
 
 

 

 
 
 

1   Comparing Two Means 
 
 
 
 
Introduction 
 
Analysis of variance (ANOVA) is the standard method used to generate 
confident statistical inferences about systematic differences between means of 
normally distributed outcome measures in randomized experiments. In order to 
provide a context for what follows, we will begin by considering briefly what is 
implied by the previous sentence. 
  First, the reference to randomized experiments suggests that ANOVA is 
particularly appropriate for the analysis of data from experiments in which each 
subject (participant, experimental unit) is randomly assigned to one of two or 
more different treatment conditions (experimental groups). All subjects in a 
particular treatment condition receive the same treatment, and differences in the 
effects of the treatments are expected to produce differences between groups in 
post-treatment scores on a relevant outcome measure. Random assignment of 
subjects to experimental conditions usually ensures that systematic differences 
between means of groups given different treatments can be attributed to 
differences in the effects of the treatments, rather than to any other explanation 
such as the presence of pre-existing differences between the groups. If nothing 
goes wrong in the conduct of a randomized experiment, systematic differences 
between group means on a dependent variable can quite properly be attributed 
to differences in the effects of the treatments, and ANOVA procedures are 
specifically designed to produce inferences about differential treatment effects. 
  ANOVA procedures are not well suited for the analysis of data from quasi-
experiments, where different treatments are given to pre-existing groups, such as 
different classes in a school. It is usually preferable to analyse quasi-
experimental data by methods that attempt to take pre-existing differences into 
account (Reichardt, 1979).  
  The statement that ANOVA (or at least fixed-effects ANOVA, by far the most 
widely used version) is concerned with the pattern of differences between means 
implies that, despite the name of the procedure, the focus is on means rather 
than variances.1 When the outcome of an experiment is not well summarized by 
a set of means, as is the case when the dependent variable is categorical rather 
than continuous, ANOVA is not appropriate. 
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  The theory underlying inferential procedures in ANOVA assumes (among 
other things) that the distributions to be summarized in terms of means are 
normal distributions. ANOVA procedures are often used, sometimes with very 
little justification, when outcome measures are not even approximately normally 
distributed. 
  We should also consider what is meant by systematic differences between 
means on an outcome measure. According to the simplest ANOVA model, the 
difference between two sample means (the means calculated from the data 
produced by subjects given two different treatments in a randomized 
experiment) is influenced by two independent components, one of which is 
systematic, the other random. The systematic component is the difference 
between the effects of the two treatments; in a simple randomized experiment 
this difference between effects can be thought of as a difference between two 
population means, one for each treatment. The experimenter’s problem, of 
course, is that the observed difference between sample means can also be 
influenced by a number of other unknown factors, some of which are associated 
with the particular subjects who happen to be assigned to a particular treatment, 
and some of which may be regarded as factors contributing to measurement 
error. In a randomized experiment these unknown factors contribute to the 
difference between sample means in a random or nonsystematic way. ANOVA 
methods allow for the influence of random as well as systematic influences on 
sample means. 
  Finally, it is necessary to consider what is meant by confident statistical 
inference. Suppose that the dependent variable in a two-group randomized 
experiment is a 40 item ability test, and the sample means on this test are 

1 25.76M =  and 2 19.03,M =  so that the difference between sample means is 

1 2M M−  = 6.73. Given this difference, which is specific to this particular 
sample (or pair of samples), what can we infer about the difference between the 
effects of the two treatments (that is, the difference between population means 

1 2 )?µ − µ  Because 1 2M M−  is an unbiased estimator of 1 2µ − µ  it might seem 
reasonable to infer that 1 2µ − µ  = 6.73. This is indeed the best point estimate of 
the value of 1 2.µ − µ  The problem with a point estimate of a difference between 
two population means is that it is almost certain to be different from the actual 
value of the parameter being estimated, so that we are almost certain to be 
wrong if we assert that 1 2µ − µ  = 6.73. Imagine replicating the experiment 
(repeating the experiment with different subjects) a very large number of times.2 
Values of 1 2M M−  would vary across replications, almost never being exactly 
equal (given an unlimited number of decimal places) to the unknown value of 

1 2.µ − µ  Because we cannot be confident in any sense that this (or any other) 
point estimation procedure is likely to produce a correct inference, point 
estimation is not a confident inference procedure. An interval estimate of the 
value of 1 2 ,µ − µ  however, does allow for the possibility of confident inference. 
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Suppose that the 95% confidence interval (CI) on 1 2µ − µ  turns out to have a 
lower limit of 4.39 and an upper limit of 9.07, and as a consequence we assert 
that the value of 1 2µ − µ  is somewhere between these limits. We cannot be sure 
that this particular inference is correct, but we know that the CI procedure 
controls the probability (at .95) that inferences of this kind are correct, meaning 
that 95% of the CIs constructed in this way (one interval per replication) would 
include the value of 1 2.µ − µ  We can express the same thing in terms of an 
error rate by saying that the probability of being in error when asserting that the 
interval includes 1 2µ − µ  is .05. (This means that 5% of assertions of this kind, 
one per replication, are incorrect.) The difference between confident statistical 
inference and point estimation is that the former allows the researcher to control 
the probability of inferential error. 
  ANOVA provides for confident inference on differences between means via 
CIs and statistical significance tests. As we will see, inference from CIs is more 
informative than inference from tests. 
 
 
Organization of this book 
 
This book is intended for readers who have completed at least one course in 
statistics and data analysis including a reasonably substantial treatment of 
statistical inference. If you feel the need to revise some of the basic ideas 
underlying statistical inference before dealing with the material in this book, you 
will find that the accounts given by Lockhart (1998) and Smithson (2000) are 
compatible with the approach taken here. 
  Chapter 1 applies a hierarchy of levels of inference to the problem of 
producing and justifying a confident inference on a single comparison between 
two means. If your introduction to statistical inference emphasized statistical 
hypothesis testing you may be surprised to discover that CI inference occupies 
the highest level in this hierarchy. 
  Chapter 2 deals with the application of the ANOVA model to data from single-
factor between-subject designs. CI inference on individual contrasts 
(generalized comparisons) is emphasized, and the hierarchy of inference levels 
is used to show how this approach is related to traditional approaches 
emphasizing test-based heterogeneity and directional inference. 
  In Chapter 3 we consider methods of controlling the precision of CI inferences 
on contrasts. The relationship between precision of interval estimates on 
contrasts and the analogous concept of the power of significance tests on 
contrasts is discussed. 
  Chapter 4 deals with simple between-subjects factorial designs in which the 
effects of varying the levels of at least two different experimental factors are 
examined within a single experiment. In this chapter we examine a number of 
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different approaches to the problem of producing coherent inferences on 
contrasts on three types of factorial effects defined by ANOVA models: simple 
effects, main effects and interaction effects. Analyses of complex between-
subjects factorial designs are considered in Chapter 5. 
  In Chapter 6 we consider within-subjects (repeated measures) designs, where 
each subject in a single group is subjected to all of the treatments examined in 
an experiment, or where each subject is examined on a number of trials or 
measurement occasions. ANOVA models for within-subjects designs must 
somehow deal with the fact that repeated measurements on a single individual 
are not independent of one another, so these models, and the data-analytic 
procedures that make use of them, differ in important ways from the models and 
methods discussed in earlier chapters. 
  Chapter 7 deals with mixed factorial designs: designs with at least one 
between-subjects factor and at least one within-subjects factor.  
  Many of the analyses recommended in this book are not currently supported by 
most of the popular statistical packages. You can carry out most of these 
analyses with a program called PSY (Bird, Hadzi-Pavlovic and Isaac, 2000). See 
Appendix A for a general overview of the program and the website from which 
it can be downloaded. PSY does not carry out some of the more traditional 
analyses based on significance tests that are supported by statistical packages, 
and it does not carry out analyses based on various extensions of ANOVA 
models. For these reasons (among others), Appendix B provides SPSS syntax 
required to carry out various analyses with SPSS, probably the most popular of 
all statistical packages. Finally, some of the more advanced analyses are most 
easily carried out with the STATISTICA Power Analysis program (Steiger, 
1999). The use of this program is discussed where appropriate. 
  The data sets used for most of the examples and exercises can be downloaded 
from the Sage website at 
 

 http://www.sagepub.co.uk/resources/bird.htm 
 
Every input file mentioned in this book can be downloaded from that website 
and can be opened by PSY. 
 
