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1.1  What will this chapter tell me?

I was born on 21 June 1973. Like most people, I don’t remember anything about the first few 
years of life and, like most children, I went through a phase of driving my dad mad by asking 
‘Why?’ every five seconds. With every question, the word ‘dad’ got longer and whinier: ‘Dad, why 
is the sky blue?’, ‘Daaad, why don’t worms have legs?’ Daaaaaaaaad, where do babies come from?’ 
Eventually, my dad could take no more and whacked me around the face with a golf club.1

My torrent of questions reflected the natural curiosity that children have: we all begin our 
voyage through life as inquisitive little scientists. At the age of 3, I was at my friend Obe’s party 
(just before he left England to return to Nigeria, much to my distress). It was a hot day, and 
there was an electric fan blowing cold air around the room. My ‘curious little scientist’ brain was 
working through what seemed like a particularly pressing question: ‘What happens when you 
stick your finger in a fan?’ The answer, as it turned out, was that it hurts—a lot.2 At the age of 3, 
we intuitively know that to answer questions you need to collect data, even if it causes us pain.

My curiosity to explain the world never went away, which is why I’m a scientist. The fact 
that you’re reading this book means that the inquisitive 3-year-old in you is alive and well 
and wants to answer new and exciting questions, too. To answer these questions you need 
‘science’ and science has a pilot fish called ‘statistics’ that hides under its belly eating 
ectoparasites. That’s why your evil lecturer is forcing you to learn statistics. Statistics is a bit 
like sticking your finger into a revolving fan blade: sometimes it’s very painful, but it does give 
you answers to interesting questions. I’m going to try to convince you in this chapter that 
statistics are an important part of doing research. We will overview the whole research 
process, from why we conduct research in the first place, through how theories are generated, 
to why we need data to test these theories. If that doesn’t convince you to read on then maybe 
the fact that we discover whether Coca-Cola kills sperm will. Or perhaps not.

Figure 1.1  When I grow up, please 
don’t let me be a statistics lecturer

1	 He was practicing in the garden when I 
unexpectedly wandered behind him at 
the exact moment he took a back swing. 
It’s rare that a parent enjoys the sound 
of their child crying, but, on this day, it 
filled my dad with joy because my 
wailing was tangible evidence that he 
hadn’t killed me, which he thought he 
might have done. Had he hit me with 
the club end rather than the shaft he 
probably would have. Fortunately (for 
me, but not for you), I survived, although 
some might argue that this incident 
explains the way my brain functions.

2	 In the 1970s, fans didn’t have helpful 
protective cages around them to prevent 
idiotic 3-year-olds sticking their fingers 
into the blades.
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Why is my evil lecturer forcing me to learn statistics?

1.2  What the hell am I 
doing here? I don’t 
belong here 
You’re probably wondering why you have 
bought this book. Maybe you liked the 
pictures, maybe you fancied doing some 
weight training (it is heavy) or perhaps 
you needed to reach something in a high 
place (it is thick). The chances are, 
though, that given the choice of spending 
your hard-earned cash on a statistics book 
or something more entertaining (a nice 
novel, a trip to the cinema, etc.) you’d 
choose the latter. So, why have you bought 
the book (or downloaded an illegal PDF 
of it from someone who has way too much 
time on their hands if they’re scanning 
900 pages for fun)? It’s likely that you 
obtained it because you’re doing a course 
on statistics or you’re doing some 
research, and you need to know how to 
analyze data. It’s possible that you didn’t 
realize when you started your course or 
research that you’d have to know about 
statistics but now find yourself 
inexplicably wading, neck high, through 
the Victorian sewer that is data analysis. 
The reason why you’re in the mess that 
you find yourself in is that you have a 
curious mind. You might have asked 
yourself questions like why people behave 
the way they do (psychology) or why 
behaviors differ across cultures 
(anthropology), how businesses maximize 
their profit (business), how the dinosaurs 
died (palaeontology), whether eating 
tomatoes protects you against cancer 
(medicine, biology), whether it is possible 
to build a quantum computer (physics, 
chemistry), whether the planet is hotter 
than it used to be and in what regions 
(geography, environmental studies). 
Whatever it is you’re studying or 

researching, the reason why you’re 
studying it is probably that you’re 
interested in answering questions. 
Scientists are curious people, and you 
probably are too. However, it might not 
have occurred to you that to answer 
interesting questions, you need data and 
explanations for those data.

The answer to ‘What the hell are you 
doing here?’ is simple: to answer 
interesting questions you need data. One 
of the reasons why your evil statistics 
lecturer is forcing you to learn about 
numbers is that they are a form of data 
and are vital to the research process. Of 
course, there are forms of data other than 
numbers that can be used to test and 
generate theories. When numbers are 
involved, the research involves 
quantitative methods, but you can also 
generate and test theories by analyzing 
language (such as conversations, 
magazine articles and media broadcasts). 
This involves qualitative methods and it 
is a topic for another book not written by 
me. People can get quite passionate about 
which of these methods is best, which is a 
bit silly because they are complementary, 
not competing, approaches and there are 
much more important issues in the world 
to get upset about. Having said that, all 
qualitative research is rubbish.3

1.3  The research 
process 
How do you go 
about answering an 
interesting question? 
The research process 
is broadly 
summarized in 
Figure 1.2. You begin 
with an observation that you want to 

3	 This is a joke. Like many of my jokes, there are people who won’t find it remotely funny. Passions run high between 
qualitative and quantitative researchers, so its inclusion will likely result in me being hunted down, locked in a room and 
forced to do discourse analysis by a horde of rabid qualitative researchers.

How do I do research?

understand, and this observation could 
be anecdotal (you’ve noticed that your cat 
watches birds when they’re on TV but not 
when jellyfish are on)4 or could be based 
on some data (you’ve got several cat 
owners to keep diaries of their cat’s TV 
habits and noticed that lots of them 
watch birds). From your initial 
observation you consult relevant theories 
and generate explanations (hypotheses) 
for those observations, from which you 
can make predictions. To test your 
predictions you need data. First you 
collect some relevant data (and to do that 
you need to identify things that can be 
measured) and then you analyze those 
data. The analysis of the data may 
support your hypothesis or generate a 
new one, which, in turn, might lead you 
to revise the theory. As such, the 
processes of data collection and analysis 
and generating theories are intrinsically 
linked: theories lead to data collection/
analysis and data collection/analysis 
informs theories. This chapter explains 
this research process in more detail.

1.4  Initial observation: 
finding something that 
needs explaining 
The first step in Figure 1.2 was to come up 
with a question that needs an answer. I 
spend rather more time than I should 
watching reality TV. Over many years, I 
used to swear that I wouldn’t get hooked 
on reality TV, and yet year upon year I 
would find myself glued to the TV screen 
waiting for the next contestant’s meltdown 
(I am a psychologist, so really this is just 
research). I used to wonder why there is so 
much arguing in these shows, and why so 
many contestants have really unpleasant 
personalities (my money is on narcissistic 

4	 In his younger days my cat actually did climb up and stare at the TV when birds were being shown.
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Discovering Statistics Using IBM SPSS Statistics

personality disorder).5 A lot of scientific 
endeavor starts this way: not by watching 
reality TV, but by observing something in 
the world and wondering why it happens.

Having made a casual observation about the 
world (reality TV contestants on the whole 
have extreme personalities and argue a lot), I 
need to collect some data to see whether this 
observation is true (and not a biased 
observation). To do this, I need to define one 
or more variables to measure that quantify 
the thing I’m trying to measure. There’s one 
variable in this example: the personality 
of the contestant. I could measure this 
variable by giving them one of the many 
well-established questionnaires that measure 
personality characteristics. Let’s say that I 
did this and I found that 75% of contestants 
did have narcissistic personality disorder. 
These data support my observation: a lot of 
reality TV contestants have extreme 
personalities.

5	 This disorder is characterized by (among other things) a grandiose sense of self-importance, arrogance, lack of empathy for 
others, envy of others and belief that others envy them, excessive fantasies of brilliance or beauty, the need for excessive 
admiration, and exploitation of others.

1.5  Generating and 
testing theories and 
hypotheses 
The next logical thing to do is to explain 
these data (Figure 1.2). The first step is to 
look for relevant theories. A theory is an 
explanation or set of principles that is well 
substantiated by repeated testing and 
explains a broad phenomenon. We might 
begin by looking at theories of narcissistic 
personality disorder, of which there are 
currently very few. One theory of 
personality disorders in general links them 
to early attachment (put simplistically, the 
bond formed between a child and their 
main caregiver). Broadly speaking, a child 
can form a secure (a good thing) or an 
insecure (not so good) attachment to their 
caregiver, and the theory goes that insecure 
attachment explains later personality 
disorders (Levy Johnson, Clouthier, Scala, &  

Temes, 2015). This is a theory because it is 
a set of principles (early problems in 
forming interpersonal bonds) that explains 
a general broad phenomenon (disorders 
characterized by dysfunctional 
interpersonal relations). There is also a 
critical mass of evidence to support the 
idea. Theory also tells us that those with 
narcissistic personality disorder tend to 
engage in conflict with others despite 
craving their attention, which perhaps 
explains their difficulty in forming  
close bonds.

Given this theory, we might generate a 
hypothesis about our earlier observation 
(see Jane Superbrain Box 1.1). A 
hypothesis is a proposed explanation for a 
fairly narrow phenomenon or set of 
observations. It is not a guess, but an 
informed, theory-driven attempt to 
explain what has been observed. Both 
theories and hypotheses seek to explain 
the world, but a theory explains a wide 
set of phenomena with a small set of 
well-established principles, whereas a 
hypothesis typically seeks to explain a 
narrower phenomenon and is, as yet, 
untested. Both theories and hypotheses 
exist in the conceptual domain, and you 
cannot observe them directly.

To continue the example, having studied 
the attachment theory of personality 
disorders, we might decide that this theory 
implies that people with personality 
disorders seek out the attention that a TV 
appearance provides because they lack 
close interpersonal relationships. From 
this we can generate a hypothesis: people 
with narcissistic personality disorder use 
reality TV to satisfy their craving for 
attention from others. This is a conceptual 
statement that explains our original 
observation (that rates of narcissistic 
personality disorder are high on  
reality TV shows).

Initial observation
(research question)

Theory

Generate hypothesis

Collect data to test 
predictions

Analyze data

Data

Identify variables

Measure variables

Conceptual Domain

Observable Domain
Generate predictions

Figure 1.2  The research process
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One day the Misconception Mutt was returning from his 
class at Fetchington University. He’d been learning all 
about how to do research and it all made perfect sense. 
He was thinking about how much fun it would be to chase 
some balls later on, but decided that first he should go 
over what he’d learnt. He was muttering under his breath 
(as I like to imagine that dogs tend to do).

‘A hypothesis is a prediction about what will happen,’ he 
whispered to himself in his deep, wheezy, jowly dog voice. 
Before he could finish, the ground before him became vis-
cous, as though the earth had transformed into liquid. 
A slightly irritated-looking ginger cat rose slowly from 
the puddle.

‘Don’t even think about chasing me,’ he said in his 
whiny cat voice.

The mutt twitched as he inhibited the urge to chase 
the cat. ‘Who are you?’ he asked.

‘I am the Correcting Cat,’ said the cat wearily. 
‘I travel the ether trying to correct people’s statistical 
misconceptions. It’s very hard work, there are a lot of 
misconceptions about.’

The dog raised an eyebrow.
‘For example,’ continued the cat, ‘you just said that a 

hypothesis is a prediction, but it is not.’ The dog 
looked puzzled. ‘A hypothesis is an explanatory 
statement about something, it is not 
itself observable. The prediction is not the 
hypothesis, it is something derived from 
the hypothesis that operationalizes it so that 
you can observe things that help you to deter-
mine the plausibility of the hypothesis.’ With 
that, the cat descended back into the ground.

‘What a smart-arse,’ the dog thought to 
himself. ‘I hope I never see him again.’

To test this hypothesis, we need to move 
from the conceptual domain into the 
observable domain. That is, we need to 
operationalize our hypothesis in a way that 
enables us to collect and analyze data that 
have a bearing on the hypothesis 
(Figure 1.2). We do this using predictions. 
Predictions emerge from a hypothesis 
(Misconception Mutt 1.1), and transform it 
from something unobservable into 
something that is. If our hypothesis is that 
people with narcissistic personality 
disorder use reality TV to satisfy their 
craving for attention from others, then a 
prediction we could make based on this 
hypothesis is that people with narcissistic 
personality disorder are more likely to 
audition for reality TV than those without. 
In making this prediction we can move 

from the conceptual domain into the 
observable domain, where we can collect 
evidence.

In this example, our prediction is that 
people with narcissistic personality 
disorder are more likely to audition for 
reality TV than those without. We can 
measure this prediction by getting a team 
of clinical psychologists to interview each 
person at a reality TV audition and 
diagnose them as having narcissistic 
personality disorder or not. The 
population rates of narcissistic personality 
disorder are about 1%, so we’d be able to 
see whether the ratio of narcissistic 
personality disorder to not is higher at the 
audition than in the general population. If 
it is higher then our prediction is correct: 
a disproportionate number of people with 

narcissistic personality disorder turned up 
at the audition. Our prediction, in turn, 
tells us something about the hypothesis 
from which it derived.

This is tricky stuff, so let’s look at 
another example. Imagine that, based on 
a different theory, we generated a 
different hypothesis. I mentioned earlier 
that people with narcissistic personality 
disorder tend to engage in conflict, so a 
different hypothesis is that producers of 
reality TV shows select people who have 
narcissistic personality disorder to be 
contestants because they believe that 
conflict makes good TV. As before, to test 
this hypothesis we need to bring it into 
the observable domain by generating a 
prediction from it. The prediction would 
be that (assuming no bias in the number 

Misconception Mutt 1.1
Hypotheses and predictions

looked puzzled. ‘A hypothesis is an explanatory 
statement about something, it is not 
itself observable. The prediction is not the 
hypothesis, it is something derived from 
the hypothesis that operationalizes it so that 
you can observe things that help you to deter-you can observe things that help you to deter-
mine the plausibility of the hypothesis.’ With 
that, the cat descended back into the ground.

