relatively high levels of positive attitudes. More importantly, this result 
is consistent with the researchers’ hypothesis that higher levels of quality of contact 
with individuals with intellectual disabilities would be associated with more positive 
attitudes toward individuals with intellectual disabilities. This relationship suggests 
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Chapter 11   ■   Exploring the Relationship Between Two Variables 307 

that positive interactions with members of a stigmatized group may contribute to 
lower levels of prejudice toward them.

When we are talking about prediction in the case of regression, we are talking about it 
in the sense that when there is a correlation between X and Y, knowing something about a 
participant’s score on X, while not necessarily allowing you to predict Y exactly, tells you 
something about the Y-score for a given individual: In the case of high positive correlation, 
higher Xs tend to go with higher Ys, and lower Xs tend to go with lower Ys. In the case 
of attitudes toward individuals with intellectual disabilities, a positive relationship such 
that higher levels of quality of contact are associated with more positive attitudes does 
not mean every participant with higher levels of quality of contact necessarily has more 
positive attitudes.

This situation raises a question. We know that our predicted scores for individuals are 
not going to be identical to their observed scores. We need some way to scale the accuracy 
of our predictions. We scale the accuracy of our predictions by looking at the variation of 
the observed scores from the predicted scores. Consider any given value of X. Equation 
11.4a gives us a single predicted value for that X, but there are a large number of possible 
values associated with that X. The following formula gives us a measure of the accuracy 
of our predictions:

∑= − ′
S

Y Y
n

( )
Y X|
2

2

�
(11.5)1

When using Equation 11.5 as the measure of the accuracy of our predictions, we 
are not defining accuracy as the number or percentage of exact predictions we make. 
It is rare that we are going to predict the observed score exactly. Instead, Equation 
11.5 measures accuracy of prediction in terms of the average of the sum of the squared 
deviations of the observed scores from the predicted scores. The closer the observed 
scores are to the predicted scores (and the regression line), the more accurate your 
predictions; the more spread out the observed scores are around the regression line, the 
poorer your predictions.

When r 5 1, we would have perfect predictions because all of the observed scores 
would be on the regression line (Y 5 Y ′); that is, all of the observed scores would equal 
the predicted scores. When this situation occurs, =S 0Y X|

2 . But when r ≠ 0, then there 

1 The square root of Equation 11.5 is the standard error of the estimate.
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will be some variation between the observed scores and predicted scores and >S 0Y X|
2 . 

Therefore, the smaller the value of SY X|
2 , the better our predictions.

When r 5 0, Equation 11.3 tells us that B 5 0, Equation 11.2 tells us that =A Y , and 
Equation 11.4 tells us that ′ =Y Y . This means that when r 5 0, our best prediction for 
the value of Y is Y  because that value minimizes the ( )Σ − ′Y Y

2
. Because our observed 

scores are scattered all over the place when r 5 0, the sum of the squared deviations of 
the observed scores from the predicted scores is going to be the largest it can be for those 
data. Substituting Y  for Y ′ in Equation 11.5 makes =S SY X Y|

2 2.
The higher r is, the better our prediction. The better our prediction, the smaller the 

deviation of the observed scores from the predicted scores when you average them over all 
of the data. Therefore, there is an obvious relationship between SY X|

2  and r: As r increases, 
SY X|

2  decreases. Furthermore, when r 5 0, =S SY X Y|
2 2 , and when r 5 1, =S 0Y X|

2 . The 

exact form of the relationship between r and SY X|
2  is

( )= −S S r1Y X Y|
2 2 2

�
(11.6)

Predicting in the Other Direction

When two variables are correlated, we should be able to make predictions in either 
direction (from X to Y and from Y to X ). To make predictions from X to Y, we use the 
method of least squares to find the values of A and B in the equation Y ′ 5 A 1 BX 
such that Σ(Y 2 Y ′ ) is a minimum. If we want to make predictions from Y to X, the 
corresponding equation would be X′ 5 A* 1 B*Y (where A* is the X-intercept and B* is 
the slope), and we use the method of least squares to find the values of A* and B* such that 
Σ(X 2 X′ )2 is a minimum. Here is the analytic solution:

A* = X −r SX
SY

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
Y

�
(11.7)

and

B * = r SX
SY

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟ �

(11.8)

Substituting these two terms into the equation for the sample regression line (X′ 5 A* 
1 B*Y ), we get the following formula:

′X = X −r SX
SY

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
Y

⎡

⎣
⎢
⎢
⎢

⎤

⎦
⎥
⎥
⎥
+ r SX

SY

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
Y

⎡

⎣
⎢
⎢
⎢

⎤

⎦
⎥
⎥
⎥ �

(11.9)
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Chapter 11   ■   Exploring the Relationship Between Two Variables 309 

An interesting thing happens when r is 
between 0 and 61: Suppose we take a value 
X1 and use it to predict the value of ′Y1 . Notice 

that the difference between X1 and X  and ′Y1  

and Y  are not the same: ( ′−Y Y1 ) is smaller  

than ( −X X1 ). Now take ′Y1
 and go back in the  

other direction to predict X. When we do that,  
the predicted value for X ( ′X1) is closer to X   

than X1 is; that is, ′− < −X X X X1 1 . Furthermore, 

′− < ′−X X Y Y1 1 . In other words, the predicted 
score is always closer to its mean than the score 
from which we started, no matter which direction 
we go. This phenomenon is regression toward 
the mean.

Frances Galton discovered the phenomenon 
of regression toward the mean. He noticed that 
the average height of the children of tall parents 
was less than the average of the height of their 
parents and, for short parents, the average 
height of their children was greater than the 
average height of the parents. Furthermore, 
the average heights of the children of both tall 
and short parents were closer to the mean 
of all children than the average heights of 
the parents were to the average heights of 
all parents. There is a biological explanation 
for this phenomenon: Two things determine 
height. One is genetics (tall people tend to have 
tall children), and the other is nutrition. The 
nutritional factor accounts for the fact that in 
recent history, successive generations have 
tended to be taller than their parents.

Galton was showing the effects of heredity 
and the environment in the following way. A 
person who is quite tall is so for two possible 
reasons. One is the genetic component, and the 
other is a favorable nutrition program. What 
were the chances in the next generation that 
such a combination would occur again? It is 
likely that the genetics will be passed on. But 

when the favorable nutritional environment is 
not repeated in the next generation, the height 
of the children of tall parents will be lower. 
Likewise, the children of short parents tend 
to be taller because, although the genes for 
shortness are passed on, better nutrition in the 
second generation would cause the children to 
be a little taller than their parents. Thus, in both 
cases, the fact that the nutritional environment 
was likely to vary from generation to generation 
leads to differences in height between parents 
and children. Of course, not  all short parents had 
taller children and not all tall parents had shorter 
children, but the average height of the children 
was shorter or taller than the average height of 
their parents. The fact that the environmental 
factors can change from generation to generation 
allows researchers to separate the effects of 
heredity and the environment.

The same phenomenon is observed with IQ. 
Parents with high IQs will not necessarily have 
children whose IQs are higher than average. 
The children’s IQ scores could be higher than 
average, of course, but not necessarily. The 
environment is an important factor also. In 
a constant environment, you would observe 
purely genetic factors at work.

Implicit in the formula for Y′ is this idea of 
regression to the mean. This pattern becomes 
obvious when we convert both X and Y to 
standard scores. The resulting equations 
are z rzY X

′ =  and z rzX Y
′ = . Clearly, the slopes 

of those lines are always going to be some 
value less than 1. Thus, since the slope of the 
regression line is less than 1, when you predict 
Y from X, the predicted value will be closer to 
the mean (zero in the case of z-scores). See 
Senn (2011) for more details about Galton’s 
discovery of regression to the mean and its 
implications.

BOX 11.1
REGRESSION TOWARD THE MEAN

Copyright ©2018by SAGE Publications, Inc.   
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute
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These two lines, X′ and Y ′, are always different except when r 5 11 or 21. On the 
other hand, when r 5 0, ′ =Y Y  and ′ =X X . Therefore, when r 5 0, the lines are 
perpendicular to each other and cross at the point (X Y, ). When r is between 0 and 61, 
the two lines cross at the point (X Y, ) with the angle between them less than 90o. The 
greater the absolute value of r, the smaller the angle between these two regression lines. 
When r 5 61, they are the same line. An interesting thing happens when r is between 0 
and 61 (see Box 11.1).

VARIANCE AND CORRELATION

We can partition the variance of the Y-scores into two parts: the variance of the 
predicted scores around the mean of Y (variance due to regression or explained 
variance) and the variance of the observed scores around the regression line (residual 
variance or unexplained variance). The proportions of the variance in Y that are due 
to regression and the residual variance are both functions of the Pearson r for a given 
set of data.