 
Confident inference on a single comparison 
 
Many of the basic ideas concerning inference in ANOVA can be developed in 
the context of a two-group randomized experiment, where the experimenter 
wishes to use the data to produce a confident inference on a single comparison 
between two means. In this chapter we will examine in some detail the logic of 
confident inference in the two-group case.  Suppose that an experimenter wishes 
to examine the effect of a treatment (an experimental manipulation of some 
kind) by comparing the mean score of treated subjects on a relevant dependent 
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variable (outcome measure) with the mean score obtained by a different group 
of subjects who did not receive the treatment (a control group). N subjects are 
randomly assigned to two groups (with n = 2N  subjects per group), and steps 
are taken to ensure that the problems that can sometimes arise in randomized 
experiments (Cook and Campbell, 1979, Shadish, Cook and Campbell, 2002) do 
not arise in this one. 
  The parameter of most interest to the experimenter is 1 2 ,µ − µ  the difference 
between the mean of all potential subjects who receive the treatment and the 
mean of all potential subjects in the control condition. This difference between 
the means of two hypothetical populations is unknown, but can be estimated 
from 1 2 ,M M−  the difference between the means of subjects in the two groups. 
In a randomized experiment the expected value of 1 2M M−  is .21 µ−µ  This 
means that if the experiment were replicated an infinite number of times and 
each replication produced a value of 1 2 ,M M−  then the mean of the distribution 
of 1 2M M−  values would be 1 2.µ − µ  1 2M M−  is therefore an unbiased 
estimator of 1 2.µ − µ  
  Absence of bias is a desirable property of an estimator, but it does not imply 
that the estimate of an effect size obtained from a single experiment will be so 
close to the actual effect size that the discrepancy between the two can be safely 
ignored. A confident inference about the value of 1 2µ − µ  can be obtained from 
an analysis of variance, but in the two-group case the same inference can be 
obtained from the familiar two-group t test or from a t-based CI. It will be 
convenient to deal with a number of issues in this familiar context before we 
discuss the more general ANOVA model. We need to remember that the 
standard two-group t (test or CI) procedure is based on the assumption that both 
populations of dependent variable values have a normal distribution, and that 
the two within-population standard deviations are identical.3 
 
 
Strength of inference on a comparison 
 
Following Hsu (1996), we will distinguish between three levels of confident 
inference on a comparison between two means: CI inference, confident direction 
inference and confident inequality inference. These three levels are ordered in 
terms of strength of inference, CI inference being stronger than the other two. 
 
Confidence interval inference   In Hsu’s terminology, which we will adopt here, 
a CI inference on the comparison 1 2µ − µ  can be expressed as   
 1 2µ − µ  ∈  (ll, ul) 
 
where the symbol ‘∈’ means ‘is included in’ or ‘is covered by’, 

ll  is the lower limit of the interval, 
and ul is the upper limit of the interval. 
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Thus the inference 1 2µ − µ  ∈  (10.1, 12.3) asserts that 
 
 10.1  <  1 2( )µ − µ   <  12.3, 
 
that is, that 1µ  is greater than 2µ  by at least 10.1 units, but by no more than 
12.3 units. The CI (as distinct from the inference derived from it) is (10.1,  
12.3).  
  If the CI covers the parameter (that is, if 1 2µ − µ  is in fact somewhere between 
the upper and lower limits), then the inference is correct, and no error has been 
made. If the interval does not cover the parameter (that is, if 1 2µ − µ  is lower 
than the interval’s lower limit or higher than the upper limit), then the inference 
is false. We will use the term noncoverage error to refer to this type of 
inferential error. Given the assumptions required to justify the CI procedure, the 
noncoverage error rate α (the probability of a noncoverage error) can be 
controlled at a nominated low level, usually set at .05 or .10. It is customary to 
specify the noncoverage error rate indirectly by setting the confidence level, 
defined as 100(1 – α)%, at a high level. If the confidence level is set at 95%, 
then the noncoverage error rate is α = .05.  
  It is important to understand what the confidence level and the noncoverage 
error rate mean, and also what they do not mean. Imagine that a two-group 
experiment is replicated a very large number of times. Each replication produces 
a 95% CI on 1 2.µ − µ  Because sample means and other statistics vary across 
replications, CI limits and the inferences following from them will also vary 
across replications. Provided that the relevant assumptions are satisfied, 95% of 
these repetitions of the experiment will produce a CI covering the population 
mean difference, thereby producing a correct inference. The (unknown) value of 
the parameter of interest 1 2( )µ − µ  does not vary across these replications. The 
parameter is fixed, but the CIs vary across replications. 
  The language sometimes used to describe CIs (‘the probability that the 
parameter lies inside the interval is …’) can encourage incorrect interpretations 
implying that the parameter is a variable rather than a constant. The important 
point is that the probability statement refers to the relative frequency with which 
variable intervals include (or exclude) the fixed parameter, given an indefinitely 
large number of replications of the experiment. 
 
Confident direction inference   A directional inference specifies the direction of 
the difference between means, but nothing more than that. Directional inference 
on the comparison 1 2µ − µ  is an assertion of the form 1 2µ > µ  or 1 2.µ < µ  
  CI inference implies directional inference, provided that the CI excludes the 
value zero so that all values in the interval have the same sign. Thus the CI 
inference 1 2µ − µ  ∈ (10.1, 12.3) implies that 1 2.µ > µ  
  In practice, a directional inference usually follows from the rejection of a null 
hypothesis such as 0H : 1 2µ − µ  = 0 by a statistical test. Many test procedures 
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designed to test hypotheses about differences between means (including the two-
group t test) are associated with (and derivable from) a CI procedure. If a 95% 
CI constructed with the t procedure (the standard procedure in the two-group 
case) turns out to be (10.1, 12.3), justifying the directional inference 1 2 ,µ > µ  
then the associated .05-level two-tailed t test will necessarily reject the null 
hypothesis 1 2µ − µ  = 0. Rejection of this hypothesis implies the inequality 
inference 1 2 ,µ ≠ µ  but does not by itself imply anything about the direction of 
the difference between means. The justification for directional inference in this 
case depends on the relationship between the CI and the test: the test is able to 
reject the null hypothesis when 1 2M M>  if and only if the associated CI 
justifies the directional inference 1 2.µ > µ  Similarly, a statistically significant 
outcome when 1 2M M<  implies that the associated CI includes only negative 
values [such as (–8.6, –2.3)], thereby justifying the directional inference 