‘What a smart-arse,’ the dog thought to 
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Table 1.1  The number of people at the TV audition split by whether they had narcissistic 
personality disorder and whether they were selected as contestants by the producers

No Disorder Disorder Total

Selected 3 9 12

Rejected 6805 845 7650

Total 6808 854 7662

6	 It was pretty awesome actually.

A good theory should allow us to make statements about the 
state of the world. Statements about the world are good 
things: they allow us to make sense of our world, and to make 
decisions that affect our future. One current example is 
global warming. Being able to make a definitive statement 
that global warming is happening, and that it is caused by 
certain practices in society, allows us to change these 
practices and, hopefully, avert catastrophe. However, not all 
statements can be tested using science. Scientific 
statements are ones that can be verified with reference to 
empirical evidence, whereas non-scientific statements are 
ones that cannot be empirically tested. So, statements such 
as ‘The Led Zeppelin reunion concert in London in 2007 was 
the best gig ever,’6 ‘Lindt chocolate is the best food’ and ‘This 
is the worst statistics book in the world’ are all non-scientific; 
they cannot be proved or disproved. Scientific statements 
can be confirmed or disconfirmed empirically. ‘Watching 

Curb Your Enthusiasm makes you happy,’ ‘Having sex 
increases levels of the neurotransmitter dopamine’ and 
‘Velociraptors ate meat’ are all things that can be tested 
empirically (provided you can quantify and measure the 
variables concerned). Non-scientific statements can 
sometimes be altered to become scientific statements, so 
‘The Beatles were the most influential band ever’ is non-
scientific (because it is probably impossible to quantify 
‘influence’ in any meaningful way) but by changing the 
statement to ‘The Beatles were the best-selling band ever,’ it 
becomes testable (we can collect data about worldwide 
album sales and establish whether the Beatles have, in fact, 
sold more records than any other music artist). Karl Popper, 
the famous philosopher of science, believed that non-
scientific statements were nonsense and had no place in 
science. Good theories and hypotheses should, therefore, 
produce predictions that are scientific statements.

Jane Superbrain 1.1 
When is a prediction not a prediction? 

of people with narcissistic personality 
disorder applying for the show) a 
disproportionate number of people with 
narcissistic personality disorder will be 

selected by producers to go on the show.

Imagine we collected the data in Table 1.1, 
which shows how many people 
auditioning to be on a reality TV show 

had narcissistic personality disorder or 
not. In total, 7662 people turned up for 
the audition. Our first prediction (derived 
from our first hypothesis) was that the 
percentage of people with narcissistic 
personality disorder will be higher at the 
audition than the general level in the 
population. We can see in the table that of 
the 7662 people at the audition, 854 were 
diagnosed with the disorder; this is about 
11% (854/7662 × 100), which is much 
higher than the 1% we’d expect in the 
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general population. Therefore, prediction 
1 is correct, which in turn supports 
hypothesis 1. The second prediction was 
that the producers of reality TV have a 
bias towards choosing people with 
narcissistic personality disorder. If we 
look at the 12 contestants that they 
selected, 9 of them had the disorder (a 
massive 75%). If the producers did not 
have a bias we would have expected only 
11% of the contestants to have the 
disorder (the same rate as was found 
when we considered everyone who turned 
up for the audition). The data are in line 
with prediction 2 which supports our 
second hypothesis. Therefore, my initial 
observation that contestants have 
personality disorders was verified by data, 
and then using theory I generated specific 
hypotheses that were operationalized by 
generating predictions that could be tested 
using data. Data are very important.

I would now be smugly sitting in my office 
with a contented grin on my face because my 
hypotheses were well supported by the data. 
Perhaps I would quit while I was ahead and 
retire. It’s more likely, though, that having 
solved one great mystery, my excited mind 
would turn to another. I would lock myself 
in a room to watch more reality TV. I might 
wonder at why contestants with narcissistic 
personality disorder, despite their obvious 
character flaws, enter a situation that will 
put them under intense public scrutiny.7 
Days later, the door would open, and a stale 
odor would waft out like steam rising from 
the New York subway. Through this green 
cloud, my bearded face would emerge, my 
eyes squinting at the shards of light that cut 
into my pupils. Stumbling forwards, I would 
open my mouth to lay waste to my scientific 
rivals with my latest profound hypothesis: 
‘Contestants with narcissistic personality 
disorder believe that they will win’. I would 
croak before collapsing on the floor. The 
prediction from this hypothesis is that if I 

7	 One of the things I like about many reality TV shows in the UK is that the winners are very often nice people, and the odious 
people tend to get voted out quickly, which gives me faith that humanity favors the nice.

ask the contestants if they think that they 

will win, the people with a personality 

disorder will say ‘yes’.

Let’s imagine I tested my hypothesis by 

measuring contestants’ expectations of 

success in the show, by asking them, ‘Do 

you think you will win?’ Let’s say that 7 of 

9 contestants with narcissistic personality 

disorder said that they thought that they 

would win, which confirms my hypothesis. 

At this point I might start to try to bring 

my hypotheses together into a theory of 

reality TV contestants that revolves around 

the idea that people with narcissistic 

personalities are drawn towards this kind 

of show because it fulfils their need for 

approval and they have unrealistic 

expectations about their likely success 

because they don’t realize how unpleasant 

their personalities are to other people. In 

parallel, producers tend to select 

contestants with narcissistic tendencies 

because they tend to generate interpersonal 

conflict.

One part of my theory is untested, which 

is the bit about contestants with 

narcissistic personalities not realizing how 

others perceive their personality. I could 

operationalize this hypothesis through a 

prediction that if I ask these contestants 

whether their personalities were different 

from those of other people they would say 

‘no’. As before, I would collect more data 

and ask the contestants with narcissistic 

personality disorder whether they believed 

that their personalities were different from 

the norm. Imagine that all 9 of them said 

that they thought their personalities were 

different from the norm. These data 

contradict my hypothesis. This is known 

as falsification, which is the act of 

disproving a hypothesis or theory.

It’s unlikely that we would be the only 

people interested in why individuals who 

go on reality TV have extreme 

personalities. Imagine that these other 
researchers discovered that: (1) people 
with narcissistic personality disorder think 
that they are more interesting than others; 
(2) they also think that they deserve 
success more than others; and (3) they 
also think that others like them because 
they have ‘special’ personalities.

This additional research is even worse 
news for my theory: if contestants didn’t 
realize that they had a personality 
different from the norm, then you 
wouldn’t expect them to think that they 
were more interesting than others, and 
you certainly wouldn’t expect them to 
think that others will like their unusual 
personalities. In general, this means that 
this part of my theory sucks: it cannot 
explain all of the data, predictions from 
the theory are not supported by 
subsequent data, and it cannot explain 
other research findings. At this point I 
would start to feel intellectually 
inadequate and people would find me 
curled up on my desk in floods of tears, 
wailing and moaning about my failing 
career (no change there then).

At this point, a rival scientist, Fester 
Ingpant-Stain, appears on the scene 
adapting my theory to suggest that the 
problem is not that personality-
disordered contestants don’t realize that 
they have a personality disorder (or at 
least a personality that is unusual), but 
that they falsely believe that this special 
personality is perceived positively by 
other people. One prediction from this 
model is that if personality-disordered 
contestants are asked to evaluate what 
other people think of them, then they will 
overestimate other people’s positive 
perceptions. You guessed it, Fester 
Ingpant-Stain collected yet more data. He 
asked each contestant to fill out a 
questionnaire evaluating all of the other 
contestants’ personalities, and also to 
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complete the questionnaire about 
themselves but answering from the 
perspective of each of their housemates. 
(So, for every contestant there is a 
measure of what they thought of every 
other contestant, and also a measure of 
what they believed every other contestant 
thought of them.) He found out that the 
contestants with personality disorders did 
overestimate their housemates’ opinions 
of them; conversely, the contestants 
without personality disorders had 
relatively accurate impressions of what 
others thought of them. These data, 
irritating as it would be for me, support 
Fester Ingpant-Stain’s theory more than 
mine: contestants with personality 
disorders do realize that they have 
unusual personalities but believe that 
these characteristics are ones that 
others would feel positive about. Fester 
Ingpant-Stain’s theory is quite good: it 
explains the initial observations and 
brings together a range of research 
findings. The end result of this whole 
process (and my career) is that we should 
be able to make a general statement 
about the state of the world. In this case 
we could state ‘Reality TV contestants 
who have personality disorders 
overestimate how much other people like 
their personality characteristics’.

1.6  Collecting data: 
measurement 
In looking at the process of generating 
theories and hypotheses, we have seen the 

importance of data in testing those 
hypotheses or deciding between competing 
theories. This section looks at data 
collection in more detail. First we’ll look at 
measurement.

1.6.1  Independent and 
dependent variables 

To test hypotheses we need to measure 
variables. Variables are things that can 
change (or vary); they might vary between 
people (e.g., IQ, behavior) or locations 
(e.g., unemployment) or even time (e.g., 
mood, profit, number of cancerous cells). 
Most hypotheses can be expressed in terms 
of two variables: a proposed cause and a 
proposed outcome. For example, if we take 
the scientific statement, ‘Coca-Cola is an 
effective spermicide’8 then the proposed 
cause is ‘Coca-Cola’ and the proposed 
effect is dead sperm. Both the cause and 
the outcome are variables: for the cause we 
could vary the type of drink, and for the 
outcome, these drinks will kill different 
amounts of sperm. The key to testing 
scientific statements is to measure these 
two variables.

A variable that we think is a cause is known 
as an independent variable (because its 
value does not depend on any other 
variables). A variable that we think is an 
effect is called a dependent variable 
because the value of this variable depends 
on the cause (independent variable). These 
terms are very closely tied to experimental 
methods in which the cause is manipulated 
by the experimenter (as we will see in 
Section 1.7.2). However, researchers can’t 

8	 Actually, there is a long-standing urban myth that a post-coital douche with the contents of a bottle of Coke is an effective 
contraceptive. Unbelievably, this hypothesis has been tested and Coke does affect sperm motility (movement), and some 
types of Coke are more effective than others—Diet Coke is best, apparently (Umpierre, Hill & Anderson, 1985). In case you 
decide to try this method out, I feel it worth mentioning that despite the effects on sperm motility a Coke douche is 
ineffective at preventing pregnancy.

always manipulate variables (for example, if 
you wanted see whether smoking causes 
lung cancer you wouldn’t lock a bunch of 
people in a room for 30 years and force 
them to smoke). Instead, they sometimes 
use correlational methods (Section 1.7), for 
which it doesn’t make sense to talk of 
dependent and independent variables 
because all variables are essentially 
dependent variables. I prefer to use the 
terms predictor variable and outcome 
variable in place of dependent and 
independent variable. This is not a personal 
whimsy: in experimental work the cause 
(independent variable) is a predictor, and 
the effect (dependent variable) is an 
outcome, and in correlational work we can 
talk of one or more (predictor) variables 
predicting (statistically at least) one or 
more outcome variables.

1.6.2  Levels of measurement 

Variables can take on many different 
forms and levels of sophistication. The 
relationship between what is being 
measured and the numbers that represent 
what is being measured is known as the 
level of measurement. Broadly speaking, 
variables can be categorical or continuous, 
and can have different levels of 
measurement.

A categorical variable is made up of 
categories. A categorical variable that you 
should be familiar with already is your 
species (e.g., human, domestic cat, fruit 
bat, etc.). You are a human or a cat or a 
fruit bat: you cannot be a bit of a cat and a 
bit of a bat, and neither a batman nor 
(despite many fantasies to the contrary) a 
catwoman exist (not even one in a PVC 
suit). A categorical variable is one that 
names distinct entities. In its simplest 

SELF              TEST

Based on what you have read in this section,  
what qualities do you think a scientific theory should have?
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form it names just two distinct types of 
things, for example male or female. This is 
known as a binary variable. Other 
examples of binary variables are being 
alive or dead, pregnant or not, and 
responding ‘yes’ or ‘no’ to a question. In all 
cases there are just two categories and an 
entity can be placed into only one of the 
two categories. When two things that are 
equivalent in some sense are given the 
same name (or number), but there are 
more than two possibilities, the variable is 
said to be a nominal variable.

It should be obvious that if the variable is 
made up of names it is pointless to do 
arithmetic on them (if you multiply a 
human by a cat, you do not get a hat). 
However, sometimes numbers are used to 
denote categories. For example, the 
numbers worn by players in a sports team. 

In rugby, the numbers on shirts denote 
specific field positions, so the number 10 
is always worn by the fly-half  9 and the  
number 2 is always the hooker (the 
ugly-looking player at the front of the 
scrum). These numbers do not tell us 
anything other than what position the 
player plays. We could equally have shirts 
with FH and H instead of 10 and 2. A 
number 10 player is not necessarily better 
than a number 2 (most managers would 
not want their fly-half stuck in the front of 
the scrum!). It is equally daft to try to do 
arithmetic with nominal scales where the 
categories are denoted by numbers: the 
number 10 takes penalty kicks, and if the 
coach found that his number 10 was 
injured, he would not get his number 4 to 
give number 6 a piggy-back and then take 
the kick. The only way that nominal data 

9  Unlike, for example, NFL football where a quarterback could wear any number from 1 to 19.

can be used is to consider frequencies. For 
example, we could look at how frequently 
number 10s score compared to number 4s.

So far, the categorical variables we have 
considered have been unordered (e.g., 
different brands of Coke with which you’re 
trying to kill sperm), but they can be 
ordered too (e.g., increasing concentrations 
of Coke with which you’re trying to skill 
sperm). When categories are ordered, the 
variable is known as an ordinal variable. 
Ordinal data tell us not only that things 
have occurred, but also the order in which 
they occurred. However, these data tell us 
nothing about the differences between 
values. In TV shows like The X Factor, 
American Idol, and The Voice, hopeful 
singers compete to win a recording 
contract. They are hugely popular shows, 
which could (if you take a depressing view) 

When doing and reading research you’re likely to encounter 
these terms:

•• Independent variable: A variable thought to be the cause 
of some effect. This term is usually used in experimental 
research to describe a variable that the experimenter has 
manipulated.

•• Dependent variable: A variable thought to be affected by 
changes in an independent variable. You can think of this 
variable as an outcome.

•• Predictor variable: A variable thought to predict an outcome 
variable. This term is basically another way of saying 
‘independent variable’. (Although some people won’t like 
me saying that; I think life would be easier if we talked only 
about predictors and outcomes.)