In our sample data, the deviation of every Y-value from Y  ( −Y Y ) is the sum of the 
deviation of that Y-value from the predicted value of Y (Y 2 Y ′) and the deviation of each 

predicted value Y ′ from Y  ( ′Y Y– ). That is,

( ) ( )( )− = − ′ + ′−Y Y Y Y Y Y  � (11.10)

This concept is illustrated in Figure 11.3.
If we square both sides of Equation 11.10, add up all of the squared deviations on both 

sides, and divide by the sample size (n), we get the following:

Y Y
n

Y Y Y Y
n

( ) [( ) ( )]2 2

∑ ∑−
=

− ′ + ′−

 �
(11.11)

If we complete the square on the right side of Equation 11.11 and distribute the 
summation sign and the division by n, we get the following equation:

Y Y
n

Y Y
n

Y Y
n n

Y Y Y Y
n

( ) ( ) ( ) 2 ( )( )2 2 2

∑ ∑ ∑ ∑−
=

− ′
+

′−
+

− ′ ′−
 �

(11.12)

The term to the left of the equal sign is the variance of the Y-scores. We call this the 
total variance of Y ( SY

2 ). The first term after the equal sign is the variance of the Y-scores 
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Chapter 11   ■   Exploring the Relationship Between Two Variables 311 

around the regression line. This term is referred to as either the unexplained variance 
or the residual variance. The symbol for this variance is SY X|

2 . The second term after the 
equal sign is the variance of the scores on the line (predicted scores) around the mean 
of Y. This term is called the explained variance. The symbol for this variance is ′SY

2 . 
Substituting these symbols into Equation 11.12, we get the following:

∑= + +
− ′ ′−

′S S S
Y Y Y Y

n
2 ( )( )

Y Y X Y
2

|
2 2

 �
(11.13)

The last term in Equations 11.12 and 11.13 is the covariance between the deviations 
of the Y scores around the regression line (Y 2 Y ′) and the deviations of the predicted 
scores around the mean of Y (Y Y′− ). As noted in the previous chapter, the covariance 
is related to the correlation between two variables, and the only time the correlation 
is zero is when there is no relationship between the two variables (correlation 5 0). In 
this case, the covariance term in Equations 11.12 and 11.13 equals zero. In this case, 
there is no relationship between the deviations of the observed score from the line  
(Y 2 Y ′) and the deviations of the points on the line from the mean of Y (Y Y–′ ). If 
they were positively correlated, then where the deviation between Y ′ and Y  is small, 
the deviation Y around the line (Y ′) would also be small, and where (Y Y–′ ) is large, 
(Y 2 Y ′) would also be large. In this case, we could not have equal variance around the 
line (homoscedasticity), because homoscedasticity means that the variance around the 

FIGURE 11.3  ■ � The deviation of every Y-score from YY  ( 2Y Y ) is the sum  
of the deviation of that Y-value from the predicted value  
of Y (Y 2 Y ′) and the deviation of each predicted value Y ′  
from YY  ( 2′YY YY ).

Y

Yi

Xi X

Yi – Y
–

Yi – Y'

Y' – Y
–

Y'

Y
–

X
–
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Part IV   ■   Specific Techniques to Answer Specific Questions 312 

regression line is the same everywhere along that line. This situation can only occur when 
the correlation (covariance) between (Y 2 Y ′) and (Y Y–′ ) 5 0. Therefore,

= + ′S S SY Y X Y
2

|
2 2

� (11.14)

Equation 11.14 tells us that the total variance in Y (SY
2) is made up of two parts: 

One part is the explained variance ( ′SY
2 ), which is variation due to the correlation 

between X and Y; that is, this is the variance in Y that is due to or explained by 
variation in X (this component is also referred to as variation due to regression). The 
other part is the unexplained or residual variance (SY X|

2 ) which is the variation in Y 
that is not explained by variation in X.

We saw in Equation 11.6 that the value of SY X|
2  depends on the correlation between X  

and Y. When r 5 1, all of the Y-scores are on the regression line, and there is no variation 
around that line; that is, there is no residual variance. In other words, when r 5 1, all 
of the variation in Y is explained by the correlation with X, nothing is unexplained, and 

=S 0Y X|
2 . On the other hand, when r 5 0, ′ =Y Y . In this case, no matter what the 

value of X, the predicted score is the same; in other words, there is no variation in the Y ′ 
values. Therefore, all of the variation in Y is unexplained variation or residual variance 
and =S SY X Y|

2 2.
Substituting Equation 11.6 into Equation 11.14 and rearranging the terms gives us 

the following equation:

=′S r SY Y
2 2 2

� (11.15)

Equation 11.15 tells us that the explained variance is also a function of the correlation 
between X and Y (due to regression): When r 5 1, =′S SY Y

2 2, and when r 5 0, =′S 0Y
2 .