1 2.µ < µ  
  We may note in passing that a two-sided CI (with both an upper and lower 
limit) implies the outcome of a two-tailed test, but it does not imply the outcome 
of a one-tailed test. One-tailed tests are associated with single-sided CIs (see 
Hsu, 1996), which are rarely used in psychological research. One disadvantage 
of single-sided CIs is that they provide no information about precision of 
estimation.  
  Erroneous directional inferences can occur under two conditions: first, if a 
directional inference is made when no difference exists; second, if a difference 
exists in the direction opposite to that asserted. If 1 2µ − µ  = 0 and it is asserted 
that 21 µ>µ  or 1 2 ,µ < µ  then a Type I error has been made. If 1 2µ − µ  = 0, 
then the Type I error rate from an α-level two-tailed test procedure is equal to 
the noncoverage error rate for confidence interval inference. The Type I error 
rate is hypothetical, in the sense that it refers to errors that cannot occur unless 

1 2.µ = µ  If 21 µ>µ  and it is asserted that 1 2 ,µ < µ  or if 21 µ>µ  and it is 
asserted that 1 2 ,µ < µ  then a Type III error has been made. The Type III error 
rate cannot exceed α/2, which it approaches for very small values of 1 2 .µ − µ  
 
Confident inequality inference   Inequality inference occurs when a data analyst 
asserts simply that 1 2 ,µ ≠ µ  without specifying the direction of the difference 
between means. This is a particularly weak form of inference, because it denies 
only that the two means are absolutely identical. CI inference implies confident 
inequality inference if zero is excluded from the CI: the inference 1 2µ − µ  ∈ 
(10.1, 12.3) implies that 1 2.µ ≠ µ  Confident direction inference also implies 
confident inequality inference, because the assertions 21 µ>µ  and 21 µ<µ  
both imply that 1 2.µ ≠ µ  A Type I error is the only type of error possible when 
inequality is asserted. 
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Equality inference?   Following Hsu (1996), we do not consider Type II errors 
when defining error rates for directional inference or inequality inference. A 
Type II error (as defined in most discussions of significance tests) would occur 
if it were incorrectly asserted that 1 2.µ = µ  The approach we are considering 
makes no provision for such an inference. Indeed, a number of statisticians and 
data analysts argue that there is always some difference, perhaps an extremely 
small difference, between any two population means (Cohen, 1994, Schmidt, 
1996). It is important, however, to allow for the possibility of inferring that two 
population means might be practically equivalent, meaning that the difference 
between them is in some sense trivially small. We will discuss practical 
equivalence inference after we consider effect size. 
 
 
Interpreting effect size 
 
CI inference is stronger (more informative) than confident direction or confident 
inequality inference, and is therefore emphasized in this book. Traditionally, 
however, the benefits of CI inference have been largely ignored in practice, and 
researchers have generally relied on significance tests that provide relatively 
weak inference, and no inference at all about the magnitude of the effects under 
investigation. Since the early 1960s, this traditional approach to inference has 
been severely criticized (see Harlow, Mulaik and Steiger, 1997, for a 
comprehensive review). No doubt the conservative approach taken by many 
textbook authors, journal editors and software producers has played a role in 
reinforcing the much criticized traditional approach. Researchers often respond 
to an obvious need to say something about the magnitude of an experimental 
effect by relying on a significance test to justify an assertion about the existence 
of the effect (via confident direction or confident inequality inference), then 
discussing the magnitude of the observed difference between means as though it 
is not subject to sampling error. As a consequence, a confident inference may 
(or may not) be made about the existence or direction of an effect, but no 
attempt is made to produce a confident inference about the magnitude of the 
effect. A much better approach is to incorporate the intention to make 
statements about effect size into the inferential analysis from the outset. 
  Before the magnitude of an experimental effect can be profitably estimated, it 
must be defined in a way that makes sense to the researcher. Although various 
approaches to effect size measurement have been proposed, a difference 
between two relevant population means has distinct advantages over alternative 
approaches, provided that the difference is expressed in an informative metric. 
 
Dependent variable units   The most obvious metric for an effect size is the 
metric used to scale the dependent variable. In well-developed areas of research, 
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experimenters often have access to a substantial literature documenting effects 
of all sorts of experimental manipulations on dependent variables scaled in a 
common metric. Experiments in cognitive psychology, for example, often 
measure reaction time scaled in milliseconds. Researchers in this area should 
have little difficulty in deciding whether a difference between population means 
of a given magnitude (in units of milliseconds) should be regarded as trivially 
small, extremely large, or somewhere in between. 
  If a dependent variable is not scaled in informative units, then a CI scaled in 
dependent variable units will provide no useful inferences beyond confident 
direction inference. Suppose, for example, that a two-group randomized 
experiment is carried out to examine differences in the effects of two levels of 
blood alcohol on performance in a driving task. Subjects assigned to one group 
consume sufficient alcohol to raise their blood alcohol concentration (BAC) to 
0.08%, while subjects in the second group have their BAC raised to 0.05%. 
Subjects are required to negotiate a slalom course designed specifically for the 
experiment, and the dependent variable is the number of cones (witches hats) hit 
by the car, a relatively low score indicating relatively good performance. It is 
expected, of course, that drivers with a BAC of 0.08 will hit more cones than 
will drivers with a BAC of 0.05. The experimenter is primarily interested in the 
size of that difference. The problem is that differences between means in the 
number of cones hit will be influenced by arbitrary features of this particular 
slalom, such as the difference between the width of the lane defined by the 
cones and the width of the car, the distance between adjacent cones, and the 
length of the slalom. The units of the dependent variable are essentially 
arbitrary, so an effect size expressed in these units may provide little or no 
useful information beyond the direction of the difference. Suppose that, 
unknown to (and unknowable by) the experimenter, the difference between 
population means is 0.08 0.05µ − µ  = 3.6 cones. By itself, this figure conveys 
almost no useful information beyond the directional inequality 0.08 0.05µ > µ . 
The parameter value implies that a BAC of 0.08 increases the average number 
of cones hit, relative to a BAC of 0.05, but this may be a small and trivial effect, 
or a substantial and important effect. This is not an issue about inference from 
statistics to parameters; it is an issue about the interpretation of parameters. 
 