•• Outcome variable: A variable thought to change as a 
function of changes in a predictor variable. For the sake of 
an easy life this term could be synonymous with 
‘dependent variable’.

Cramming Sam’s Tips
Variables
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reflect the fact that Western society values 
‘luck’ more than hard work.10 Imagine that 
the three winners of a particular X Factor 
series were Billie, Freema and Elizabeth. 
The names of the winners don’t provide 
any information about where they came in 
the contest; however, labeling them 
according to their performance does—first, 
second and third. These categories are 
ordered. In using ordered categories we 
now know that the woman who won was 
better than the women who came second 
and third. We still know nothing about the 
differences between categories, though. We 
don’t, for example, know how much better 
the winner was than the runners-up: Billie 
might have been an easy victor, getting 

10 � I am in no way bitter about spending years learning musical instruments and trying to create original music, only to be 
beaten to musical fame and fortune by 15-year-olds who can sing, sort of.

many more votes than Freema and 
Elizabeth or it might have been a very close 
contest that she won by only a single vote. 
Ordinal data, therefore, tell us more than 
nominal data (they tell us the order in 
which things happened) but they still do 
not tell us about the differences between 
points on a scale.

The next level of measurement moves us 
away from categorical variables and into 
continuous variables. A continuous 
variable is one that gives us a score for 
each person and can take on any value on 
the measurement scale that we are using. 
The first type of continuous variable that 
you might encounter is an interval 
variable. Interval data are considerably 

more useful than ordinal data, and most of 
the statistical tests in this book rely on 
having data measured at this level at least. 
To say that data are interval, we must be 
certain that equal intervals on the scale 
represent equal differences in the property 
being measured. For example, on www 
.ratemyprofessors.com, students are 
encouraged to rate their lecturers on 
several dimensions (some of the lecturers’ 
rebuttals of their negative evaluations are 
worth a look). Each dimension 
(helpfulness, clarity, etc.) is evaluated using 
a 5-point scale. For this scale to be interval 
it must be the case that the difference 
between helpfulness ratings of 1 and 2 is 
the same as the difference between (say) 

A lot of self-report data are ordinal. Imagine two 
judges on The X Factor  were asked to rate Billie’s 
singing on a 10-point scale. We might be confident 
that a judge who gives a rating of 10 found Billie 
more talented than one who gave a rating of 2, but 
can we be certain that the first judge found her five 
times more talented than the second? What if both 
judges gave a rating of 8; could we be sure that they 
found her equally talented? Probably not: their 

ratings will depend on their subjective feelings about 
what constitutes talent (the quality of singing? 
showmanship? dancing?). For these reasons, in any 
situation in which we ask people to rate something 
subjective (e.g., their preference for a product, their 
confidence about an answer, how much they have 
understood some medical instructions) we should 
probably regard these data as ordinal, although 
many scientists do not.

Jane Superbrain 1.2  
Self-report data 
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3 and 4 or 4 and 5. Similarly, the difference 
in helpfulness between ratings of 1 and 3 
should be identical to the difference 
between ratings of 3 and 5. Variables like 
this that look interval (and are treated as 
interval) are often ordinal—see Jane 
Superbrain Box 1.2.

Ratio variables go a step further than 
interval data by requiring that in addition 
to the measurement scale meeting the 
requirements of an interval variable, the 
ratios of values along the scale should be 
meaningful. For this to be true, the scale 
must have a true and meaningful zero 
point. In our lecturer ratings this would 
mean that a lecturer rated as 4 would be 
twice as helpful as a lecturer rated with a 2 
(who would, in turn, be twice as helpful as 
a lecturer rated as 1). The time to respond 
to something is a good example of a ratio 
variable. When we measure a reaction 

time, not only is it true that, say, the 
difference between 300 and 350 ms 
(a difference of 50 ms) is the same as the 
difference between 210 and 260 ms or 
between 422 and 472 ms, but it is also true 
that distances along the scale are divisible: 
a reaction time of 200 ms is twice as long 
as a reaction time of 100 ms and half as 
long as a reaction time of 400 ms. Time 
also has a meaningful zero point: 0 ms 
does mean a complete absence of time.

Continuous variables can be, well, 
continuous (obviously) but also discrete. 
This is quite a tricky distinction (Jane 
Superbrain Box 1.3). A truly continuous 
variable can be measured to any level of 
precision, whereas a discrete variable can 
take on only certain values (usually whole 
numbers) on the scale. What does this 
actually mean? Well, our example of rating 
lecturers on a 5-point scale is an example 

of a discrete variable. The range of the 
scale is 1–5, but you can enter only values 
of 1, 2, 3, 4 or 5; you cannot enter a value 
of 4.32 or 2.18. Although a continuum 
exists underneath the scale (i.e., a rating of 
3.24 makes sense), the actual values that 
the variable takes on are limited. A 
continuous variable would be something 
like age, which can be measured at an 
infinite level of precision (you could be 34 
years, 7 months, 21 days, 10 hours, 55 
minutes, 10 seconds, 100 milliseconds, 63 
microseconds, 1 nanosecond old).

1.6.3  Measurement error 

It’s one thing to measure variables, but it’s 
another thing to measure them accurately. 
Ideally we want our measure to be 
calibrated such that values have the same 
meaning over time and across situations. 

The distinction between continuous and discrete varia-
bles can be blurred. For one thing, continuous variables 
can be measured in discrete terms; for example, when 
we measure age we rarely use nanoseconds but use 
years (or possibly years and months). In doing so we turn 
a continuous variable into a discrete one (the only 
acceptable values are years). Also, we often treat dis-
crete variables as if they were continuous. For example, 

the number of boyfriends/girlfriends that you have had is 
a discrete variable (it will be, in all but the very weirdest 
cases, a whole number). However, you might read a 
magazine that says ‘The average number of boyfriends 
that women in their 20s have has increased from 4.6 to 
8.9’. This assumes that the variable is continuous, and of 
course these averages are meaningless: no one in their 
sample actually had 8.9 boyfriends.

Jane Superbrain 1.3  
Continuous and discrete variables 
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Weight is one example: we would expect to 
weigh the same amount regardless of who 
weighs us or where we take the 
measurement (assuming it’s on Earth and 
not in an anti-gravity chamber). 
Sometimes, variables can be measured 
directly (profit, weight, height) but in other 
cases we are forced to use indirect measures 
such as self-report, questionnaires, and 
computerized tasks (to name a few).

It’s been a while since I mentioned sperm, 
so let’s go back to our Coke as a spermicide 
example. Imagine we took some Coke and 
some water and added them to two test 
tubes of sperm. After several minutes, we 
measured the motility (movement) of the 
sperm in the two samples and discovered no 

difference. A few years passed, as you might 
expect given that Coke and sperm rarely top 
scientists’ research lists, before another 
scientist, Dr Jack Q. Late, replicated the 
study. Dr Late found that sperm motility 
was worse in the Coke sample. There are 
two measurement-related issues that 
could explain his success and our failure: 
(1) Dr Late might have used more Coke in 
the test tubes (sperm might need a critical 
mass of Coke before they are affected); (2) 
Dr Late measured the outcome (motility) 
differently than us.

The former point explains why chemists 
and physicists have devoted many hours to 
developing standard units of measurement. 
If you had reported that you’d used 100ml 

of Coke and 5ml of sperm, then Dr Late 
could have ensured that he had used the 
same amount—because millilitres are a 
standard unit of measurement we would 
know that Dr Late used exactly the same 
amount of Coke that we used. Direct 
measurements such as the millilitre provide 
an objective standard: 100ml of a liquid is 
known to be twice as much as only 50ml.

The second reason for the difference in 
results between the studies could have 
been to do with how sperm motility was 
measured. Perhaps in our original study 
we measured motility using absorption 
spectrophotometry, whereas Dr Late used 
laser light-scattering techniques.11 Perhaps 
his measure is more sensitive than ours.

11 � In the course of writing this chapter I have discovered more than I think is healthy about the measurement of sperm 
motility.

•• Variables can be split into categorical and continuous, 
and within these types there are different levels of 
measurement:

•• Categorical (entities are divided into distinct 
categories):

{{ Binary variable: There are only two categories (e.g., 
dead or alive).
{{ Nominal variable: There are more than two categories 
(e.g., whether someone is an omnivore, vegetarian, 
vegan or fruitarian).
{{ Ordinal variable: The same as a nominal variable but the 
categories have a logical order (e.g., whether people 
got a fail, a pass, a merit or a distinction in their exam).

•• Continuous (entities get a distinct score):

{{ Interval variable: Equal intervals on the  
variable represent equal differences in the property 
being measured (e.g., the difference between  
6 and 8 is equivalent to the difference between  
13 and 15).
{{ Ratio variable: The same as an interval variable, but 
the ratios of scores on the scale must also make 
sense (e.g., a score of 16 on an anxiety scale means 
that the person is, in reality, twice as anxious as 
someone scoring 8).  
For this to be true, the scale must have a  
meaningful zero point.

Cramming Sam’s Tips 
Levels of measurement
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There will often be a discrepancy between 
the numbers we use to represent the thing 
we’re measuring and the actual value of the 
thing we’re measuring (i.e., the value we 
would get if we could measure it directly). 
This discrepancy is known as measurement 
error. For example, imagine that you know 
as an absolute truth that you weigh 83kg. 
One day you step on the bathroom scales 
and they read 80kg. There is a difference of 
3kg between your actual weight and the 
weight given by your measurement tool (the 
scales): this is a measurement error of 3kg. 
Although properly calibrated bathroom 
scales should produce only very small 
measurement errors (despite what we might 
want to believe when it says we have gained 
3kg), self-report measures will produce 
larger measurement error because factors 
other than the one you’re trying to measure 
will influence how people respond to our 
measures. For example, if you were 
completing a questionnaire that asked you 
whether you had stolen from a shop, would 
you admit it or might you be tempted to 
conceal this fact?

1.6.4  Validity and reliability 

One way to try to ensure that 
measurement error is kept to a minimum 
is to determine properties of the measure 
that give us confidence that it is doing its 
job properly. The first property is validity, 
which is whether an instrument measures 
what it sets out to measure. The second is 
reliability, which is whether an 
instrument can be interpreted consistently 
across different situations.

Validity refers to whether an instrument 
measures what it was designed to 
measure (e.g., does your lecturer 
helpfulness rating scale actually measure 
lecturers’ helpfulness?); a device for 
measuring sperm motility that actually 
measures sperm count is not valid. Things 
like reaction times and physiological 
measures are valid in the sense that a 
reaction time does, in fact, measure the 

time taken to react and skin conductance 

does measure the conductivity of your 

skin. However, if we’re using these things 

to infer other things (e.g., using skin 

conductance to measure anxiety), then 

they will be valid only if there are no 

other factors other than the one we’re 

interested in that can influence them.

Criterion validity is whether you can 

establish that an instrument measures what 

it claims to measure through comparison to 

objective criteria. In an ideal world, you 

assess this by relating scores on your 

measure to real-world observations. For 

example, we could take an objective 

measure of how helpful lecturers were and 

compare these observations to students’ 

ratings of helpfulness on ratemyprofessor 

.com. When data are recorded 

simultaneously using the new instrument 

and existing criteria, then this is said to 

assess concurrent validity; when data 

from the new instrument are used to 

predict observations at a later point in time, 

this is said to assess predictive validity.

Assessing criterion validity (whether 

concurrently or predictively) is often 

impractical because objective criteria that 

can be measured easily may not exist. Also, 

with measuring attitudes, you might be 

interested in the person’s perception of 

reality and not reality itself (you might not 

care whether a person is a psychopath but 

whether they think they are a psychopath). 

With self-report measures/questionnaires 

we can also assess the degree to which 

individual items represent the construct 

being measured, and cover the full range 

of the construct (content validity).

Validity is a necessary but not sufficient 

condition of a measure. A second 

consideration is reliability, which is the 

ability of the measure to produce the same 
results under the same conditions. To be 
valid the instrument must first be reliable. 
The easiest way to assess reliability is to 
test the same group of people twice: a 
reliable instrument will produce similar 
scores at both points in time (test-retest 
reliability). Sometimes, however, you will 
want to measure something that does vary 
over time (e.g., moods, blood-sugar levels, 
productivity). Statistical methods can also 
be used to determine reliability (we will 
discover these in Chapter 18).

1.7  Collecting data: 
research design 
We’ve looked at the question of what to 
measure and discovered that to answer 
scientific questions we measure variables 
(which can be collections of numbers or 
words). We also saw that to get accurate 
answers we need accurate measures. We 
move on now to look at research design: 
how data are collected. If we simplify things 
quite a lot then there are two ways to test a 
hypothesis: either by observing what 
naturally happens or by manipulating some 
aspect of the environment and observing 
the effect it has on the variable that 
interests us. In correlational or cross-
sectional research we observe what 
naturally goes on in the world without 
directly interfering with it, whereas in 
experimental research we manipulate 
one variable to see its effect on another.

1.7.1  Correlational  
research methods 

In correlational research we observe 
natural events; we can do this by either 
taking a snapshot of many variables at a 

SELF              TEST

What is the difference between reliability and validity?
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single point in time or by measuring 
variables repeatedly at different time 
points (known as 
longitudinal 
research). For 
example, we might 
measure pollution 
levels in a stream 
and the numbers of 
certain types of fish 
living there; lifestyle variables (smoking, 
exercise, food intake) and disease (cancer, 
diabetes); workers’ job satisfaction under 
different managers; or children’s school 
performance across regions with different 
demographics. Correlational research 
provides a very natural view of the question 
we’re researching because we’re not 
influencing what happens and the 
measures of the variables should not be 
biased by the researcher being there (this is 
an important aspect of ecological validity).