We can rearrange Equation 11.15 to get the following important relationship:

= ′r
S
S

Y

Y

2
2

2 �
(11.16)

Equation 11.16 tells us that the square of the Pearson r equals the proportion of variance 
in Y explained by the correlation with X. In other words, the higher the correlation, the 
greater the proportion of the total variance in Y that is explained by variation in X.

We can perform a similar arrangement of Equation 11.16 to get the following relationship:

= −r
S
S

1 Y X

Y

2 |
2

2
�

(11.17)

Equation 11.17 tells us that the square of the Pearson r equals 1 minus the proportion 
of variance that is not explained by the correlation with X (the residual variance).
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Chapter 11   ■   Exploring the Relationship Between Two Variables 313 

TESTING HYPOTHESES WITH  
THE LINEAR REGRESSION MODEL

We use the ratio of two estimates of variance, one based on the variation among the predicted 
Y-scores and the other based on the variation of the Y-scores around the regression line. When 
ρ 5 0, both are estimating the variance of  Y. When ρ fi 0, they are estimating different 
things. The test statistic is an F-ratio. This concept is the basis of analysis of variance.

We can test the hypothesis that ρ 5 0 by comparing two estimates of the variance. One 
estimate is based on the deviations of the predicted scores of Y from Y  in your sample, 
and the other is based on the deviations of the observed scores from the predicted scores 
in your sample. The test statistic is the ratio of those two estimates of variance. When the 
null hypothesis is true, both of these estimates are estimating the variance of Y for the 
population ( Y

2σ ). When ρ fi 0, one of those estimates of variance is estimating something 
greater than Y

2σ , and the other is estimating something less than Y
2σ .

In the linear regression model, all of the normal distributions of the Y values for each 
X value lie on a straight line Y ′ 5 α 1 βX. Equations 11.2 and 11.3 give us the values of 
A and B (the least square estimates of α and β). It is also the case that

α=µY −ρ
σY
σX

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
µX

 
and

 
β= ρ

σY
σX

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
�

(11.18)

Therefore, β 5 0 when ρ 5 0. In this case, testing the hypothesis H0: ρ 5 0 is 
equivalent to testing the hypothesis H0: β 5 0.

We can construct a test for the hypothesis H0: ρ 5 0 from the following facts:

1.	 The total sum of the squared deviations of all of the Y-scores around the mean of Y 
can be divided into two additive parts: the sum of the squared deviations for each 
Y-score around the predicted value for that Y-value (Y ′) and the sum of the squared 
deviations of these predicted values (Y ′) from the mean of all of the Y-scores:

∑ ∑ ∑( ) ( )( )− = − ′ + ′−Y Y Y Y Y Y
2 2 2

� (11.19a)

	 The sums of squared deviations to the left of the equal sign is called SSTotal, the first 
sum of squared deviations to the right of the equal sign is called the SSUnexplained or 
SSResidual, and the second sum of squared deviations to the right of the equal sign 
is called the SSExplained. Therefore,

 SSTotal 5 SSUnexplained 1 SSExplained�  (11.19b)
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Part IV   ■   Specific Techniques to Answer Specific Questions 314 

2.	 The total degrees of freedom equal sample size minus 1: dfTotal 5 n 2 1. We can use 
both of the definitions for degrees of freedom developed in an earlier chapter to arrive 
at this value.2 The total degrees of freedom can be divided into two additive parts:
a.	 Degrees of freedom explained (dfExplained  ) or degrees of freedom regression (dfRegression  ). 