Standard deviation units   The conventional way of dealing with an effect size 
scaled in arbitrary units of measurement is to divide it by a relevant standard 
deviation scaled in the same arbitrary units, thereby removing the influence of 
those units. The resulting quantity is scaled in standard deviation units, thereby 
making it informative to anyone familiar with these units. Following Cohen 
(1965), it has become standard practice to assume that both population standard 
deviations are equal 1 2( ),σ = σ = σ  so the standardized difference between two 
means (usually called Cohen’s d) is 1 2( ) / .µ − µ σ 4  Cohen (1969) suggested that 



Analysis of Variance via Confidence Intervals 

 

10 

 
 

in the absence of any better basis for interpreting effect size, standardized effect 
sizes of 0.2, 0.5 and 0.8 should be interpreted respectively as small, medium and 
large effects. These suggestions have been widely accepted, and now have the 
status of established conventions. 
  Returning now to the slalom example, assume for the moment that the standard 
deviation of slalom scores in both populations (drivers with a BAC of 0.05 and 
drivers with a BAC of 0.08) is σ = 20.3 cones. (Incidentally, this means that the 
slalom must have a very large number of cones.) The mean difference of 3.6 
cones is equivalent to a difference of 3.6 cones/20.3 cones = 0.18 standard 
deviation units. Most people who are familiar with standard deviation units 
would interpret this as a small and possibly trivial difference. 
  If the common population standard deviation were 3.3 cones (rather than 20.3 
cones), then the standardized mean difference would be would be 1.09 standard 
deviation units, a large difference in terms of Cohen’s guidelines. 
  While standardized effect sizes can sometimes provide a basis for relatively 
informative CI inference when none might otherwise exist, it should not be 
assumed that standardization always provides more information than the original 
scaling. A difference between means scaled in an interpretable dependent 
variable metric can be more informative than the corresponding standardized 
effect size, because the standardizing transformation removes information in this 
case. Returning again to the driving experiment, consider another test that might 
be used to assess the difference between the effects of the two blood alcohol 
levels. This test requires subjects to perform an emergency braking task: after an 
appropriate signal is given, the car is to be brought from a particular speed to a 
complete stop in the shortest possible distance. The dependent variable is 
braking distance: the distance travelled by the car after the presentation of the 
signal. It is expected that the higher blood alcohol level will produce longer 
braking distances than the lower level, but the experimenter is primarily 
interested in estimating the magnitude of the difference, to be scaled in metres, a 
familiar and informative unit of distance. The practical implications of an effect 
size expressed in units of metres can be discussed without any reference to 
standard deviation units. 
 
 
Practical equivalence inference 
 
If it is not possible to justify a confident inference that two treatments have 
identical effects on an outcome measure (that is, the inference 1 2 ),µ = µ  what 
can we make of claims that a treatment has no effect, or that a new treatment is 
no better than an old treatment, or that the effect of a treatment on males is the 
same as the effect on females? The problem with assertions of equality is not 
that there is something peculiar about asserting that the value of a parameter is 
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zero, but rather that it is not possible to justify a confident inference about any 
point estimate. This problem can be resolved by replacing point estimation with 
interval estimation. 
  The first step in practical equivalence inference is to define a range of values 
of 1 2µ − µ  within which the two treatments would be interpreted as equivalent 
for practical (or theoretical) purposes. In standard deviation units, as assessed 
by Cohen’s (1969) effect size guidelines, the required difference might be very 
small, small or small–medium. The important point is that the experimenter, a 
group of researchers, a regulatory body or someone else must be able to specify 
the maximum difference that can be regarded as trivially small. Call this 
maximum trivially small difference τ. Then the two treatments are deemed to be 
practically equivalent if 1 2µ − µ ∈ (–τ,  +τ). 
  This practical equivalence interval defines what is to be meant by a trivially 
small effect. It is highly desirable, of course, that the value of τ should be 
specified independently of the data used to justify a claim of practical 
equivalence, and that researchers in a particular domain should be able to agree 
on what is to be meant by practical equivalence in that domain. 
  Note that the practical equivalence interval is a definition, not a CI or any other 
kind of statistical inference. It is possible to know what is meant by a trivially 
small effect without being confident that the actual difference between two 
population means is, in fact, trivially small. 
  If it turns out when an experiment is run that the CI on 1 2µ − µ  lies entirely 
within the practical equivalence interval, then the inference from the CI implies 
that the two treatments must have practically equivalent effects on the dependent 
variable. If the agreed-upon practical equivalence interval is 
 (–0.25σ, 0.25σ) and it turns out that the CI from an experiment is  
(–0.05σ, 0.17σ), then all of the values inside the CI are trivially small. 
Therefore the CI 1 2µ − µ ∈ (–0.05σ, 0.17σ) implies that 1 2 ,µ ≈ µ  where the 
symbol ‘ ≈ ’ means ‘is practically equivalent to’. 
  Practical equivalence inference, then, is a special case of CI inference. It is not 
possible to justify a confident assertion about practical equivalence from a 
single inference at any lower level (such as confident direction inference or 
confident inequality inference).5 It is possible to be confident about practical 
equivalence and also be confident about direction. The CI (0.01σ, 0.18σ), for 
example, justifies the inference 1 2 ,µ > µ  and it also justifies the inference 

1 2µ ≈ µ  if the practical equivalence interval is defined as (–0.20σ, 0.20σ).  
  Practical equivalence inference is possible only from experiments providing a 
high degree of precision in estimation, as evidenced by narrow CIs relative to 
the practical equivalence interval. In practice, it turns out that most randomized 
experiments in psychology and related disciplines are not capable of producing 
sufficiently precise estimates of effect size to justify practical equivalence 
inference, whatever the outcomes of those experiments may be. Within-subjects 
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(repeated measures) designs usually produce more precise estimates of effects 
than fully randomized between-subjects designs. Practical equivalence inference 
is sometimes possible from within-subjects designs, even when the sample size 
is not large. Chapter 6 contains examples of practical equivalence inference 
from a within-subjects design. 
  Practical equivalence inference is taken very seriously in some areas of 
research where the consequences of errors in claims of equivalence can be 
important, as might be the case when a relatively inexpensive new drug 
treatment is being considered as a replacement for an expensive standard 
treatment, and it is important to discover whether the two treatments have 
practically equivalent effects. In other areas, confident practical equivalence 
inference is sometimes possible on the basis of a meta-analysis (a quantitative 
analysis of results from a set of similar studies with a very large total sample 
size). The requirements of confident practical equivalence inference are the 
same in the context of meta-analysis as in any other context: a relevant CI must 
be included in (covered by) a relevant practical equivalence interval. 
  It is often difficult to justify a precise value of τ (the maximum trivially small 
difference), so the limits of a practical equivalence interval are often somewhat 
fuzzy. If the fuzziness is extreme, then practical equivalence inference is not 
possible. 
 
 
Constructing a confidence interval on a single comparison  
 
Population standard deviation known 
 
Some of the basic principles about CI construction can be illustrated most 
clearly if we assume not only that dependent variable scores are normally 
distributed with the same standard deviation in each population, but also that the 
experimenter knows the value of the population standard deviation. 
  Given these assumptions, the procedure for constructing a raw 100(1 – α)% CI 
on 1 2µ − µ  is quite straightforward. First, an unbiased point estimate of the 
difference between population means (namely 1 2 )M M−  is calculated, together 
with the standard error (SE) of that estimate. Second, the standard error is 
multiplied by a critical value (CV) from a relevant theoretical probability 
distribution to determine the half-width (w) of the CI.6 Finally, the CI limits are 
obtained by adding (and subtracting) the half-width to (and from) the estimated 
parameter value. That is, the limits of the interval are obtained from 
 

1 2( )M M−  ±  CV × SE. 