At the risk of sounding like I’m absolutely 
obsessed with using Coke as a 
contraceptive (I’m not, but my discovery 
that people in the 1950s and 1960s 
actually tried this has, I admit, intrigued 
me), let’s return to that example. If we 
wanted to answer the question, ‘Is Coke 
an effective contraceptive?’ we could 
administer questionnaires about sexual 
practices (quantity of sexual activity, use 
of contraceptives, use of fizzy drinks as 
contraceptives, pregnancy, etc.). By 
looking at these variables, we could see 
which variables correlate with pregnancy 
and, in particular, whether those reliant 
on Coca-Cola as a form of contraceptive 
were more likely to end up pregnant than 
those using other contraceptives, and less 
likely than those using no contraceptives 
at all. This is the only way to answer a 
question like this because we cannot 
manipulate any of these variables 
particularly easily. Even if we could, it 
would be totally unethical to insist on 

What’s the difference
between experimental 

and correlational 
research?

some people using Coke as a 

contraceptive (or indeed to do anything 

that would make a person likely to 

produce a child that they didn’t intend to 

produce). However, there is a price to pay, 

which relates to causality: correlational 

research tells us nothing about the causal 

influence of variables.

1.7.2  Experimental  
research methods 

Most scientific questions imply a causal link 

between variables; we have seen already that 

dependent and independent variables are 

named such that a causal connection is 

implied (the dependent variable depends on 

the independent variable). Sometimes the 

causal link is very obvious in the research 

question, ‘Does low self-esteem cause dating 

anxiety?’ Sometimes the implication might 

be subtler; for example, in ‘Is dating anxiety 

all in the mind?’ the implication is that a 

person’s mental outlook causes them to 

be anxious when dating. Even when the 

cause-effect relationship is not explicitly 

stated, most research questions can be broken 

down into a proposed cause (in this case, 

mental outlook) and a proposed outcome 

(dating anxiety). Both the cause and the 

outcome are variables: for the cause, some 

people will perceive themselves in a negative 

way (so it is something that varies); and, for 

the outcome, some people will get more 

anxious on dates than others (again, this is 

something that varies). The key to answering 

the research question is to uncover how the 

proposed cause and the proposed outcome 

relate to each other; are the people who have 

a low opinion of themselves the same people 

who are more anxious on dates?

David Hume, an influential philosopher, 

defined a cause as ‘An object precedent 

and contiguous to another, and where all 

the objects resembling the former are 

placed in like relations of precedency and 

contiguity to those objects that resemble 
the latter’ (1739–40/1965).12 This 
definition implies that (1) the cause needs 
to precede the effect, and (2) causality is 
equated to high degrees of correlation 
between contiguous events. In our dating 
example, to infer that low self-esteem 
caused dating anxiety, it would be 
sufficient to find that low self-esteem and 
feeling anxious when on a date co-occur, 
and that the low self-esteem emerged 
before the dating anxiety did.

In correlational research variables are 
often measured simultaneously. The first 
problem with doing this is that it provides 
no information about the contiguity 
between different variables: we might find 
from a questionnaire study that people 
with low self-esteem also have dating 
anxiety but we wouldn’t know whether it 
was the low self-esteem or the dating 
anxiety that came first. Longitudinal 
research addresses this issue to some 
extent, but there is still a problem with 
Hume’s idea that causality can be inferred 
from corroborating evidence, which is that 
it doesn’t distinguish between what you 
might call an ‘accidental’ conjunction and 
a causal one. For example, it could be that 
both low self-esteem and dating anxiety 
are caused by a third variable (e.g., poor 
social skills which might make you feel 
generally worthless but also puts pressure 
on you in dating situations). Therefore, 
low self-esteem and dating anxiety do 
always co-occur (meeting Hume’s 
definition of cause) but only because poor 
social skills causes them both.

This example illustrates an important 
limitation of correlational research: the 
tertium quid (‘A third person or thing of 
indeterminate character’). For example, a 
correlation has been found between 
having breast implants and suicide  
(Koot, Peeters, Granath, Grobbee, & 
Nyren, 2003). However, it is unlikely that 

12 � As you might imagine, his view was a lot more complicated than this definition alone, but let’s not get sucked down that 
particular wormhole.
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having breast implants causes you to 
commit suicide—presumably, there is an 
external factor (or factors) that causes 
both; for example, low self-esteem might 
lead you to have breast implants and also 
attempt suicide. These extraneous factors 
are sometimes called confounding 
variables or confounds for short.

The shortcomings of Hume’s definition led 
John Stuart Mill (1865) to suggest that, in 
addition to a correlation between events, all 
other explanations of the cause–effect 
relationship must be ruled out. To rule out 
confounding variables, Mill proposed that 
an effect should be present when the cause 
is present and that when the cause is absent, 
the effect should be absent also. In other 
words, the only way to infer causality is 
through comparing two controlled 
situations: one in which the cause is present 
and one in which the cause is absent. This is 
what experimental methods strive to do: to 
provide a comparison of situations (usually 
called treatments or conditions) in which 
the proposed cause is present or absent.

As a simple case, we might want to look at 
the effect of feedback style on learning 
about statistics. I might, therefore, 
randomly split13 some students into three 
different groups, in which I change my 
style of feedback in the seminars on my 
course:

••Group 1 (supportive feedback): During 
seminars I congratulate all students in this 
group on their hard work and success. Even 
when they get things wrong, I am 
supportive and say things like ‘that was very 
nearly the right answer, you’re coming 
along really well’ and then give them a nice 
piece of chocolate.
••Group 2 (harsh feedback): This group 
receives seminars in which I give 
relentless verbal abuse to all of the 
students even when they give the correct 
answer. I demean their contributions and 
am patronizing and dismissive of 

13  This random assignment of students is important, but we’ll get to that later.

everything they say. I tell students that 
they are stupid, worthless, and shouldn’t 
be doing the course at all. In other 
words, this group receives normal 
university-style seminars. 
••Group 3 (no feedback): Students are not 
praised or punished, instead I give them 
no feedback at all.

The thing that I have manipulated is the 
feedback style (supportive, harsh or none). 
As we have seen, this variable is known as 
the independent variable and, in this 
situation, it is said to have three levels, 
because it has been manipulated in three 
ways (i.e., the feedback style has been split 
into three types: supportive, harsh and 
none). The outcome in which I am 
interested is statistical ability, and I could 
measure this variable using a statistics exam 
after the last seminar. As we have seen, this 
outcome variable is the dependent variable 
because we assume that these scores will 
depend upon the type of teaching method 
used (the independent variable). The critical 
thing here is the inclusion of the ‘no 
feedback’ group because this is a group in 
which our proposed cause (feedback) is 
absent, and we can compare the outcome in 
this group against the two situations in 
which the proposed cause is present. If the 
statistics scores are different in each of the 
feedback groups (cause is present) 
compared to the group for which no 
feedback was given (cause is absent), then 
this difference can be attributed to the type 
of feedback used. In other words, the style 
of feedback used caused a difference in 
statistics scores (Jane Superbrain Box 1.4).

1.7.3  Two methods  
of data collection 

When we use an experiment to collect 
data, there are two ways to manipulate the 
independent variable. The first is to test 
different entities. This method is the one 

described above, in which different groups 
of entities take part in each experimental 
condition (a between-groups, 
between-subjects or independent 
design). An alternative is to manipulate 
the independent variable using the same 
entities. In our motivation example, this 
means that we give a group of students 
supportive feedback for a few weeks and 
test their statistical abilities and then give 
this same group harsh feedback for a few 
weeks before testing them again and, then, 
finally, give them no feedback and test 
them for a third time (a within-subject or 
repeated-measures design). As you will 
discover, the way in which the data are 
collected determines the type of test that is 
used to analyze the data.

1.7.4  Two types of variation 

Imagine we were trying to see whether you 
could train chimpanzees to run the 
economy. In one training phase they are 
sat in front of a chimp-friendly computer 
and press buttons that change various 
parameters of the economy; once these 
parameters have been changed a figure 
appears on the screen indicating the 
economic growth resulting from those 
parameters. Now, chimps can’t read  
(I don’t think) so this feedback is 
meaningless. A second training phase is 
the same, except that if the economic 
growth is good, they get a banana  
(if growth is bad they do not)—this 
feedback is valuable to the average chimp. 
This is a repeated-measures design with two 
conditions: the same chimps participate in 
condition 1 and in condition 2.

Let’s take a step back and think what would 
happen if we did not introduce an 
experimental manipulation (i.e., there were 
no bananas in the second training phase, so 
condition 1 and condition 2 were identical). 
If there is no experimental manipulation 
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then we expect a chimp’s behavior to be 
similar in both conditions. We expect this 
because external factors such as age, sex, IQ, 
motivation and arousal will be the same for 
both conditions (a chimp’s biological sex, 
etc. will not change from when they are 
tested in condition 1 to when they are tested 
in condition 2). If the performance measure 
(i.e., our test of how well they run the 
economy) is reliable, and the variable or 
characteristic that we are measuring (in this 
case ability to run an economy) remains 
stable over time, then a participant’s 
performance in condition 1 should be very 
highly related to their performance in 
condition 2. So, chimps who score highly in 

condition 1 will also score highly in 
condition 2, and those who have low scores 
for condition 1 will have low scores in 
condition 2. However, performance won’t 
be identical, there will be small differences 
in performance created by unknown factors. 
This variation in performance is known as 
unsystematic variation.

If we introduce an experimental 
manipulation (i.e., provide bananas as 
feedback in one of the training sessions), 
then we do something different to 
participants in condition 1 than in 
condition 2. So, the only difference between 
conditions 1 and 2 is the manipulation that 
the experimenter has made (in this case 

that the chimps get bananas as a positive 
reward in one condition but not in the 
other).14 Therefore, any differences between 
the means of the two conditions are 
probably due to the experimental 
manipulation. So, if the chimps perform 
better in one training phase than in the 
other, this has to be due to the fact that 
bananas were used to provide feedback in 
one training phase but not in the other. 
Differences in performance created by a 
specific experimental manipulation are 
known as systematic variation.

Now let’s think about what happens when 
we use different participants—an 
independent design. In this design, we still 

14 � Actually, this isn’t the only difference because, by condition 2, they have had some practice (in condition 1) at running the 
economy; however, we will see shortly that these practice effects are easily eradicated.

People sometimes get confused and think that cer-
tain statistical procedures allow causal inferences 
and others don’t. This isn’t true, it’s the fact that in 
experiments we manipulate the causal variable sys-
tematically to see its effect on an outcome (the 
effect). In correlational research we observe the 
co-occurrence of variables; we do not manipulate the 
causal variable first and then measure the effect, 
therefore we cannot compare the effect when the 
causal variable is present against when it is absent.  

In short, we cannot say which variable causes a change 
in the other; we can merely say that the variables co-
occur in a certain way. The reason why some people 
think that certain statistical tests allow causal infer-
ences is that, historically, certain tests (e.g., ANOVA, 
t-tests, etc.) have been used to analyze experimental 
research, whereas others (e.g., regression, correla-
tion) have been used to analyze correlational research 
(Cronbach, 1957). As you’ll discover, these statistical 
procedures are, in fact, mathematically identical.

Jane Superbrain 1.4  
Causality and statistics 
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have two conditions, but this time different 
participants participate in each condition. 
Going back to our example, one group of 
chimps receives training without feedback, 
whereas a second group of different chimps 
does receive feedback on their performance 
via bananas.15 Imagine again that we didn’t 
have an experimental manipulation. If we 
did nothing to the groups, then we would 
still find some variation in behavior 
between the groups because they contain 
different chimps who will vary in their 
ability, motivation, propensity to get 
distracted from running the economy by 
throwing their own feces, and other factors. 
In short, the factors that were held constant 
in the repeated-measures design are free to 
vary in the independent design. So, the 
unsystematic variation will be bigger than 
for a repeated-measures design. As before, 
if we introduce a manipulation (i.e., 
bananas), then we will see additional 
variation created by this manipulation. As 
such, in both the repeated-measures design 
and the independent design there are 
always two sources of variation:

•• Systematic variation: This variation is 
due to the experimenter doing something 
in one condition but not in the other 
condition.
••Unsystematic variation: This variation 
results from random factors that exist 
between the experimental conditions 
(such as natural differences in ability, the 
time of day, etc.).

Statistical tests are often based on the idea 
of estimating how much variation there is 
in performance, and comparing how much 
of this is systematic to how much is 
unsystematic.

In a repeated-measures design, differences 
between two conditions can be caused by 
only two things: (1) the manipulation that 
was carried out on the participants or (2) 
any other factor that might affect the way in 

15 � Obviously I mean that they receive a banana as a reward for their correct response and not that the bananas develop little 
banana mouths that sing them a little congratulatory song.

which an entity performs from one time to 
the next. The latter factor is likely to be 
fairly minor compared to the influence of 
the experimental manipulation. In an 
independent design, differences between the 
two conditions can also be caused by one of 
two things: (1) the manipulation that was 
carried out on the participants or (2) 
differences between the characteristics of 
the entities allocated to each of the groups. 
The latter factor, in this instance, is likely to 
create considerable random variation both 
within each condition and between them. 
When we look at the effect of our 
experimental manipulation, it is always 
against a background of ‘noise’ created by 
random, uncontrollable differences between 
our conditions. In a repeated-measures 
design this ‘noise’ is kept to a minimum and 
so the effect of the experiment is more likely 
to show up. This means that, other things 
being equal, repeated-measures designs are 
more sensitive to detect effects than 
independent designs.

1.7.5  Randomization 

In both repeated-measures and 
independent designs it is important to try 
to keep the unsystematic variation to a 
minimum. By keeping the unsystematic 
variation as small as possible we get a 
more sensitive measure of the 
experimental manipulation. Generally, 
scientists use the randomization of 
entities to treatment conditions to achieve 
this goal. Many statistical tests work by 
identifying the systematic and 
unsystematic sources of variation and then 
comparing them. This comparison allows 
us to see whether the experiment has 
generated considerably more variation 
than we would have got had we just tested 
participants without the experimental 
manipulation. Randomization is 
important because it eliminates most 

other sources of systematic variation, 
which allows us to be sure that any 
systematic variation between experimental 
conditions is due to the manipulation of 
the independent variable. We can use 
randomization in two different ways 
depending on whether we have an 
independent or repeated-measures design.

Let’s look at a repeated-measures design 
first. I mentioned earlier (in a footnote) 
that when the same entities participate in 
more than one experimental condition they 
are naive during the first experimental 
condition but they come to the second 
experimental condition with prior 
experience of what is expected of them. At 
the very least they will be familiar with the 
dependent measure (e.g., the task they’re  
performing). The two most important 
sources of systematic variation in this type 
of design are:

••Practice effects: Participants may 
perform differently in the second 
condition because of familiarity with the 
experimental situation and/or the 
measures being used.
••Boredom effects: Participants may 
perform differently in the second 
condition because they are tired or bored 
from having completed the first 
condition.