The sums of squares explained involves the deviations’ predicted values around the 
mean of Y.  Those predicted values are all on a straight line. We know from Euclid’s 
axioms in geometry that one and only one straight line can be drawn between two 
points. The regression line Y′ goes through the point (X Y, ). Therefore, using the 
first definition of degrees of freedom (how many of those predicted scores we have 
to know before we can know all the rest), if we know one other point on the line, 
we know the location of all of the points on the line. Therefore, dfExplained 5 1.

b.	 Degrees of freedom unexplained (dfUnexplained   ) or degrees of freedom residual 
(dfResidual   ). We use the second definition of degrees of freedom to find the 
unexplained degrees of freedom, which are related to the deviations of observed 
scores around the regression line: When we have only one point, we can draw 
an infinite number of regression lines through that point, and the sum of the 
squared deviations around the regression line is zero because the regression line 
has to go through that point based on the method of least squares. When we 
have two points, we minimize the sum of the squared deviations around the 
line by drawing the regression line through those two points. Here r 5 1, and 
the sum of the squared deviations is zero. Therefore, we must have at least three 
values before the sum of squared deviations of the scores around the regression 
line can be a non-zero value. Therefore, dfUnexplained 5 (n 2 2).

	 We can summarize this relationship with the following equation:

(n 2 1) 5 (n 2 2) 1 1� (11.20a)

 dfTotal 5 dfUnexplained 1 dfExplained�  (11.20b)

3.	 Dividing sums of squares by degrees of freedom produces estimates of variance, 
and we can use the definition of unbiased estimates to determine what variances 
are being estimated:

a.	 ( )∑ −

−

Y Y

n 1

2
 is an unbiased estimate of σY

2 . Therefore,

E
∑ Y −Y( )2

n−1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
= σY

2

�
(11.21)

2 The two definitions of degrees of freedom are (1) how many scores you need to know before all the rest are 
fixed and (2) how many scores you need to have before the sum of squares could be a non-zero value.
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b.	 When ρ 5 0,

E
∑ Y − ′Y( )2

n−2

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
= σY

2

�
(11.22)

	 Therefore, when ρ 5 0, this formula is estimating σY
2 . When ρ fi 0, this 

formula is estimating something smaller than σY
2 . (See Box 11.2.)

c.	 When ρ 5 0,

E
∑ ′Y −Y( )2

1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
= σY

2

�

(11.23)

Therefore, when ρ 5 0, this formula is estimating Y
2σ . When ρ fi 0, this formula is 

estimating something larger than Y
2σ . (See Box 11.3.)

∑( )− ′

−

Y Y

n 2

2

 is an unbiased estimate of 

the unexplained (residual) variance in the 
population σY X|

2 . We saw earlier that the 
unexplained (residual) variance of the sample, 
SY X|

2 , is a function of the value of the Pearson r: 

( )= −S S r1Y X Y|
2 2 2 . The value of σY X|

2  is a function 
of the population correlation ρ in a similar way; 
that is, ( )σ =σ −ρ1Y X Y|

2 2 2 . Combining these two 
pieces of information we arrive at the following 
equation:

∑ ( )( )− ′

−
=σ =σ −ρE

Y Y

n 2
1Y X Y

2

|
2 2 2

When ρ =0, ∑( )− ′

−
=σE

Y Y

n 2 Y

2

2 ; that is, 

∑( )− ′

−
E

Y Y

n 2

2

 is estimating σY
2.

When ρ ≠ 0, ∑( )− ′

−
E

Y Y

n 2

2

 is estimating 

something smaller than σY
2.

BOX 11.2
THE EXPECTED VALUE OF ∑( )− ′

−

Y Y

n 2

22
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We can derive the expected value of ∑( )−Y Y

1

2

 by starting with Equation 11.19a:

∑ ∑ ∑( ) ( )( )− = − ′ + ′−Y Y Y Y Y Y
2 2 2

We can rearrange the terms to get

∑ ∑ ∑( ) ( ) ( )′− = − − − ′Y Y Y Y Y Y
2 2 2

If we take the expected value of both sides and use the fact that the expected value of a 
difference is the difference in the expected values, we arrive at the following relationship

E ′Y −Y( )2∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=E Y −Y( )2∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
−E Y − ′Y( )2∑⎡
⎣
⎢
⎢

⎤

⎦
⎥
⎥ �

(A)

We saw earlier that E Y −Y( )2∑
n−1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=σY

2
. Applying the rules of algebra and expected values, we 

get E Y −Y( )2∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= n−1( )σY

2 .

It is also the case that because 

E Y − ′Y( )2∑
n−2

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=σY

2 1−ρ2( ),

E Y − ′Y( )2∑⎡
⎣
⎢
⎢

⎤

⎦
⎥
⎥
= n−2( )σY

2 1−ρ2( )
Substituting these into Equation A above, we get this:  

E Y − ′Y( )2∑⎡
⎣
⎢
⎢

⎤

⎦
⎥
⎥
= n−1( )σY

2− n−2( )σY
2 1−ρ2( )

�
(B)

By applying the rules of algebra, we obtain the following:

E ′Y −Y( )2∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=σY

2 1+ n−2( )ρ2⎡
⎣⎢

⎤
⎦⎥ �

(C)

Thus, when ρ 5 0, E
′Y −Y( )2∑
1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=σY

2 ; that is, E
′Y −Y( )2∑
1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
 is estimating σY

2, and when ρ ≠ 0, 

E ′Y −Y( )2∑
1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
 is estimating something larger than σY

2.