If both groups have the same sample size 1(n = 2n = n = N/2), the standard error 
of the difference between means is 
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SE  = 
21 MM −σ  = 

2

n
σ           (1.1) 

 
and the relevant critical value is CV = / 2 ,zα  the 100(1 / 2)th− α percentile point 
of the z (standard normal) distribution. The 100(1 – α)% CI is 
 

1 2µ − µ   ∈  1 2( )M M−   ±  2/αz  × 
1 2

.M M−σ        (1.2) 

An alternative and popular way of writing the same CI is 
 

1 2( )M M−  – 2/αz  × 
21 MM −σ  < 1 2µ − µ  < 1 2( )M M−  + 2/αz  × 

1 2
.M M−σ  

 
In this book we will use expressions like (1.2). 
  Consider an experiment with n = 20 subjects in each of two groups, where the 
experimenter somehow knows before running the experiment that the population 
standard deviation is σ = 15. It follows from (1.1) that the standard error of the 
difference between the two sample means, a parameter whose value can also be 
known before the experiment is run, will be 15 2 / 20  = 4.743. The critical 
value required for a 95% CI is the 97.5th percentile point of the standard normal 
distribution, namely 025.z  = 1.960. Therefore the half-width of a 95% CI 
constructed with the z procedure will be w = 1.960 × 4.743 = 9.30.  
  Suppose that the sample means from the experiment turn out to be 

1 105.31M =  and 2 98.54,M =  so that the unbiased point estimate of 1µ  – 2µ  

is 1 2M M−  = 6.77. The limits of the 95% CI are obtained from 1 2( )M M− ± w 
= 6.77 ± 9.30. The required raw CI, then, is 21 µ−µ  ∈ (–2.53, 16.07). 
  If a standardized CI is required and σ is known to be 15, then any of the 
statistics of interest can be transformed into standard deviation (SD) units by 
dividing by 15. The difference between sample means is (6.77 /15) 0.45σ = σ  
(0.45 SD units) and the CI can be expressed as 21 µ−µ  ∈ ( 0.17 ,− σ  1.07 ),σ or 
in SD units as 1 2( ) /µ − µ σ  ∈ (–0.17, 1.07). The best point estimate of the 
standardized difference between population means suggests a medium effect. 
This estimate is not particularly precise, and all that can be inferred at the 95% 
confidence level is that either 1µ  is greater than 2µ  by some unknown but 
nontrivial amount (somewhere between small and large, but not massively 
large), or the two population means are practically equivalent. The interval does, 
therefore, justify the inference that 2µ  is not nontrivially larger than 1µ .  
Precision   The precision of inferences from this CI procedure can be 
determined before the experiment is run. The standard error of the difference 
between means is 2 / nσ  = 0.316 ,σ  and the half-width of the CI is 1.960 × 
0.316 σ  = 0.620 .σ  The experimenter knows in advance that if the difference 
between sample means turns out be zero, so that the data contain no suggestion 
of a difference between population means, the 95% CI will nevertheless include 
non-negligible positive values (such as 1 2 0.6µ − µ = σ ), as well as non-
negligible negative values (such as 1 2 0.6µ − µ = − σ ). Prior information about 
precision of estimation can be very useful: an experimenter who expects a small 
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effect may decide to increase the sample size to increase precision, or, if the 
required resources are not available, to change the experimental design or even 
abandon the experiment altogether. If a very large effect is expected (such as 

1 2 2 ),µ − µ = σ  a CI half-width of 0.620 σ  might indicate an acceptable level of 
precision. 
 
Implications for directional inference   The fact that zero is inside the obtained 
CI implies that a two-tailed .05 level z test would not have rejected the null 
hypothesis 0H : 1 2µ − µ = 0, so no inference would have been justified by the 
test. (The z test rather than the t test is relevant here because of the assumption 
that σ is known.) In general, it is difficult to know what to make of the failure of 
a test to produce a directional or inequality inference. Either the difference 
between 1 2µ − µ  and zero is trivially small, or the statistical power of the test 
has been insufficient to enable the test to detect whatever nontrivial difference 
exists. It is more difficult to determine the power of the test than it is to 
determine the precision of the CI, because the power of the test depends on the 
(unknown) magnitude of 1 2.µ − µ  It turns out that if 1 2 0.8µ − µ = σ  (a large 
effect according to Cohen’s effect size guidelines), then the power of the test is 
0.72; if 1 2 0.5µ − µ = σ  (a medium effect), then the power is 0.35. Figures like 
these can provide some help in the task of interpreting a ‘nonsignificant’ 
difference, but it is much easier to make sense of the associated CI. 
  In practice, the z method of CI construction is rarely used, because 
experimenters are rarely (if ever) in a position to know the population standard 
deviation. A value of σ = 15 might perhaps be assumed if the dependent 
variable is an IQ test scaled so that the standard deviation in the standardization 
population was set at 15. Even this case is problematic, however, unless subjects 
in the experiment are randomly sampled from the same population used to 
standardize the test. In general, it is not necessary to assume that the population 
standard deviation is known, because methods making using of t distributions do 
not require this assumption.  
 
 
Population standard deviation unknown 
 
We now abandon the assumption that the population standard deviation is 
known, but retain the assumption of normally distributed dependent variable 
scores with the same standard deviation in each population. Because σ is 
unknown, it is not possible to calculate the standard error of the difference 
between means. It is necessary to estimate σ from the data in order to use an 
expression similar to (1.1) to estimate 

1 2
.M M−σ  ANOVA procedures produce a 

statistic based on variation within groups called mean square error ( ),EMS  an 
unbiased estimate of the population variance 2.σ  We will defer a detailed 
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discussion of this statistic until we discuss the ANOVA model in Chapter 2. At 
this point we merely note that it is possible to obtain an appropriate estimate 2σ̂  
of the unknown parameter 2 ,σ  and we can use σ̂  = 2σ̂  to estimate σ.  
Replacing σ with σ̂  in (1.1) produces an expression for the estimated standard 
error of the difference between sample means (a statistic), rather than the 
standard error itself (a parameter). If each group has n subjects, the estimated 
standard error is 
 

1 2

2
ˆ ˆM M n−σ = σ .         (1.3a) 

If the two groups have different sample sizes 1(n and 2 ),n  the standard error is 
estimated from 
 

 
1 2

1 2

1 1
ˆ ˆM M n n−σ = σ + .          (1.3b) 

 
  Because we must estimate σ from the data in order to use (1.3a) or (1.3b), the 
critical value required to construct a CI is a percentile point from a t distribution 
rather than the standard normal distribution. The half-width of a raw 
100(1 )%− α  CI is / 2; 2Ntα −  × 

1 2
ˆ ,M M−σ  where / 2; 2Ntα −  is the value of the 

upper 100(1 /2)th− α  percentile of the central t distribution with ( 2)N −  
degrees of freedom. (A central t distribution is an ‘ordinary’ t distribution. We 
give it its full title here because we will subsequently need to distinguish 
between central and noncentral t distributions.) Therefore the CI is 
 

1 2µ − µ  ∈ 1 2( )M M−   ±  2;2/ −α Nt  × 
1 2

ˆ .M M−σ        (1.4) 

The t procedure produces exact 100(1 – α)% raw CIs, in the sense that if the 
relevant assumptions are satisfied, the noncoverage error rate produced by the 
procedure is exactly α.  
  Suppose that the experiment under discussion produces a variance estimate of 

2σ̂  = 234.78 (slightly larger than the actual population variance of 2σ  = 225). 
An experimenter who does not know the value of 2σ  would use the estimated 
value to produce an estimated standard error of 

1 2
ˆ 234.78 2 / 20M M−σ = × = 

4.845. The experimenter would be in no position to know that in this particular 
case the estimated standard error is slightly larger than the actual value of 

1 2M M−σ =  4.743. The critical value required to construct a 95% CI is .025;38t  = 
2.024. (Note that this is slightly larger than the critical z value of 1.960 used 
previously when the experimenter supposedly knew the population standard 
deviation.) The half-width of the interval is 2.024 × 4.845 = 9.81, so the 
confidence limits are 6.77 ±  9.81, and the interval is (–3.04, 16.58). 
  This interval is wider than that calculated on the assumption that the 
experimenter knows the value of the population standard deviation. Two factors 
contribute to the difference in width. The first is the fact that when the standard 
deviation is unknown, CI width depends on a statistic (the estimated standard 
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error), and therefore varies across samples. In this particular case the estimated 
standard error happens to be larger than the actual standard error, but the 
reverse could just as easily have been the case. The second factor contributing 
to the difference in CI width is the use of a critical value from a t distribution 
rather than the z distribution. A critical t value is always larger than the 
corresponding critical z value, due to the fact that central t distributions have 
thicker tails than the z distribution.  
 