Although these effects are impossible to 
eliminate completely, we can ensure that 
they produce no systematic variation 
between our conditions by 
counterbalancing the order in which a 
person participates in a condition.

We can use randomization to determine in 
which order the conditions are completed. 
That is, we randomly determine whether a 
participant completes condition 1 before 
condition 2 or condition 2 before condition 
1. Let’s look at the teaching method 
example and imagine that there were just 
two conditions: no feedback and harsh 
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feedback. If the same participants were 
used in all conditions, then we might find 
that statistical ability was higher after the 
harsh feedback. However, if every student 
experienced the harsh feedback after the no 
feedback seminars then they would enter 
the harsh condition already having a better 
knowledge of statistics than when they 
began the no feedback condition. So, the 
apparent improvement after harsh 
feedback would not be due to the 
experimental manipulation (i.e., it’s not 
because harsh feedback works), but because 
participants had attended more statistics 
seminars by the end of the harsh feedback 
condition compared to the no feedback one. 
We can use randomization to ensure that 
the number of statistics seminars does not 
introduce a systematic bias by randomly 
assigning students to have the harsh 
feedback seminars first or the no feedback 
seminars first.

If we turn our attention to independent 
designs, a similar argument can be 
applied. We know that participants in 
different experimental conditions will 
differ in many respects (their IQ, 
attention span, etc.). Although we know 
that these confounding variables 
contribute to the variation between 
conditions, we need to make sure that 
these variables contribute to the 
unsystematic variation and not to the 
systematic variation. A good example is 
the effects of alcohol on behavior. You 
might give one group of people 5 pints of 
beer, and keep a second group sober, and 
then count how many times you can 
persuade them to do a fish impersonation. 
The effect that alcohol has varies because 
people differ in their tolerance: teetotal 

people can become drunk on a small 
amount, while alcoholics need to consume 
vast quantities before the alcohol affects 
them. If you allocated a bunch of 
hardened drinkers to the condition that 
consumed alcohol, and teetotal people to 
the no alcohol condition, then you might 
find that alcohol doesn’t increase the 
number of fish impersonations you get. 
However, this finding could be because (1) 
alcohol does not make people engage in 
frivolous activities or (2) the hardened 
drinkers were unaffected by the dose of 
alcohol. You have no way to dissociate 
these explanations because the groups 
varied not just on dose of alcohol but also 
on their tolerance of alcohol (the 
systematic variation created by their past 
experience with alcohol cannot be 
separated from the effect of the 
experimental manipulation). The best way 
to reduce this eventuality is to randomly 
allocate participants to conditions: by 
doing so you minimize the risk that 
groups differ on variables other than the 
one you want to manipulate.

1.8  Analyzing data 
The final stage of the research process is 
to analyze the data you have collected. 
When the data are quantitative this 
involves both looking at your data 
graphically (Chapter 5) to see what the 
general trends in the data are, and also 
fitting statistical models to the data (all 
other chapters). Given that the rest of the 
book is dedicated to this process, we’ll 
begin here by looking at a few fairly basic 
ways to look at and summarize the data 
you have collected.

1.8.1  Frequency distributions 

Once you’ve collected 
some data a very 
useful thing to do is 
to plot a graph of 
how many times each 
score occurs. This is 
known as a 
frequency distribution or histogram, 
which is a graph plotting values of 
observations on the horizontal axis, with a 
bar showing how many times each value 
occurred in the data set. Frequency 
distributions can be very useful for 
assessing properties of the distribution of 
scores. We will find out how to create 
these types of charts in Chapter 5.

Frequency distributions come in many 
different shapes and sizes. It is quite 
important, therefore, to have some general 
descriptions for common types of 
distributions. In an ideal world our data 
would be distributed symmetrically around 
the center of all scores. As such, if we drew 
a vertical line through the center of the 
distribution then it should look the same 
on both sides. This is known as a normal 
distribution and is characterized by the 
bell-shaped curve with which you might 
already be familiar. This shape implies that 
the majority of scores lie around the center 
of the distribution (so the largest bars on 
the histogram are around the central 
value). Also, as we get further away from 
the center, the bars get smaller, implying 
that as scores start to deviate from the 
center their frequency is decreasing. As we 
move still further away from the center our 
scores become very infrequent (the bars are 
very short). Many naturally occurring 
things have this shape of distribution. For 
example, most men in the UK are around 
175 cm tall;16 some are a bit taller or 
shorter, but most cluster around this value. 
There will be very few men who are really 

What is frequency 
distribution and when is 

it normal?

16 � I am exactly 180 cm tall. In my home country this makes me smugly above average. However, I often visit the Netherlands, where 
the average male height is 185 cm (a little over 6ft, and a massive 10 cm higher than the UK), and where I feel like a bit of a dwarf.

SELF              TEST

Why is randomization important?
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tall (i.e., above 205 cm) or really short (i.e., 
under 145 cm). An example of a normal 
distribution is shown in Figure 1.3.

There are two main ways in which a 
distribution can deviate from normal:  
(1) lack of symmetry (called skew) and  
(2) pointyness (called kurtosis). Skewed 
distributions are not symmetrical and 
instead the most frequent scores (the tall 
bars on the graph) are clustered at one end 
of the scale. So, the typical pattern is a 
cluster of frequent scores at one end of the 
scale and the frequency of scores tailing off 
towards the other end of the scale. A skewed 
distribution can be either positively skewed 
(the frequent scores are clustered at the 
lower end and the tail points towards the 
higher or more positive scores) or negatively 
skewed (the frequent scores are clustered at 
the higher end and the tail points towards 
the lower or more negative scores). Figure 1.4 
shows examples of these distributions.

Distributions also vary in their kurtosis. 
Kurtosis, despite sounding like some kind 
of exotic disease, refers to the degree to 
which scores cluster at the ends of the 
distribution (known as the tails) and this 
tends to express itself in how pointy a 
distribution is (but there are other factors 
that can affect how pointy the distribution 
looks—see Jane Superbrain Box 1.5). A 
distribution with positive kurtosis has 
many scores in the tails (a so-called 
heavy-tailed distribution) and is pointy. 
This is known as a leptokurtic 
distribution. In contrast, a distribution with 
negative kurtosis is relatively thin in the 
tails (has light tails) and tends to be flatter 
than normal. This distribution is called 
platykurtic. Ideally, we want our data to be 
normally distributed (i.e., not too skewed, 
and not too many or too few scores at the 
extremes). For everything there is to know 
about kurtosis, read DeCarlo (1997).

In a normal distribution the values of skew 
and kurtosis are 0 (i.e., the tails of the 

distribution are as they should be).17 If a 
distribution has values of skew or kurtosis 
above or below 0 then this indicates a 
deviation from normal: Figure 1.5 shows 
distributions with kurtosis values of +2.6 
(left panel) and −0.09 (right panel).

1.8.2  The mode 

We can calculate where the center of a 
frequency distribution lies (known as the 
central tendency) using three measures 

17  Sometimes no kurtosis is expressed as 3 rather than 0, but SPSS uses 0 to denote no excess kurtosis.

commonly used: the mean, the mode and 
the median. Other methods exist, but 
these three are the ones you’re most likely 
to come across.

The mode is the score that occurs most 
frequently in the data set. This is easy to 
spot in a frequency distribution because it 
will be the tallest bar. To calculate the 
mode, place the data in ascending order 
(to make life easier), count how many 
times each score occurs, and the score that 
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Figure 1.3  A ‘normal’ distribution (the curve shows the idealized shape)

Figure 1.4  A positively (left) and negatively (right) skewed distribution
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occurs the most is the mode. One problem 
with the mode is that it can take on several 
values. For example, Figure 1.6 shows an 
example of a distribution with two modes 

(there are two bars that are the highest), 
which is said to be bimodal, and three 
modes (data sets with more than two 
modes are multimodal). Also, if the 

frequencies of certain scores are very 
similar, then the mode can be influenced 
by only a small number of cases.

1.8.3  The median 

Another way to 
quantify the center of 
a distribution is to 
look for the middle 
score when scores are 
ranked in order of 
magnitude. This is 
called the median. Imagine we looked at 
the number of friends that 11 users of the 
social networking website Facebook had. 
Figure 1.7 shows the number of friends for 
each of the 11 users: 57, 40, 103, 234, 93, 
53, 116, 98, 108, 121, 22.

To calculate the median, we first arrange 
these scores into ascending order: 22, 40, 
53, 57, 93, 98, 103, 108, 116, 121, 234.

Next, we find the position of the middle 
score by counting the number of scores we 
have collected (n), adding 1 to this value, 
and then dividing by 2. With 11 scores, this 
gives us (n + 1)/2 = (11 + 1)/2 = 12/2 = 6. 
Then, we find the score that is positioned 
at the location we have just calculated. 
So, in this example, we find the sixth score 
(see Figure 1.7).

This process works very nicely when we 
have an odd number of scores (as in this 
example), but when we have an even 
number of scores there won’t be a middle 
value. Let’s imagine that we decided that 
because the highest score was so big 
(almost twice as large as the next biggest 
number), we would ignore it. (For one 
thing, this person is far too popular and 
we hate them.) We have only 10 scores 
now. Figure 1.8 shows this situation. As 
before, we rank-order these scores: 22, 40, 
53, 57, 93, 98, 103, 108, 116, 121. We then 
calculate the position of the middle score, 
but this time it is (n + 1)/2 = 11/2 = 5.5, 
which means that the median is halfway 
between the fifth and sixth scores. To get 
the median we add these two scores and 

Figure 1.5  Distributions with positive kurtosis (leptokurtic, left) and negative kurtosis 
(platykurtic, right)
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Figure 1.6  Examples of bimodal (left) and multimodal (right) distributions

Bimodal Multimodal

0

1000

2000

3000

Fr
eq

ue
nc

y

22 40 53 57 93 98 103 108 116 121 234

2240 5357 93 98103 108116 121234 Data

Ordered Data

Median

Figure 1.7  The median is simply the middle score when you order the data

What are the mode, 
median and mean?
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divide by 2. In this example, the fifth score 
in the ordered list was 93 and the sixth 
score was 98. We add these together  
(93 + 98 = 191) and then divide this value 
by 2 (191/2 = 95.5). The median number 
of friends was, therefore, 95.5.

The median is relatively unaffected by 
extreme scores at either end of the 
distribution: the median changed only 
from 98 to 95.5 when we removed the 
extreme score of 234. The median is also 
relatively unaffected by skewed 
distributions and can be used with ordinal, 
interval and ratio data (it cannot, however, 
be used with nominal data because these 
data have no numerical order).

1.8.4  The mean 

The mean is the measure of central 
tendency that you are most likely to have 
heard of because it is the average score, 
and the media love an average score.18 To 
calculate the mean we add up all of the 
scores and then divide by the total number 
of scores we have. We can write this in 
equation form as:

X
x

n
i

n

i

= =∑ 1 �  (1.1)

This equation may look complicated, but 
the top half simply means ‘add up all of 
the scores’ (the xi means ‘the score of a 
particular person’; we could replace the 
letter i with each person’s name instead), 
and the bottom bit means, ‘divide this total 
by the number of scores you have got (n)’. 
Let’s calculate the mean for the Facebook 
data. First, we add up all the scores:

i

n

ix

=
∑ = + + + + + +

+ + + + =
1

22 40 53 57 93 98 103

108 116 121 234 1045
� (1.2)

We then divide by the number of scores (in 
this case 11) as in equation (1.3):

18 � I wrote this on 15 February, and to prove my point, the BBC website ran a headline today about how PayPal estimates that 
Britons will spend an average of £71.25 each on Valentine’s Day gifts. However, uSwitch.com said that the average spend 
would be only £22.69. Always remember that the media is full of lies and contradictions.

X
x

n
i

n

i

= = ==∑ 1 1045
11

95
� (1.3)

The mean is 95 friends, which is not a 
value we observed in our actual data. In 
this sense the mean is a statistical model—
more on this in the next chapter.

If you calculate the mean without our 
most popular person (i.e., excluding the 
value 234), the mean drops to 81.1 friends. 
This reduction illustrates one disadvantage 
of the mean: it can be influenced by 
extreme scores. In this case, the person 
with 234 friends on Facebook increased 
the mean by about 14 friends; compare 
this difference with that of the median. 
Remember that the median changed very 
little − from 98 to 95.5 − when we 
excluded the score of 234, which 
illustrates how the median is typically less 
affected by extreme scores than the mean. 
While we’re being negative about the 

mean, it is also affected by skewed 
distributions and can be used only with 
interval or ratio data.

If the mean is so lousy then why do we use 
it so often? One very important reason is 
that it uses every score (the mode and 
median ignore most of the scores in a data 
set). Also, the mean tends to be stable in 
different samples (more on that later too).

1.8.5  The dispersion  
in a distribution 

It can also be interesting to quantify the 
spread or dispersion, of scores. The easiest 
way to look at dispersion is to take the 
largest score and subtract from it the 
smallest score. This is known as the range 
of scores. For our Facebook data we saw 
that if we order the scores, we get 22, 40, 
53, 57, 93, 98, 103, 108, 116, 121, 234. The 
highest score is 234 and the lowest is 22; 

22 40 53 57 93 98 103 108 116 121

2240 5357 93 98103 108116 121 Data

Ordered Data

Median = (93 + 98)/2 = 95.5

Figure 1.8  When the data contain an even number of scores, the median is the average 
of the middle two values

SELF              TEST

Compute the mean but excluding the score of 234.

SELF              TEST

Compute the range but excluding the score of 234.
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therefore, the range is 234−22 = 212. One 
problem with the range is that because it 
uses only the highest and lowest score, it is 
affected dramatically by extreme scores.

If you have done the self-test task you’ll see 
that without the extreme score the range 
drops from 212 to 99—less than half the size.

One way around this problem is to calculate 
the range but excluding values at the 
extremes of the distribution. One convention 
is to cut off the top and bottom 25% of scores 
and calculate the range of the middle 50% of 
scores—known as the interquartile range. 
Let’s do this with the Facebook data. First we 

need to calculate what are called quartiles. 