BOX 11.3
THE EXPECTED VALUE OF ∑

( )′−Y Y

11
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We can use the results in Boxes 11.2 and 11.3 to construct a hypothesis test for ρ 5 0  

by comparing the two estimates of variance ∑( )− ′

−

Y Y
n 2

2

 and ∑( )′−Y Y

1

2

. When 
ρ 5 0, we expect

∑ ∑( )( )− ′

−
≈

′−Y Y
n

Y Y

2 1

2 2

�
(11.24)

And when ρ fi 0, we expect 

∑ ∑( )( )− ′

−
<<

′−Y Y
n

Y Y

2 1

2 2

�
(11.25)

We can compare these two estimates of variance by forming their ratio. The symbol 
for this ratio is F (after R. A. Fisher, who derived its distribution). When the null 
hypothesis is true, the value of the F-ratio should be close to 1. If we put the value 
we expect to be larger in the numerator when the null hypothesis is false,  the value 
of F will be a lot larger than 1 when the null hypothesis is false. When the null 
hypothesis is true, the F-ratio has an F-distribution. The exact shape of the central 
F-distribution depends on both the degrees of freedom for the estimate in the 
numerator and degrees of freedom for the estimate in the denominator. Because 
F is the ratio of two estimates of variance, which must be positive given that they 

are squared values, F ≥ 0. When the null hypothesis is true, µF =
dfdenominator

dfdenominator−2
.  

The variance of F is a complicated formula that depends on both dfnumerator and 
dfdenominator.

3 As either degrees of freedom increase, σF
2  decreases, and the distribution 

of F becomes narrower (see Figure 11.4).
We reject the null hypothesis when F is a large number. Therefore, the critical 

region for an F-test is always in the right tail of the null hypothesis true distribution 
(central F-distribution). When the null hypothesis is false, the F-ratio has a non-central 
F-distribution with

µ
F * =

dfden

dfden−2

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
dfnum+ δ
dfnum

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
,

�
(11.26)

3  df df df

df df df

2 2

2 4
F
2 den

2
num den

num den
2

den

σ ( )
( ) ( )

=
+ −

− −
 when dfdenominator > 4.
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where δ is the noncentrality parameter. For this situation,

δ= n ρ2

1−ρ( )2
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥ �

(11.27)

where ρ is the true population correlation.
When H0 is true, ρ 5 0 and δ 5 0, and μF  * reduces to μF  

.
Therefore, to test H0: ρ 5 0 when the relationship between the variables is linear, the 

F-ratio is as follows:

F
Y Y

Y Y n

/1

/ 2

2

2
∑
∑

( )
( ) ( )

=
′−

− ′ − �

(11.28)

As noted in Equation 11.24, when the null hypothesis is true, the numerator and 
denominator are both estimating σY

2 , but when the null hypothesis is false (Equation 11.25),  
the numerator is estimating a value larger than σY

2 , and the denominator is estimating 
a value smaller than σY

2 . Therefore, large values of F  lead to rejection of the null 
hypothesis.

Presenting the Results of an F-Test

When people perform F-tests, they may display the results in a standard format called 
an F-table (see Table 11.1). The F-table starts with the sums of squares and degrees of 
freedom for each component of the F-ratio, combines them into estimates of variance 
(called mean squares), and finally forms the F-ratio from the ratio of the mean squares.

The column labeled “Source of  Variance” contains the names of the sources of variance 
that have been identified as adding up to the total variance in the situation under study. 

0.7

0.8

0.6

0.4

0.5

0.3

0.2

(5,30)
(3,30)

(3,10)

0.1

0
0 10.5 1.5 2 2.5 3 3.5 4

FIGURE 11.4  ■ � Probability density functions for F for various degrees of 
freedom. In the parentheses, the first numbers are dfnumerator, 
and the second numbers are dfdenominator.
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How many sources of variance there are depends on the situation. The sums of squares 
and degrees of freedom in the second and third columns must add to the total sums of 
squares and degrees of freedom, respectively. Mean squares are estimates of variance for 
each source of variance in the table. They are the obtained by dividing the sums of squares 
by the corresponding degrees of freedom. Finally, the value of F is the ratio of two mean 
squares (estimates of variance).