Standardized confidence intervals   Unfortunately the principles used to 
construct exact raw CIs cannot be used to construct exact standardized CIs when 
the population standard deviation is unknown, because we cannot divide the raw 
CI limits by the population standard deviation. We can, of course, divide the 
raw limits by the sample standard deviation, thereby producing an 
approximation to an exact standardized CI. (It is worth repeating here that an 
‘exact’ CI is one produced by a procedure controlling the noncoverage error rate 
exactly over an indefinitely large series of replications of the experiment when 
the relevant assumptions are satisfied. An inference from an exact interval is still 
subject to error.) 
  In this particular case the sample standard deviation is σ̂  = 15.32, slightly 
larger than the population standard deviation of σ = 15.00. Dividing the relevant 
raw statistics by 15.32 produces statistics scaled in sample standard deviation 
units: 1 2M M−  = 0.44 σ̂  and the 95% CI is (–0.20 ,σ̂  1.08 ˆ ).σ  If we were to 
interpret –0.20 and 1.08 as the limits of a standardized CI, we would in effect be 
inferring that 1 2µ − µ  ∈ (–0.20σ, 1.08σ), thereby ignoring the distinction 
between the sample standard deviation and the population standard deviation. 
While we cannot claim that )08.1,20.0(−  is an exact standardized CI, we can 
treat it as an approximate standardized CI. In this particular case the 
approximation is a good one: it turns out that the exact standardized interval 
produced by the noncentral t procedure developed by Steiger and Fouladi 
(1997) is  (–0.19, 1.07). In most cases where the total sample size is similar to 
or larger than that in the example (N = 40), interpretations of effect size 
inferences from approximate standardized intervals should be virtually 
indistinguishable from those derived from exact intervals. In some cases, 
however, particularly when the sample size is small and the estimated effect size 
is large, the approximation can be poor. 
  If zero is inside (outside) an approximate standardized CI, it will also be inside 
(outside) the corresponding exact standardized interval and the exact raw CI. 
That is, the three intervals have the same implication for directional inference. 
  The relatively complex noncentral t CI procedure is described in Appendix C. 
While this procedure should be preferred to the central t procedure for the 
construction of t-based standardized CIs, it cannot be used for the construction 
of standardized CIs in unrestricted ANOVA-model analyses. Many of the 
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analyses recommended in this book make use of test statistics for which 
noncentral CI methods are not available.7 
 
 
Replicating the experiment: a simulation 
 
The time has come to reveal the source of the data set we have been analysing. 
The numbers were generated by a computer in a simulation of what might 
happen if an experiment was replicated 20 times, each replication including a 
different random sample of 40 subjects from the same population of potential 
subjects. The difference between population means was set at 1 2µ − µ  =  7.5, so 
that the standardized mean difference is 1 2( ) /µ − µ σ  = 7.5 15/  =  0.5, a 
medium effect according to Cohen’s guidelines. The data set from Replication 5 
in this series of 20 replications was used for the analyses discussed earlier. (Data 
from any of the other 19 replications could have been used to demonstrate CI 
procedures. Replication 5 was chosen because that particular data set happens to 
illustrate certain principles better than some of the other data sets.)  
 
Raw confidence intervals   We can see the operation of the most important 
principles underlying confident inference on mean differences by examining the 
variation between intervals across replications. The 95% raw CIs are shown in 
Figure 1.1, with intervals constructed with the z procedure (assuming known 
population variance) in the upper panel, and intervals constructed with the t 
procedure in the lower panel. The most striking feature of these graphs is their 
similarity – estimating the standard error from the data does not have a 
substantial impact on the outcomes of the analysis when the relevant t 
distribution has 38 degrees of freedom. The most important difference between 
the graphs is the absence of variability in the widths of the intervals produced by 
the z procedure; the width of all such intervals is 18.59, while the width of the t 
intervals varies between 16.07 and 22.88. 
  The broken line shows the value of the population mean difference, so any CI 
covering this line produces a correct inference, and any interval not covering the 
line produces a noncoverage error. Both procedures produce a noncoverage 
error from Experiment 18, and the t procedure also produces a noncoverage 
error from Experiment 7. We can be confident from statistical theory that if the 
number of replications in this simulation had been increased from 20 to (say) 
10,000, then the percentage of replications with noncoverage errors would be 
extremely close to 5 for both the z and t procedures. (As Experiment 7 shows, 
this does not mean that both procedures always produce the same inference.) 
  Both procedures produce an interval containing only positive values (thereby 
justifying the correct directional inference 1 2 )µ > µ  from 6 of the 20 
replications. (Replications 8 and 9 produce a correct directional inference from 
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(a) Confidence intervals constructed with the z procedure  
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(b) Confidence intervals constructed with the t procedure 

 
 
Figure 1.1   Raw 95% confidence intervals on a difference between two means from 20 
replications of one experiment  
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one but not both of the two procedures.) This result is consistent with 
expectations from a statistical power analysis, which shows that the power of a 
two-tailed t test in this context is .34, while the power of a two-tailed z test is 
.35. Neither procedure produces a Type III error (a directional inference in the 
wrong direction). Note that a Type I error is not possible here, because the null 
hypothesis is false. 
 
Standardized confidence intervals   Standardized CIs are shown in Figure 1.2. 
The upper panel shows the exact standardized intervals constructed on the 
assumption that the population variance is known, and the lower panel shows 
the approximate standardized intervals obtained by dividing the limits of each 
raw t interval from Figure 1.1(b) by the relevant estimated standard deviation. 
Again, the two sets of intervals are similar, indicating that the approximation is 
probably a reasonable one, at least for this particular combination of sample size 
and effect size. Unlike the exact raw intervals in Figure 1.1(b), the approximate 
standardized intervals in Figure 1.2(b) do not vary in width: the width of all 20 
intervals is 1.28 (estimated) standard deviation units. The exact standardized 
intervals from the z (known variance) procedure also have constant width, 
namely 1.24 population standard deviation units. Unlike the raw intervals, the 
two sets of standardized intervals differ slightly in their midpoints, because the 
raw midpoints are divided by slightly different quantities (the constant 
population standard deviation in the case of the z procedure, and the variable 
sample standard deviation in the case of the t procedure). 
  If standardized CIs are to be interpreted in accordance with Cohen’s effect size 
guidelines, then a t-based approximate standardized interval emerging from a 
given experiment in this series is likely to produce much the same interpretation 
as a z-based exact interval. Consider, for example, the results from Replication 
9, which produced the largest estimated standard deviation (17.88) and the 
greatest discrepancy (0.11) between the two estimates of the standardized 
difference between population means. Furthermore, this was the only replication 
producing a directional inference (a statistically significant difference) from the 
z procedure but not the t procedure. The z-based interval is (0.08, 1.32), while 
the t-based interval is (–0.06, 1.22). Both intervals assert that 1µ  is not 
nontrivially smaller than 2 ,µ  and that 1µ  is practically equivalent to or greater 
than 2.µ  Both intervals fail to provide a precise estimate of the magnitude of the 
difference between means, excluding only nontrivial negative and very large 
positive differences. 
   The sample size (n = 20, N = 40) used in this simulation is not small, relative 
to the sample sizes often used in experimental psychology. Two aspects of the 
simulation data would probably surprise many researchers, particularly those 
who expect relatively small samples to provide reasonably precise estimates of 
parameters of interest. First, the width of the standardized CIs (1.28 for t-based 
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(a) Exact confidence intervals constructed with the z procedure 