Quartiles are the three values that split the 

sorted data into four equal parts. First, we 

calculate the median, which is also called the 

second quartile, which splits our data into 

two equal parts. We already know that the 

median for these data is 98. The lower 

quartile is the median of the lower half of 

the data and the upper quartile is the 

median of the upper half of the data. As a 

rule of thumb the median is not included in 

the two halves when they are split (this is 

convenient if you have an odd number of 

values), but you can include it (although 

which half you put it in is another question). 
Figure 1.9 shows how we would calculate 
these values for the Facebook data. Like the 
median, if each half of the data had an even 
number of values in it, then the upper and 
lower quartiles would be the average of two 
values in the data set (therefore, the upper 
and lower quartile need not be values that 
actually appear in the data). Once we have 
worked out the values of the quartiles, we 
can calculate the interquartile range, which is 
the difference between the upper and lower 
quartile. For the Facebook data this value 
would be 116−53 = 63. The advantage of the 
interquartile range is that it isn’t affected by 
extreme scores at either end of the 
distribution. However, the problem with it is 
that you lose a lot of data (half of it, in fact).

It’s worth noting here that quartiles are 
special cases of things called quantiles. 
Quantiles are values that split a data set 
into equal portions. Quartiles are quantiles 
that split the data into four equal parts, 
but there are other quantiles such as 
percentiles (points that split the data into 

•• The mean is the sum of all scores divided by the 
number of scores. The value of the mean can be 
influenced quite heavily by extreme scores. 

•• The median is the middle score when the scores are 
placed in ascending order. It is not as influenced by 
extreme scores as the mean.

•• The mode is the score that occurs most frequently.

Cramming Sam’s Tips 
Central tendency

22 40 53 57 93 98 103 108 116 121 234 Ordered Data

Median
(Second Quartile)

Lower Quartile Upper Quartile

Interquartile Range

Figure 1.9  Calculating quartiles and the interquartile range
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100 equal parts), noniles (points that split 
the data into nine equal parts) and so on.

If we want to use all the data rather than 
half of it, we can calculate the spread of 
scores by looking at how different each 
score is from the center of the distribution. 
If we use the mean as a measure of the 
center of a distribution, then we can 
calculate the difference between each score 
and the mean, which is known as the 
deviance (Eq. 1.4):

deviance = -x xi � (1.4)

If we want to know the total deviance then 
we could add up the deviances for each data 
point. In equation form, this would be:

total deviance = -( )
=

∑
i

n

ix x

1

� (1.5)

The sigma symbol (∑) means ‘add up all  
of what comes after’, and the ‘what comes 
after’ in this case is the deviances. So,  
this equation simply means ‘add up all  
of the deviances’.

Let’s try this with the Facebook data.  
Table 1.2 shows the number of friends for 
each person in the Facebook data, the mean, 
and the difference between the two. Note 
that because the mean is at the center of the 
distribution, some of the deviations are 
positive (scores greater than the mean) and 
some are negative (scores smaller than the 
mean). Consequently, when we add the 
scores up, the total is zero. Therefore, the 
‘total spread’ is nothing. This conclusion is as 
silly as a tapeworm thinking they can have a 
coffee with the Queen of England if they don 
a bowler hat and pretend to be human. 
Everyone knows that the Queen drinks tea.

To overcome this problem, we could ignore 
the minus signs when we add the 
deviations up. There’s nothing wrong with 
doing this, but people tend to square the 
deviations, which has a similar effect 
(because a negative number multiplied by 
another negative number becomes 

positive). The final column of Table 1.2 
shows these squared deviances. We can 
add these squared deviances up to get the 
sum of squared errors, SS (often just 
called the sum of squares); unless your 
scores are all exactly the same, the 
resulting value will be bigger than zero, 
indicating that there is some deviance 
from the mean. As an equation, we would 
write: equation (1.6) in which the sigma 
symbol means ‘add up all of the things 
that follow’ and what follows is the 
squared deviances (or squared errors as 
they’re more commonly known):

sumof squared errors SS( ) = -( )
=

∑
i

n

ix x

1

2 � (1.6)

We can use the sum of squares as an 
indicator of the total dispersion or total 
deviance of scores from the mean. The 

problem with using the total is that its size 
will depend on how many scores we have 
in the data. The sum of squares for the 
Facebook data is 32,246, but if we added 
another 11 scores that value would increase 
(other things being equal, it will more or 
less double in size). The total dispersion is 
a bit of a nuisance then because we can’t 
compare it across samples that differ in 
size. Therefore, it can be useful to work 
not with the total dispersion, but the 
average dispersion, which is also known as 
the variance. We have seen that an 
average is the total of scores divided by the 
number of scores, therefore, the variance is 
simply the sum of squares divided by the 
number of observations (N). Actually, we 
normally divide the SS by the number of 
observations minus 1 as in equation (1.7) 
(the reason why is explained in the next 
chapter and Jane Superbrain Box 2.2):

SELF              TEST

Twenty-one heavy smokers were put on a treadmill  
at the fastest setting. The time in seconds was measured until  

they fell off from exhaustion:

18, 16, 18, 24, 23, 22, 22, 23, 26, 29, 32, 34, 34, 36, 36, 43, 42, 49, 46, 46, 57

Compute the mode, median, mean, upper and lower quartiles, range 
and interquartile range.

Table 1.2  Table showing the deviations of each score from the mean

Number of Friends (xi) Mean (x–) Deviance (xi–x–) Deviance squared (xi–x–)2

22 95 −73 5329

40 95 −55 3025

53 95 −42 1764

57 95 −38 1444

93 95 −2 4

98 95 3 9

103 95 8 64

108 95 13 169

116 95 21 441

121 95 26 676

234 95 139 19321

i

n

ix x
=

∑ - =
1

0
i

n

ix x
=

∑ -( ) =
1

2
32246
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variance
SS

2,2

s
N

x x

N
i

n

i

2

1

2

1

1
3 46

10
3224 6

( ) =
-

=
-( )

-
= ==∑

.
�

(1.7)

As we have seen, the variance is the 
average error between the mean and the 
observations made. There is one problem 
with the variance as a measure: it gives 
us a measure in units squared (because 
we squared each error in the 
calculation). In our example we would 
have to say that the average error in our 
data was 3224.6 friends squared. It 
makes very little sense to talk about 
friends squared, so we often take the 
square root of the variance (which 
ensures that the measure of average 
error is in the same units as the original 
measure). This measure is known as the 
standard deviation and is the square 
root of the variance (Eq. 1.8).

s
x x

N
i

n

i

=
-( )

-
=
=

=∑ 1

2

1

3224 6

56 79

.

.

� (1.8)

Standard deviation = 0.55 Standard deviation = 1.82

Lecturer 1 Lecturer 2

1

2

3

4

5

1 2 3 4 5 1 2 3 4 5
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Figure 1.10  Graphs illustrating data that have the same mean but different standard 
deviations

The sum of squares, variance and 
standard deviation are all measures of 
the dispersion or spread of data around 
the mean. A small standard deviation 
(relative to the value of the mean itself ) 
indicates that the data points are close 
to the mean. A large standard deviation 
(relative to the mean) indicates that the 
data points are distant from the mean. 
A standard deviation of 0 would mean 
that all the scores were the same.  
Figure 1.10 shows the overall ratings (on 
a 5-point scale) of two lecturers after 
each of five different lectures. Both 
lecturers had an average rating of 2.6 
out of 5 across the lectures. However, the 
first lecturer had a standard deviation of 
0.55 (relatively small compared to the 
mean). It should be clear from the left-
hand graph that ratings for this lecturer 
were consistently close to the mean 
rating. There was a small fluctuation, 
but generally her lectures did not vary in 
popularity. Put another way, the scores 
are not spread too widely around the 
mean. The second lecturer, however, had 
a standard deviation of 1.82 (relatively 
high compared to the mean). The ratings 

for this second lecturer are more spread 
from the mean than the first: for some 
lectures she received very high ratings, 
and for others her ratings were 
appalling.

1.8.6  Using a  
frequency distribution  
to go beyond the data 

Another way to think about frequency 
distributions is not in terms of how often 
scores actually occurred, but how likely it 
is that a score would occur (i.e., 
probability). The word ‘probability’ causes 
most people’s brains to overheat (myself 
included) so it seems fitting that we use 
an example about throwing buckets of ice 
over our heads. Internet memes tend to 
follow the shape of a normal distribution, 
which we discussed a while back. A good 
example of this is the ice bucket challenge 
from 2014. You can check Wikipedia for 
the full story, but it all started (arguably) 
with golfer Chris Kennedy tipping a 
bucket of iced water on his head to raise 
awareness of the disease amyotrophic 
lateral sclerosis (ALS, also known as Lou 
Gehrig’s disease).19 The idea is that you 
are challenged and have 24 hours to post 
a video of you having a bucket of iced 
water poured over your head; in this 
video you also challenge at least three 
other people. If you fail to complete the 
challenge your forfeit is to donate to 
charity (in this case, ALS). In reality 
many people completed the challenge 
and made donations.

The ice bucket challenge is a good example 
of a meme: it ended up generating 
something like 2.4 million videos on 
Facebook and 2.3 million on YouTube.  
I mentioned that memes often follow a 
normal distribution, and Figure 1.12 
shows this: the insert shows the ‘interest’ 
score from Google Trends for the phrase 

19 � Chris Kennedy did not invent the challenge, but he’s believed to be the first to link it to ALS. There are earlier reports of 
people doing things with ice-cold water in the name of charity, but I’m focusing on the ALS challenge because it is the one 
that spread as a meme.
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‘ice bucket challenge’ from August to 
September 2014.20 The ‘interest’ score that 
Google calculates is a bit hard to unpick 
but essentially reflects the relative number 

20 � You can generate the insert graph for yourself by going to Google Trends, entering the search term ‘ice bucket challenge’ and 
restricting the dates shown to August 2014 to September 2014.

of times that the term ‘ice bucket 
challenge’ was searched for on Google. It’s 
not the total number of searches, but the  
relative number. In a sense it shows the 

trend of the popularity of searching for ‘ice 
bucket challenge’. Compare the line with 
the perfect normal distribution in  
Figure 1.3 − they look fairly similar, don’t 

The variance and standard deviation tell us about the shape 
of the distribution of scores. If the mean represents the data 
well then most of the scores will cluster close to the mean 
and the resulting standard deviation is small relative to the 
mean. When the mean is a worse representation of the data, 
the scores cluster more widely around the mean and the 
standard deviation is larger. Figure 1.11 shows two distribu-
tions that have the same mean (50) but different standard 
deviations. One has a large standard deviation relative to the 

mean (SD = 25) and this results in a flatter distribution that is 
more spread out, whereas the other has a small standard 
deviation relative to the mean (SD = 15) resulting in a pointier 
distribution in which scores close to the mean are very  
frequent but scores further from the mean become increas-
ingly infrequent. The message is that as the standard  
deviation gets larger, the distribution gets fatter. This can 
make distributions look platykurtic or leptokurtic when, in 
fact, they are not.

Jane Superbrain 1.5  
The standard deviation and the shape of the distribution 

Large standard deviation Small standard deviation
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Figure 1.11  Two distributions with the same mean, but large and small standard deviations
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they? Once it got going (about 2–3 weeks 
after the first video) it went viral, and 
popularity increased rapidly, reaching a 
peak at around 21 August (about 36 days 
after Chris Kennedy got the ball rolling). 
After this peak, popularity rapidly declines 
as people tire of the meme.

The main histogram in Figure 1.12 shows 
the same pattern but reflects something a 

bit more tangible than ‘interest scores’. It 
shows the number of videos posted on 
YouTube relating to the ice bucket  
challenge on each day after Chris Kennedy’s 
initial challenge. There were 2323 
thousand in total (2.32 million) during the 
period shown. In a sense it shows 
approximately how many people took up 
the challenge each day.21 You can see that 

21 � Very very approximately indeed. I have converted the Google interest data into videos posted on YouTube by using the fact 
that I know that 2.33 million videos were posted during this period and by making the (not unreasonable) assumption that 
behavior on YouTube will have followed the same pattern over time as the Google interest score for the challenge.

nothing much happened for 20 days, and 
early on relatively few people took up the 
challenge. By about 30 days after the initial 
challenge things are hotting up (well, 
cooling down, really) as the number of 
videos rapidly accelerated from 29,000 on 
day 30 to 196,000 on day 35. At day 36, the 
challenge hits its peak (204,000 videos 
posted), after which the decline sets in as it 

Scanlon, T. J., et al. (1993). British Medical Journal, 
307, 1584–1586.
Many of us are superstitious, and a common 
superstition is that Friday the 13th is unlucky. Most 
of us don’t literally think that someone in a hockey 
mask is going to kill us, but some people are wary. 
Scanlon and colleagues, in a tongue-in-cheek 
study (Scanlon, Luben, Scanlon, & Singleton, 
1993), looked at accident statistics at hospitals in 

the south-west Thames region of the UK. They 
took statistics both for Friday the 13th and Friday 
the 6th (the week before) in different months in 
1989, 1990, 1991 and 1992. They looked at both 
emergency admissions of accidents and poisoning, 
and also transport accidents.

Calculate the mean, median, standard deviation 
and interquartile range for each type of accident and 
on each date. Answers are on the companion website.

Labcoat Leni’s Real Research 1.1 
Is Friday 13th unlucky? 

Date

Accidents and Poisoning Traffic Accidents

Friday 6th Friday 13th Friday 6th Friday 13th

October 1989 4 7 9 13

July 1990 6 6 6 12

September 1991 1 5 11 14

December 1991 9 5 11 10

March 1992 9 7 3 4

November 1992 1 6 5 12
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becomes ‘yesterday’s news’. By day 50 it’s 

only the type of people like me, and 

statistics lectures more generally, who don’t 

check Facebook for 50 days, who suddenly 

become aware of the meme and want to get 

in on the action to prove how down with the 

kids we are. It’s too late, though: people at 

that end of the curve are uncool, and the 

trendsetters who posted videos on day 25 

call us lame and look at us dismissively. It’s 

OK though, because we can plot sick 

histograms like the one in Figure 1.12; take 

that, hipster scum!