In the test of the hypothesis that ρ 5 0 for the linear regression situation, the F-table 
would look like Table 11.2.

The sums of squares for regression and residual in Table 11.2 are not easy to calculate. 
Equivalent formulas that are easier to use are presented in Box 11.4.

The results from Box 11.4 lead to Table 11.3. 
By dividing the numerator and denominator of the F-ratio in the Table 11.3 by SSTotal, 

the test statistic can be simplified to the following:

( ) ( )
=

− −
F

r
r n

/1
1 / 2

2

2

�
(11.29)

TABLE 11.1  ■  F-Table

Source of 
Variance Sums of Squares

Degrees of 
Freedom Mean Square F

Source 1 SS1 df1 MS1 5 SS1/df1 F 5 
MS1/MS2

Source 2 SS2 df2 MS2 5 SS2/df2

Total SSTotal dfTotal

TABLE 11.2  ■  F-Table for the Hypothesis That ρ 5 0

Source of 
Variance

Sums of 
Squares

Degrees of 
Freedom Mean Square F

Regression ∑ ′−Y Y( )2
 

1
 
∑ ′−Y Y( ) /12

  
 

∑
∑

′−

− ′ −

Y Y

Y Y n

( ) /1

( ) / ( 2)

2

2

 

 Residual ∑ − ′Y Y( )2
  n 2 2 Y Y n( ) / ( 2)2∑ − ′ −

 

Total  ∑ −Y Y( )2
 n 2 1
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The sums of squares regression and residual 
in the table can be calculated from the 
Pearson r and the sums of squares total 
(SSTotal). The derivation of these formulas for 
the hypothesis test under consideration can be 
generalized to a wide variety of situations.

Equation 11.15 tells us that the explained 
variance (variance due to regression ′S[ ]Y

2 ) is 
equal to r2 times the total variance in Y; that is,

=′S r SY Y
2 2 2

where SY
2  is the total variance in Y (STotal

2 ).
Because variance equals sums of squares 

divided by sample size (n), the above equation 
can be written as follows:

SSRegression

n
=r 2 SSTotal

n

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

 

Multiplying both sides of this equation  
by n leaves

SSRegression=r 2 iSSTotal

where ( )=Σ −SS Y YTotal

2
.

We can derive a similar formula for 
SSResidual. Equation 11.17 can be rewritten as

= −S r S(1 )Y X Y|
2 2 2

 

Applying the same logic as above,

SSResidual

n
= 1−r 2( ) SSTotal

n

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

and

SSResidual = 1−r 2( )iSSTotal

BOX 11.4
COMPUTATIONAL FORMULAS FOR THE  
SUMS OF SQUARES FOR THE F-TEST OF H0: ρ 5 0

TABLE 11.3  ■  F-Table for the Hypothesis That ρ = 0

Source of 
Variance

Sums of 
Squares

Degrees of 
Freedom Mean Square F

Regression r2SSTotal 1  r2SSTotal / 1

( ) ( )− −

r SS

r SS n

/1

1 / 2

2
Total

2
Total

 

Residual (1 2 r2)SSTotal (n 2 2)  (1 2 r2)SSTotal / (n 2 2)

Total
SSTotal 

(n 2 1)
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Therefore, we may now perform our hypothesis test using only r and n.
When the degrees of freedom numerator 5 1 in an F-ratio, the square root of F 5 t, 

with degrees of freedom 5 dfdenominator. Therefore, one can also use the following t-statistic 
to test H0: ρ 5 0:

=
−

−
t

r n

r

2

1 2
�

(11.30)

When the null hypothesis is true, Equation 11.30 has a t-distribution with (n – 2) 
degrees of freedom. When the null hypothesis is false, Equation 11.30 has a non-central 
t-distribution. We can use the t-test in Equation 11.30 to conduct one-tailed tests where 
the alternative hypothesis is ρ > 0 or ρ < 0. The F-test only allows for two-tailed tests 
because it uses r2. That is, while the F-distribution only has one tail, it does not allow for 
the testing of directional tests that are typically referred to as “one-tailed.”