 
 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Replication

-2

-1

0

1

2

S
ta

nd
ar

di
ze

d 
m

ea
n 

di
ff

er
en

ce

 
(b) Approximate confidence intervals constructed with the t procedure 

 
 
Figure 1.2   Standardized 95% confidence intervals on a difference between two means 
from 20 replications of one experiment 
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intervals) implies that a substantial range of possibly important differences 
between population means must be included in any given interval. An interval 
with a midpoint of zero, for example, also includes small and medium positive 
differences, as well as small and medium negative differences. If this degree of 
(lack of) precision is unacceptable in a particular context, then the problem is 
with the sample size, not with the method used to construct the CI. Indeed, an 
advantage of the CI approach is that it is a relatively simple matter to estimate 
the precision of estimation (standardized CI width) before the experiment is run. 
In any two-group experiment with 20 subjects per group, the width of an exact 
95% standardized CI produced by the z method will be exactly 1.24, and the 
width of an approximate 95% interval produced by the t method will be exactly 
1.28. If such an interval is deemed to be unacceptably imprecise, it is not 
difficult, as we will see in Chapter 3, to determine the sample size required to 
produce a standardized interval of any desired width. Those who are surprised 
by the width of the intervals in this simulation would probably also be surprised 
by the magnitude of the variability across replications in the locations 
(midpoints) of the intervals. The standard deviation of (raw) interval midpoints 
across an indefinitely large number of replications is simply the standard error 
used to construct the z-based intervals. (For raw z-based intervals, this figure is 
4.74; the standard deviation of the midpoints of the sample of 20 such intervals 
shown in Figure 1.1(a) is 4.89.) It follows that an experimenter who has access 
only to data from a single replication is nevertheless able to estimate the 
variability across replications in CI midpoints from the same statistic (the 
estimated standard error, which is 4.84 in Replication 5) used to construct the t-
based interval emerging from that single replication.  
 
Implications for directional inference   Because confident direction inference 

1 2(µ > µ  or 1 2 )µ < µ  is the highest level of statistical inference aspired to by 
many researchers, it is of some interest to see what inferences at this level would 
be possible from the 20 replications in the simulation. Before running such an 
experiment, a researcher planning to carry out a .05 level two-tailed t test 
(equivalent to using a 95% CI for directional inference only) would know that if 

1 2µ − µ  = 0, then the probability of no inference is .95, while the probability of 
a (necessarily incorrect) directional inference is .05. These probabilities do not 
apply to the replications in the simulation, because, unknown to the 
experimenter, the difference between 1µ  and 2µ  is greater than zero by 0.5 
standard deviation units. The probability of a correct directional inference 

1 2( )µ > µ  is only .34, while the probability of no directional inference is .66. 
The probability of a Type III error (getting the direction wrong) in this case is 
too small to worry about. After the experiment is run, the experimenter knows 
that in that particular sample from a population of potential replications of the 
experiment, the test outcome either does or does not justify a confident 
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directional inference. If the experiment happens to be Replication 5 from the 
simulation, then it turns out that no inference can be justified by the test. (The 
probability under the null hypothesis of a t at least as large as the obtained value 
of 1.40 is p = .17.) This ‘nonsignificant’ (no inference) outcome is, needless to 
say, absolutely uninformative, not because there is anything wrong with the test 
procedure, but simply because at this level of inference much of the information 
in a potentially informative 95% CI is ignored. As we saw earlier, the t-based 
standardized CI (–0.20, 1.08) excludes the possibility of a confident direction 
inference, but it does support the inference that 2µ  is not nontrivially larger than 

1,µ   among other things. Unlike the test, the interval also shows that the 
experiment is not sufficiently sensitive to permit a precise estimate of the 
magnitude of the effect. 
 
 
The subjectivist critique of confidence interval inference 
 
CI inference is part of the classical or frequentist approach to statistical 
inference, which treats parameters such as population means as fixed and 
statistics such as sample means as variable. As a consequence, probability 
statements refer to statistics rather than parameters. Thus, while it may be 
possible to justify a statement like: ‘The probability that a CI constructed in a 
particular way will cover the parameter is .95’, it is considered improper to state 
that ‘the probability that the parameter is covered by this CI is .95’. 
  CIs are often misinterpreted because the ordinary-language meaning of the 
word ‘probability’ is more closely related to the interpretation of that term in the 
subjectivist approach to statistical inference than it is to the interpretation of the 
same term in the classical approach to inference. The subjectivist (or Bayesian) 
approach treats parameter values as values of random variables, thereby making 
it possible to define probability distributions referring to parameters like 
population means or differences between population means.  
  The Bayesian inferential framework requires the experimenter to specify a 
prior probability distribution of the parameter of interest. The prior probability 
distribution is generally interpreted as a distribution of subjective probabilities 
reflecting the researcher’s beliefs about the relative credibility of various 
parameter values, prior to seeing the data. Given this prior distribution and the 
data (together with an additional probability distribution referring to data rather 
than parameters), a Bayesian analysis produces a posterior distribution of the 
parameter (a revised distribution taking the data into account). The posterior 
distribution can be used to construct an interval (usually called a credible 
interval) for which an interpretation like ‘the probability that the parameter lies 
in this interval is .95’ is appropriate. For further details on Bayesian inferential 
procedures, see Pruzek (1997). 
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  From a Bayesian perspective the classical significance testing and CI 
approaches are flawed, because they do not allow for probability distributions 
on parameters (either prior or posterior), and therefore cannot justify the kinds 
of inferential statements researchers would like to make. 
  Bayesian inference is not without its critics (see, for example, Oakes, 1986). 
The most obvious target for criticism is the role played in Bayesian inference by 
the prior probability distribution, allowing the beliefs and prejudices of an 
individual researcher to influence the interpretation of the data. This criticism 
can be dealt with in a number of ways, one of which is to use an ‘uninformative’ 
prior distribution, thereby ensuring that prior beliefs have no influence on the 
outcome of the analysis. It turns out that the use of uninformative prior 
distributions in a Bayesian analysis produces credible intervals whose limits are 
similar (if not identical) to those of CIs from a classical analysis (Pruzek, 1997). 
It would appear, then, that the consequences of common misinterpretations of 
CIs are less profound in practice than they might appear in theory. 
  It would be a mistake, however, to ignore the implications of the Bayesian 
approach to inference, because it does help to make explicit some of the 
limitations of classical methods of analysis. If an experiment is one of a series, 
each of which adds something to an existing body of knowledge, a Bayesian 
analysis can, at least in principle, take that knowledge into account in the 
specification of the prior distribution. Inferences from a classical analysis, on 
the other hand, can be influenced only by the data in the current experiment. In a 
discipline such as psychology where statistical power is typically low 
(Sedlmeier and Gigerenzer, 1989), classical analyses at the level of individual 
experiments can be expected to produce imprecise inferences, relative to those 
sometimes possible from meta-analyses of sets of similar experiments (Schmidt, 
1996), or, in a Bayesian framework, analyses of individual experiments that take 
prior research into account. It does not follow, however, that the rate of 
incorrect inferences from CIs is likely to be higher than the nominal error rate. 
 