I digress. We can think of frequency 

distributions in terms of probability. To 

explain this, imagine that someone asked 

you ‘How likely is it that a person posted an 

ice bucket video after 60 days?’ What would 

your answer be? Remember that the height 

of the bars on the histogram reflects how 

many videos were posted. Therefore, if you 
looked at the frequency distribution before 
answering the question you might respond 
‘not very likely’ because the bars are very 
short after 60 days (i.e., relatively few videos 
were posted). What if someone asked you 
‘How likely is it that a video was posted 35 
days after the challenge started?’ Using the 
histogram, you might say ‘It’s relatively 
likely’ because the bar is very high on day 35 
(so quite a few videos were posted). Your 
inquisitive friend is on a roll and asks ‘How 
likely is it that someone posted a video 35 to 
40 days after the challenge started?’ The 
bars representing these days are shaded 
orange in Figure 1.12. The question about 
the likelihood of a video being posted 35-40 
days into the challenge is really asking ‘How 
big is the orange area of Figure 1.12 
compared to the total size of all bars?’ We 
can find out the size of the dark blue region 

by adding the values of the bars (196 + 204 + 
196 + 174 + 164 + 141 = 1075); therefore, the 
orange area represents 1075 thousand 
videos. The total size of all bars is the total 
number of videos posted (i.e., 2323 
thousand). If the orange area represents 
1075 thousand videos, and the total area 
represents 2323 thousand videos, then if we 
compare the orange area to the total area 
we get 1075/2323 = 0.46. This proportion 
can be converted to a percentage by 
multiplying by 100, which gives us 46%. 
Therefore, our answer might be ‘It’s quite 
likely that someone posted a video 35-40 
days into the challenge because 46% of all 
videos were posted during those 6 days’.  
A very important point here is that the size 
of the bars relates directly to the probability 
of an event occurring.

Hopefully these illustrations show that we 
can use the frequencies of different scores, 

•• The deviance or error is the distance of each score from  
the mean.

•• The sum of squared errors is the total amount of error in 
the mean. The errors/deviances are squared before adding 
them up.

•• The variance is the average distance of scores from the 
mean. It is the sum of squares divided by the number of 
scores. It tells us about how widely dispersed scores are 
around the mean.

•• The standard deviation is the square root of the variance. 
It is the variance converted back to the original units of 

measurement of the scores used to compute it. Large 
standard deviations relative to the mean suggest data 
are widely spread around the mean, whereas small 
standard deviations suggest data are closely packed 
around the mean.

•• The range is the distance between the highest and lowest 
score.

•• The interquartile range is the range of the middle 50% of the 
scores.

Cramming Sam’s Tips 
Dispersion
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and the area of a frequency distribution, to 
estimate the probability that a particular 
score will occur. A probability value can 
range from 0 (there’s no chance 
whatsoever of the event happening) to 1 
(the event will definitely happen). So, for 
example, when I talk to my publishers I 
tell them there’s a probability of 1 that I 

will have completed the revisions to this 
book by July. However, when I talk to 
anyone else, I might, more realistically, tell 
them that there’s a 0.10 probability of me 
finishing the revisions on time (or put 
another way, a 10% chance or 1 in 10 
chance that I’ll complete the book in 
time). In reality, the probability of my 

meeting the deadline is 0 (not a chance in 
hell). If probabilities don’t make sense to 
you then you’re not alone; just ignore the 
decimal point and think of them as 
percentages instead (i.e., a 0.10 probability 
that something will happen is a 10% 
chance that something will happen) or 
read the chapter on probability in my 
other excellent textbook (Field, 2016).

I’ve talked in vague terms about how 
frequency distributions can be used to get 
a rough idea of the probability of a score 
occurring. However, we can be precise. 
For any distribution of scores we could, in 
theory, calculate the probability of 
obtaining a score of a certain size—it 
would be incredibly tedious and complex 
to do it, but we could. To spare our sanity, 
statisticians have identified several 
common distributions. For each one they 
have worked out mathematical formulae 
(known as probability density 
functions, PDF) that specify idealized 
versions of these distributions. We could 
draw such a function by plotting the value 
of the variable (x) against the probability 
of it occurring (y).22 The resulting curve is 
known as a probability distribution; for 
a normal distribution (Section 1.8.1) it 
would look like Figure 1.13, which has the 
characteristic bell shape that we saw 
already in Figure 1.3.

A probability distribution is just like a 
histogram except that the lumps and 
bumps have been smoothed out so that we 
see a nice smooth curve. However, like a 
frequency distribution, the area under this 
curve tells us something about the 
probability of a value occurring. Just like 
we did in our ice bucket example we could 
use the area under the curve between two 
values to tell us how likely it is that a score 
fell within a particular range. For example, 
the blue shaded region in Figure 1.13 
corresponds to the probability of a score 
being z or greater. The normal distribution 

22  Actually we usually plot something called the density, which is closely related to the probability.
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Figure 1.12  Frequency distribution showing the number of ice bucket challenge videos 
on YouTube by day since the first video (the insert shows the actual Google Trends data 
on which this example is based)
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Figure 1.13  The normal probability distribution
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is not the only distribution that has been 
precisely specified by people with 
enormous brains. There are many 
distributions that have characteristic 
shapes and have been specified with a 
probability density function. We’ll 
encounter some of these other 
distributions throughout the book, for 
example the t-distribution, chi-square (χ2)  
distribution, and F-distribution. For now, 
the important thing to remember is that all 
of these distributions have something in 
common: they are all defined by an 
equation that enables us to calculate 
precisely the probability of obtaining a 
given score.

As we have seen, distributions can have 
different means and standard deviations. 
This isn’t a problem for the probability 
density function—it will still give us the 
probability of a given value occurring— 
but it is a problem 
for us because 
probability density 
functions are difficult 
enough to spell, let 
alone use to compute 
probabilities. 
Therefore, to avoid a brain meltdown we 
often use a normal distribution with a 
mean of 0 and a standard deviation of 1 as 
a standard. This has the advantage that we 
can pretend that the probability density 
function doesn’t exist and use tabulated 
probabilities (as in the Appendix) instead. 
The obvious problem is that not all of the 
data we collect will have a mean of 0 and a 
standard deviation of 1. For example, for 
the ice bucket data the mean is 39.68 and 
the standard deviation is 7.74. However, 
any data set can be converted into a data 
set that has a mean of 0 and a standard 
deviation of 1. First, to center the data 
around zero, we take each score (X) and 
subtract from it the mean of all scores (X ). 
To ensure the data have a standard 
deviation of 1, we divide the resulting score 
by the standard deviation (s), which we 
recently encountered. The resulting scores 

What is a z-score?
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Figure 1.14  Using tabulated values of the standard normal distribution
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are denoted by the letter z and are known 
as Z-scores. In equation form, the 
conversion that I’ve just described is:

z
X X

s
=

- � (1.9)

The table of probability values that have 
been calculated for the standard normal 
distribution is shown in the Appendix. 
Why is this table important? Well, if we 
look at our ice bucket data, we can answer 
the question ‘What’s the probability that 
someone posted a video on day 60 or 
later?’ First, we convert 60 into a z-score. 
We saw that the mean was 39.68 and the 
standard deviation was 7.74, so our score 
of 60 expressed as a z-score is 2.63  
(Eq. 1.10):

z =
-

=
60 39 68

7 74
2 63

.
.

. � (1.10)

We can now use this value, rather than  
the original value of 60, to compute  
an answer to our question.

Figure 1.14 shows (an edited version of) the 
tabulated values of the standard normal 
distribution from the Appendix of this book. 
This table gives us a list of values of z, and 
the density (y) for each value of z, but, most 

important, it splits the distribution at the 
value of z and tells us the size of the two 
areas under the curve that this division 
creates. For example, when z is 0, we are at 
the mean or center of the distribution so it 
splits the area under the curve exactly in 
half. Consequently, both areas have a size of 
0.5 (or 50%). However, any value of z that is 
not zero will create different sized areas, and 
the table tells us the size of the larger and 
smaller portions. For example, if we look up 
our z-score of 2.63, we find that the smaller 
portion (i.e., the area above this value or the 
blue area in Figure 1.14) is 0.0043 or only 
0.43%. I explained before that these areas 
relate to probabilities, so in this case we 
could say that there is only a 0.43% chance 
that a video was posted 60 days or more 
after the challenge started. By looking at the 
larger portion (the area below 2.63) we get 
0.9957 or put another way, there’s a 99.57% 
chance that an ice bucket video was posted 
on YouTube within 60 days of the challenge 
starting. Note that these two proportions 

add up to 1 (or 100%), so the total area 
under the curve is 1.

Another useful thing we can do (you’ll 
find out just how useful in due course) is 
to work out limits within which a certain 
percentage of scores fall. With our ice 
bucket example, we looked at how likely it 
was that a video was posted between 35 
and 40 days after the challenge started; 
we could ask a similar question such as 
‘What is the range of days between which 
the middle 95% of videos were posted?’ 
To answer this question we need to use 
the table the opposite way around. We 
know that the total area under the curve 
is 1 (or 100%), so to discover the limits 
within which 95% of scores fall we’re 
asking ‘What is the value of z that cuts off 
5% of the scores?’ It’s not quite as simple 
as that because if we want the middle 
95%, then we want to cut off scores from 
both ends. Given the distribution is 
symmetrical, if we want to cut off 5% of 
scores overall but we want to take some 
from both extremes of scores, then the 
percentage of scores we want to cut from 
each end will be 5%/2 = 2.5% (or 0.025 
as a proportion). If we cut off 2.5% of 
scores from each end then in total we’ll 
have cut off 5% scores, leaving us with the 
middle 95% (or 0.95 as a proportion)—
see Figure 1.15. To find out what value of z 
cuts off the top area of 0.025, we look 
down the column ‘smaller portion’ until 
we reach 0.025, we then read off the 
corresponding value of z. This value is 
1.96 (see Figure 1.14) and because the 
distribution is symmetrical around zero, 
the value that cuts off the bottom 0.025 
will be the same but a minus value 
(–1.96). Therefore, the middle 95% of 
z-scores fall between −1.96 and 1.96. If we 
wanted to know the limits between which 
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Figure 1.15  The probability density function of a normal distribution

SELF              TEST

Assuming the same mean and standard deviation  
for the ice bucket example above, what’s the probability  

that someone posted a video within the first 30 days of the challenge?
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the middle 99% of scores would fall, we 
could do the same: now we would want to 
cut off 1% of scores or 0.5% from each 
end. This equates to a proportion of 
0.005. We look up 0.005 in the smaller 
portion part of the table and the nearest 
value we find is 0.00494, which equates 
to a z-score of 2.58 (see Figure 1.14). This 
tells us that 99% of z-scores lie  
between −2.58 and 2.58. Similarly (have a 
go), you can show that 99.9% of them lie 
between −3.29 and 3.29. Remember these 
values (1.96, 2.58 and 3.29) because 
they’ll crop up time and time again.

1.8.7  Fitting statistical  
models to the data 

Having looked at your data (and there is a lot 
more information on different ways to do 
this in Chapter 5), the next step of the 
research process is to fit a statistical 
model to the data. That is to go where 

eagles dare, and no one should fly where 
eagles dare; but to become scientists we 
have to, so the rest of this book attempts 
to guide you through the various models 
that you can fit to the data.

1.9  Reporting data 
1.9.1  Dissemination  
of research 

Having established a theory and collected 
and started to summarize data, you might 
want to tell other people what you have 
found. This sharing of information is a 
fundamental part of being a scientist. As 
discoverers of knowledge, we have a duty 
of care to the world to present what we 
find in a clear and unambiguous way, and 
with enough information that others can 
challenge our conclusions. It is good 
practice, for example, to make your data 
available to others and to be open with the 

resources you used. Initiatives such as the 
Open Science Framework (https://osf.io) 
make this easy to do. Tempting as it may 
be to cover up the more unsavory aspects 
of our results, science is about truth, 
openness and willingness to debate  
your work.

Scientists tell the world about our 
findings by presenting them at 
conferences and in articles published in 
scientific journals. A scientific journal is 
a collection of articles written by 
scientists on a vaguely similar topic. A 
bit like a magazine, but more tedious. 
These articles can describe new research, 
review existing research or might put 
forward a new theory. Just like you have 
magazines such as Modern Drummer, 
which is about drumming or Vogue, 
which is about fashion (or Madonna, I 
can never remember which), you get 
journals such as Journal of Anxiety 
Disorders, which publishes articles about 

•• A frequency distribution can be either a table or a chart 
that shows each possible score on a scale of measurement 
along with the number of times that score occurred in the 
data.

•• Scores are sometimes expressed in a standard form known 
as z-scores.

•• To transform a score into a z-score you subtract from it the 
mean of all scores and divide the result by the standard 
deviation of all scores.

•• The sign of the z-score tells us whether the original score was 
above or below the mean; the value of the z-score tells us how 
far the score was from the mean in standard deviation units.

Cramming Sam’s Tips 
Distributions and z-scores
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anxiety disorders, and British Medical 
Journal, which publishes articles about 
medicine (not specifically British 
medicine, I hasten to add). As a 
scientist, you submit your work to one of 
these journals and they will consider 
publishing it. Not everything a scientist 
writes will be published. Typically, your 
manuscript will be given to an ‘editor’ 
who will be a fairly eminent scientist 
working in that research area who has 
agreed, in return for their soul, to make 
decisions about whether or not to 
publish articles. This editor will send 
your manuscript out to review, which 
means they send it to other experts in 
your research area and ask those experts 
to assess the quality of the work. Often 
(but not always) the reviewer is blind to 
who wrote the manuscript. The 
reviewers’ role is to provide a 
constructive and even-handed overview 
of the strengths and weaknesses of your 
article and the research contained within 
it. Once these reviews are complete the 
editor reads them and then assimilates 
the comments with his or her own views 
on the manuscript and decides whether 
to publish it (in reality, you’ll be asked to 
make revisions at least once before a 
final acceptance).

The review process is an excellent way to 
get useful feedback on what you have done, 
and very often throws up things that you 
hadn’t considered. The flip side is that 
when people scrutinize your work, they 
don’t always say nice things. Early on in my 
career I found this process quite difficult: 
often you have put months of work into the 
article and it’s only natural that you want 
your peers to receive it well. When you do 
get negative feedback, and even the most 
respected scientists do, it can be easy to feel 
like you’re not good enough. At those 
times, it’s worth remembering that if you’re 
not affected by criticism, then you’re 
probably not human; every scientist  
I know has moments when they doubt 
themselves.