Summary

The linear regression model starts with the popula-

tion regression line Y 5 α 1βX 1 ε, which describes 

the relationship between the two variables X and 

Y (where X is the predictor and Y is the criterion) 

in the population. After drawing a random sample 

from that population, we can use the method of 

least squares to estimate the parameters α and β. 

The result is a line Y′ 5 α 1βX, which minimizes 

the sum of the squared deviations between the in-

dividual data points in the sample (Y) and the cor-

responding points on the line (Y′). After the sample 

regression line (Y′) is located, the total variance 

in the Y-values ( SY
2 ) can be partitioned into two 

parts, the explained variance and the unexplained 

or residual variance. The explained variance is the 

variance of the points on the sample regression line 

(Y′) around the mean of the Y-values in the sample  

(Y ). It is called explained because it is the variance in  

Y that is due to variance in X. The higher the value 

of the sample correlation (Pearson r), the greater the 

explained variance. The symbol for the explained 

variance is SY
2
′. The unexplained, or residual, vari-

ance is the variance of the individual data points Y 

around Y′. It is that part of the variance in Y that is 

not due to the correlation, and the higher the value 

of the Pearson r, the less the residual variance. The 

symbol for the residual variance is SY X|
2 . 

The value of the square of the Pearson r can be 

calculated from the following two formulas:

= ′r
S
S

Y

Y

2
2

2

  

and 

= −r
S

S
1 Y X

Y

2 |
2

2

 

We can use r2 to test the null hypothesis that 

the population correlation 5 0 with the following 

test statistic:

=
−
−

F

r

r
n

1
1

2

2

2

The ideas summarized here can be generalized 

to situations in which there are more than one pre-

dictor (multiple regression) and in which the rela-

tionship between two variables is not linear. These 

ideas also provide a link between correlation and 

hypothesis tests on means, a connection that is the 

basis for measures of effect sizes in t-tests and anal-

ysis of variance. Finally, these ideas lay the founda-

tion for the analysis of variance. We will show how 

these ideas apply to nonlinear situations and to sit-

uations in which there is more than one predictor 

(multiple regression) in the next chapters.
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Part IV   ■   Specific Techniques to Answer Specific Questions322 

Conceptual Exercises

1.	 Describe how the method of least squares can 

be used to estimate parameters in the linear 

regression model. Indicate what parameters are 

being estimated. (You do not have to describe 

all the assumptions of this model to answer the 

question.)

2.	 Why does dfresidual 5 n – 2 when testing the 

hypothesis that the slope of the regression line 5 0? 

3.	 In the F-test of the hypothesis H0: ρ 5 0 with the 

linear regression model, the numerator is:

∑( )′−Y Y

1

2

What does this term represent (or estimate) 

when H0 is true and when H0 is false? 

4.	 Why is the test statistic for the hypothesis  

H0: ρ 5 0 of the following form?

∑

∑

( )

( ) ( )

′−

− ′ −

Y Y

Y Y n
1

/1

/ 2

2

2

 
(Hint: Think in terms of expected values.)

5.	 Why does ∑( )′−Y Y

1

2

 not necessarily equal 0 

when ρ 5 0?

6. 	 We encounter two similar terms when 

discussing the linear regression model:

∑( )′−Y Y

n

2

 
and

 

∑( )′−Y Y

1

2

 
	 What do these terms represent?

7.	 To test the hypothesis H0: ρ 5 0 against the 

alternative hypothesis H1: ρ fi 0 using the 

linear regression model, we could use either of 

the following test statistics:

∑
∑

( )
( ) ( )

=
′−

′− −
F

Y Y

Y Y n

/1

/ 2
2

F
r

r n

/1

1 2

2

2( ) ( )
=

− −

a.	 Describe the distributions of these test 

statistics when H0 is true and when H0 is 

false (their means, degrees of freedom, and 

forms). Also draw a diagram.

b. 	 Why does the power of this test increase as 

sample size increases? 

c.	 Describe how you could create a power 

function for this test statistic. Also, make a 

diagram and label the axes. (Your answer 

should indicate your understanding of the 

task here.)

d. 	 In the case of the F-statistic on the top, 

what can you say about the terms in the 

numerator and denominator when H0 is 

true and when H0 is false. That is, what are 

the terms estimating?

8.	 What do the sample statistics s2
Y|X and s2

Y′ 

represent? (They are variances of what around 

what?) What are their values when r 5 0 and r 5 1? 

Why? 

Student Study Site

Visit the Student Study Site at https://study.sagepub.com/friemanstats for a variety of useful tools 

including data sets, additional exercises, and web resources.
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