 
Further reading 
 
Cumming and Finch (2001) and Smithson (2003) provide extensive discussions 
of CI procedures based on both central and noncentral t distributions. If you feel 
the need to consolidate your understanding of CI inference before proceeding to 
Chapter 2, these are good places to start. 
  Hsu (1996) discusses some of the most important ideas introduced in this 
chapter (particularly levels of inference and practical equivalence inference). 
Hsu’s treatment does, however, assume a greater degree of mathematical 
sophistication than is assumed here. For examples of practical equivalence 
inference in psychology, see Rogers, Howard and Vessey (1993). Cohen (1988), 
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Richardson (1996) and Rosenthal (1994) provide discussions of effect size 
measures.  
  If you would like to become acquainted with the recent history of the debate in 
psychology concerning the relative value of CIs and significance tests, you will 
find it worthwhile to consult Cohen (1994), Nickerson (2000), Schmidt (1996), 
or some of the relevant chapters in Harlow, Mulaik and Steiger (1997). For an 
indication of the approach to this issue recently adopted by the American 
Psychological Association, see Wilkinson and the Task Force on Statistical 
Inference (1999) and the 5th edition of the APA Publication Manual (American 
Psychological Association, 2001). 
  Oakes (1986) provides a very readable book-length discussion and critique of 
a number of approaches to statistical inference, including classical and Bayesian 
approaches. 
 
 
Questions and exercises 
 
At the end of each chapter you will find a set of questions and exercises 
designed to test your understanding of the material in the chapter, and, 
particularly in subsequent chapters, to provide you with opportunities to practise 
carrying out relevant analyses. You can check on your answers by consulting 
Appendix E. 
 
1.  In a study designed to investigate the effect of practice on performance on an 
aptitude test, participants are randomly assigned to one of two experimental 
conditions. Those in the first (treatment) condition are given practice on items 
similar to those in the aptitude test, while those in the second (control) condition 
spend the same amount of time answering questions in an interest inventory. 
The experimenters are primarily interested in knowing whether the magnitude of 
the practice effect is large enough to justify changes in a selection procedure 
that makes use of the test. A mean practice effect of 3 (items correct) is regarded 
as the smallest nontrivial effect. 
  The inference about the practice effect is to be based on a 95% CI on 

.T Cµ − µ  
  What conclusion (if any), at each of the three levels of confident inference 
discussed in this chapter (interval, direction and inequality inference), would 
follow from each of the following CIs: 
 
(a) T Cµ − µ  ∈ (6.5, 8.7) 

 
(b) T Cµ − µ  ∈ (0.9, 16.8) 

 
(c) T Cµ − µ  ∈ (–0.6, 1.6) 

 
(d) T Cµ − µ  ∈ (–7.4, 8.5)? 
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2.  Assume that the within-condition standard deviation for the experiment in 
Question 1 is known (independently of the data) to be σ = 8.2. Given the raw 
CIs in Question 1, construct and interpret standardized CIs. 
 
3.  Comment on the relative precision of the CIs you constructed in your answer 
to Question 2. Without doing any additional calculations, comment also on 
sample sizes in the four cases. 
 
4.  What types of inferential error (if any) follow at each level of confident 
inference (CI, confident direction, confident inequality) from the raw CIs 
produced by the t procedure from Replication 1 and Replication 18 of the 
simulated experiment discussed on page 17? To answer this question you will 
need to consult Figure 1.1(b). 
 
5.  Suppose that you were an experimenter running the simulated experiment, 
and you obtained the same data as that produced by Replication 18. Could you 
answer Question 4 if it referred to your data? If not, why not? 
 
 

Notes 
 
1.  A fixed-effects ANOVA model (the type of model usually implied when the term 
ANOVA is used without qualification) is appropriate for the analysis of randomized 
experiments where the various experimental conditions (treatments) are selected by the 
experimenter. A random-effects ANOVA model, otherwise known as a variance 
components model, is appropriate when treatments are randomly sampled from a 
population of potential treatments. See Bird (2002) or Smithson (2003) for brief 
discussions of CI inference on parameters of random-effects models.   
 
2.  The term replication is used in at least three different senses by statisticians and 
experimenters. The term is used in this book to refer to a repetition of an experiment that 
makes use of a different random sample of subjects from the same population, but is 
otherwise identical to the original experiment (or another replication).  
3.  The usual derivation of the standard error used in a two-group t test (or CI) assumes 
that the subjects assigned to each treatment are randomly sampled from a population of 
infinite size. In practice, the ‘sample’ of N = 2n subjects in a two-group experiment is 
usually a convenience sample, not a random sample from any population. Given random 
assignment from a convenience sample, the same standard error can be derived by 
replacing the random sampling assumption with the assumption that the size of the 
treatment effect does not vary across subjects (Reichardt and Gollub, 1999). If the size of 
the treatment effect does vary across subjects, the standard error used by the t-test 
procedure is likely to be too large, so that the inferences from the procedure are valid but 
conservative, with too few Type I errors from tests and too few noncoverage errors from 
CIs. Given random assignment from a convenience sample, the parameter 21 µ−µ  
refers to the ‘population’ of all subjects in the experiment. Of course, random sampling 
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has one important advantage over random assignment: it provides a justification for a 
generalization beyond the N = 2n subjects in the experiment to the population from 
which they were sampled. In the terminology of Cook and Campbell (1979), random 
assignment provides a basis for claims of internal validity, while random sampling 
provides a basis for claims of both internal and external validity.  
 
4.  Glass (1976) suggested that the standardized effect size should be expressed in units 
of variability in the control population. For various reasons, including the fact that the 
designation of one treatment as the ‘control’ is often arbitrary, it has become standard 
practice to assume that both treatment populations have the same standard deviation, and 
to use this common standard deviation as the unit of measurement when defining a 
standardized effect size. 
 
5.  It is possible to justify confident practical equivalent inference by carrying out two 
nonstandard tests, one allowing for the possibility of the inference 1 2µ − µ < τ, the 
other allowing for the possibility of the inference 1 2µ − µ > –τ (Rogers, Howard and 
Vessey, 1993). The CI approach, however, is simpler and more informative.  
 
6.  Following Lockhart (1998) and Smithson (2000), the symbol w is used to refer to the 
half-width (rather than the width) of a CI. The width of a CI is therefore 2w. 
 
7.  Many ANOVA-model analyses make use of an F test statistic, critical values of 
which can be used to construct CIs on various monotonic functions of the noncentrality 
parameter of a noncentral F distribution. (See Appendix C for details.)  In most cases it 
is not possible to transform a CI on this noncentrality parameter into a CI on contrasts 
(generalized comparisons). A number of ANOVA-model analyses use test statistics for 
which noncentral interval estimation procedures have not been developed. 
 