1.9.2  Knowing  
how to report data 

An important part of publishing your 
research is how you present and report 
your data. You will typically do this 
through a combination of graphs (see 
Chapter 5) and written descriptions of the 
data. Throughout this book I will give you 
guidance about how to present data and 
write up results. The difficulty is that 
different disciplines have different 
conventions. In my area of science 
(psychology), we typically follow the 
publication guidelines of the American 
Psychological Association or APA 
(American Pyschological Association, 
2010), but even within psychology 
different journals have their own 
idiosyncratic rules about how to report 
data. Therefore, my advice will be broadly 
based on the APA guidelines, with a bit of 
my own personal opinion thrown in when 
there isn’t a specific APA ‘rule’. However, 
when reporting data for assignments or 
for publication, it is always advisable to 
check the specific guidelines of your tutor 
or the journal.

Despite the fact that some people would 
have you believe that if you deviate from 
any of the ‘rules’ in even the most subtle of 
ways then you will unleash the four 
horsemen of the apocalypse onto the world 
to obliterate humankind, the ‘rules’ are no 
substitute for common sense. Although 
some people treat the APA style guide like 
a holy sacrament, its job is not to lay down 
intractable laws, but to offer a guide so 
that everyone is consistent in what they 
do. It does not tell you what to do in every 
situation, but does offer sensible guiding 
principles that you can extrapolate to most 
situations you’ll encounter.

1.9.3  Some initial  
guiding principles 

When reporting data, your first decision is 
whether to use text, a graph or a table. You 
want to be succinct, so you shouldn’t 

present the same values in multiple ways: 
if you have a graph showing some results 
then don’t also produce a table of the same 
results: it’s a waste of space. The APA gives 
the following guidelines:

••Choose a mode of presentation that 
optimizes the understanding of the data.
•• If you present three or fewer numbers 
then try using a sentence.
•• If you need to present between 4 and 20 
numbers consider a table.
•• If you need to present more than 20 
numbers then a graph is often more 
useful than a table.

Of these, I think the first is most important: 
I can think of countless situations where 
I would want to use a graph rather than a 
table to present 4–20 values because a 
graph will show up the pattern of data 
most clearly. Similarly, I can imagine 
some graphs presenting more than 20 
numbers being an absolute mess. This 
takes me back to my point about rules 
being no substitute for common sense, 
and the most important thing is to pres-
ent the data in a way that makes it easy 
for the reader to digest. We’ll look at how 
to present graphs in Chapter 5 and we’ll 
look at tabulating data in various chap-
ters when we discuss how best to report 
the results of particular analyses.
A second general issue is how many 
decimal places to use when reporting 
numbers. The guiding principle from the 
APA (which I think is sensible) is that the 
fewer decimal places the better, which 
means that you should round as much as 
possible but bear in mind the precision of 
the measure you’re reporting. This 
principle again reflects making it easy for 
the reader to understand the data. Let’s 
look at an example. Sometimes when a 
person doesn’t respond to someone, they 
will ask ‘What’s wrong, has the cat got 
your tongue?’ Actually, my cat had a large 
collection of carefully preserved human 
tongues that he kept in a box under the 
stairs. Periodically, he’d get one out, pop it 
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in his mouth and wander around the 
neighborhood scaring people with his big 
tongue. If I measured the difference in 
length between his actual tongue and his 
fake human tongue, I might report this 
difference as 0.0425 meters, 4.25 
centimeters or 42.5 millimeters. This 
example illustrates three points: (1) I 
needed a different number of decimal 
places (4, 2 and 1, respectively) to convey 
the same information in each case;  
(2) 4.25 cm is probably easier for 
someone to digest than 0.0425 m because 
it uses fewer decimal places; and (3) my 
cat was odd. The first point demonstrates 
that it’s not the case that you should 
always use, say, two decimal places; you 
should use however many you need in a 
particular situation. The second point 
implies that if you have a very small 
measure it’s worth considering whether 
you can use a different scale to make the 
numbers more palatable.

Finally, every set of guidelines will 
include advice on how to report specific 
analyses and statistics. For example, 
when describing data with a measure of 
central tendency, the APA suggests you 
use M (capital M in italics) to represent 
the mean but is fine with you using the 
mathematical notation (X

–
) too. 

However, you should be consistent: if 
you use M to represent the mean you 
should do so throughout your article. 
There is also a sensible principle that if 
you report a summary of the data such 
as the mean, you should also report the 
appropriate measure of the spread of 
scores. Then people know not just the 
central location of the data, but also 
how spread out they were. Therefore, 
whenever we report the mean, we 
typically report the standard deviation 
also. The standard deviation is usually 
denoted by SD, but it is also common 
to simply place it in parentheses as 
long as you indicate that you’re doing 
so in the text. Here are some examples 
from this chapter:

99Andy has 2 friends on Facebook. On 
average, a sample of other users  
(N = 11), had considerably more,  
M = 95, SD = 56.79.
99The average number of days it took 
someone to post a video of the ice  
bucket challenge was X

–
 = 39.68,  

SD = 7.74.
99By reading this chapter we  
discovered that (SD in parentheses),  
on average, people have 95 (56.79) 
friends on Facebook and on  
average it took people 39.68 (7.74)  
days to post a video of them  
throwing a bucket of iced water  
over themselves.

Note that in the first example,  
I used N to denote the size of the sample. 
This is a common abbreviation:  
a capital N represents the entire sample 
and a lower-case n represents a subsample 
(e.g., the number of cases within a 
particular group).

Similarly, when we report medians, there 
is a specific notation (the APA suggests 
Mdn) and we should report the range or 
interquartile range as well (the APA does 
not have an abbreviation for either of 
these terms, but IQR is commonly used 
for the interquartile range). Therefore, we 
could report:

Generate hypotheses 
and identify variables

How do I do 
research?

What is a 
variable?

How do I describe 
the data I collect?

How do I collect 
data?

Central tendency: 
mean, mode, median

Levels of measurement: nominal, 
ordinal, interval, ratio

Randomization and 
counterbalancing

Describe data
Experimental methods (you 

manipulate variables)

Collect data

Graphs (e.g., frequency 
distributions)

Anything that 
can vary

generate a theory

How do I 
measure 

variables?

Outcome (a.k.a. dependent 
variable) is not manipulated

Predictor (a.k.a. independent 
variable) can be manipulated

Correlational methods (measure 
naturally occurring variables)

Reliability: Do you get the same 
results in the same conditions?

Validity: Are you measuring what 
you think you are?

Dispersion: variance, standard deviation, range, interquartile range

Hi Jane, can I 
buy you a 
co ee?

I date only 
statistics geniuses

Figure 1.16  What Brian learnt from this chapter
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99Andy has 2 friends on Facebook. A 
sample of other users (N = 11) typically 
had more, Mdn = 98, IQR = 63.
99Andy has 2 friends on Facebook. A 
sample of other users (N = 11) typically 
had more, Mdn = 98, range = 212.

1.10  Brian’s attempt  
to woo Jane 
Brian had a crush on Jane. He’d seen her 
around campus a lot, always rushing with 
a big bag and looking sheepish. People 
called her a weirdo, but her reputation for 
genius was well earned. She was 
mysterious, no one had ever spoken to her 
or knew why she scuttled around the 
campus with such purpose. Brian found 
her quirkiness sexy. He probably needed to 
reflect on that someday.

As she passed him on the library stairs, Brian 
caught her shoulder. She looked horrified.

‘Sup,’ he said with a smile.

Jane looked sheepishly at the bag she was 
carrying.

‘Fancy a brew?’ Brian asked.

Jane looked Brian up and down. He was 
handsome, but he looked like he might be an 
idiot . . . and Jane didn’t trust people, 
especially guys. To her surprise, Brian tried to 
woo her with what he’d learnt in his statistics 
lecture that morning. Maybe she was wrong 
about his idiocy, maybe he was a statistics  
guy . . . that would make him more appealing, 
after all stats guys always told the best jokes.

Jane took his hand and led him to the 
Statistics section of the library. She pulled 
out a book called An Adventure in 
Statistics and handed it to him. Brian 
liked the cover. Jane turned and strolled 
away enigmatically.

1.11  What next? 
It is all very well discovering that if you 
stick your finger into a fan or get hit 

around the face with a golf club it hurts, 
but what if these are isolated incidents? 
It’s better if we can somehow extrapolate 
from our data and draw more general 
conclusions. Even better, perhaps we can 
start to make predictions about the 
world: if we can predict when a golf club 
is going to appear out of nowhere then we 
can better move our faces. The next 
chapter looks at fitting models to the data 
and using these models to draw 
conclusions that go beyond the data we 
collected.

My early childhood wasn’t all full of pain, 
on the contrary it was filled with a lot of 
fun: the nightly ‘from how far away can  
I jump into bed’ competition (which 
sometimes involved a bit of pain) and 
being carried by my brother and dad to 
bed as they hummed Chopin’s Marche 
Funèbre before lowering me between two 
beds as though being buried in a grave.  
It was more fun than it sounds.

1.12  Key terms that I’ve discovered
Between-groups design

Between-subjects design

Bimodal

Binary variable

Boredom effect

Categorical variable

Central tendency

Concurrent validity

Confounding variable

Content validity

Continuous variable

Correlational research

Counterbalancing

Criterion validity

Cross-sectional research

Dependent variable

Deviance

Discrete variable

Ecological validity

Experimental research

Falsification

Frequency distribution

Histogram

Hypothesis

Independent design

Independent variable

Interquartile range

Interval variable

Journal

Kurtosis

Leptokurtic

Level of measurement

Longitudinal research

Lower quartile

Mean

Measurement error

Median

Mode

Multimodal

Negative skew

Nominal variable

Nonile

Normal distribution

Ordinal variable

Outcome variable

Percentile

Platykurtic

Positive skew

Practice effect

Predictive validity

Predictor variable

Probability density function (PDF)

Probability distribution

Qualitative methods

Quantile

Quantitative methods

Quartile

Randomization

Range

Ratio variable

Reliability

Repeated-measures design

Second quartile

Skew

Standard deviation

Sum of squared errors

Systematic variation

Tertium quid

Test–retest reliability

Theory

Unsystematic variance

Upper quartile

Validity

Variables

Variance

Within-subject design

z-scores
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Smart Alex’s tasks

Smart Alex knows everything there is to know about statistics and IBM SPSS Statistics. She also likes nothing more 

than to ask people stats questions just so that she can be smug about how much she knows. So, why not really 

annoy her and get all of the answers right!

•• Task 1: What are (broadly speaking) the five stages of the 
research process? 

•• Task 2: What is the fundamental difference between 
experimental and correlational research? 

•• Task 3: What is the level of measurement of the 
following variables? 

{{ The number of downloads of different bands’ 
songs on iTunes

{{ The names of the bands that were downloaded
{{ Their positions in the download chart
{{ The money earned by the bands from the downloads
{{ The weight of drugs bought by the bands with their 

royalties
{{ The type of drugs bought by the bands with their 

royalties
{{ The phone numbers that the bands obtained 

because of their fame
{{ The gender of the people giving the bands their 

phone numbers
{{ The instruments played by the band members
{{ The time they had spent learning to play their 

instruments

•• Task 4: Say I own 857 CDs. My friend has written a 
computer program that uses a webcam to scan the 
shelves in my house where I keep my CDs and measure 
how many I have. His program says that I have 863 CDs. 
Define measurement error. What is the measurement 
error in my friend’s CD-counting device? 

•• Task 5: Sketch the shape of a normal distribution, a 
positively skewed distribution and a negatively skewed 
distribution. 

•• Task 6: In 2011 I got married and we went to Disney World in 
Florida for our honeymoon. We bought some bride and groom 
Mickey Mouse hats and wore them around the parks. The 
staff at Disney are really nice and, upon seeing our hats, would 

say ‘Congratulations’ to us. We counted how many times 
people said congratulations over 7 days of the honeymoon: 5, 
13, 7, 14, 11, 9, 17. Calculate the mean, median, sum of squares, 
variance, and standard deviation of these data. 

•• Task 7: In this chapter we used an example of the time taken 
for 21 heavy smokers to fall off a treadmill at the fastest 
setting (18, 16, 18, 24, 23, 22, 22, 23, 26, 29, 32, 34, 34, 36, 36, 
43, 42, 49, 46, 46, 57). Calculate the sum of squares, 
variance and standard deviation of these data. 

•• Task 8: Sports scientists sometimes talk of a ‘red zone’, which 
is a period during which players in a team are more likely to 
pick up injuries because they are fatigued. When a player hits 
the red zone it is a good idea to rest them for a game or two. At 
a prominent London football club that I support, they 
measured how many consecutive games the 11 first-team 
players could manage before hitting the red zone: 10, 16, 8, 9, 
6, 8, 9, 11, 12, 19, 5. Calculate the mean, standard deviation, 
median, range and interquartile range. 

•• Task 9: Celebrities always seem to be getting divorced. The 
(approximate) lengths of some celebrity marriages in days are: 
240 (J-Lo and Cris Judd), 144 (Charlie Sheen and Donna 
Peele), 143 (Pamela Anderson and Kid Rock), 72 (Kim 
Kardashian, if you can call her a celebrity), 30 (Drew Barrymore 
and Jeremy Thomas), 26 (W. Axl Rose and Erin Everly), 2 
(Britney Spears and Jason Alexander), 150 (Drew Barrymore 
again, but this time with Tom Green), 14 (Eddie Murphy and 
Tracy Edmonds), 150 (Renée Zellweger and Kenny Chesney), 
1657 (Jennifer Aniston and Brad Pitt). Compute the mean, 
median, standard deviation, range and interquartile range for 
these lengths of celebrity marriages. 

•• Task 10: Repeat Task 9 but excluding Jennifer Anniston 
and Brad Pitt’s marriage. How does this affect the mean, 
median, range, interquartile range, and standard 
deviation? What do the differences in values between 
Tasks 9 and 10 tell us about the influence of unusual 
scores on these measures? 

Answers & additional resources are available on the book’s website at 
https://edge.sagepub.com/field5e

Why is my evil lecturer forcing me to learn statistics?
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